
Journal of Universal Computer Science, vol. 27, no. 11 (2021), 1240-1271
submitted: 11/2/2021, accepted: 9/8/2021, appeared: 28/11/2021 CC BY-ND 4.0

Leveraging multifaceted proximity measures among
developers in predicting future collaborations to improve

the social capital of software projects

Amit Kumar
(Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India

https://orcid.org/0000-0002-2945-4300, rsi2019004@iiita.ac.in)

Sonali Agarwal
(Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India

https://orcid.org/0000-0001-9083-5033, sonali@iiita.ac.in)

Abstract: Social capital is an asset earned by people through their social connections. One of the

motivations among developers to contribute to open source development and maintenance tasks is

to earn social capital. Recent studies suggest that the social capital of the project has an impact on

the sustained participation of the developers in open source software (OSS). One way to improve

the social capital of the project is to help the developers in connecting with their peers. However,

to the best of our knowledge, there is no prior research which attempts to predict future collabora-

tions among developers and establish the significance of these collaborations on improving the

social capital at the project level. To address this research gap, in this paper, we model the past

collaborations among developers on version control system (VCS) and issue tracking system (ITS)

as homogeneous and heterogeneous developer social network (DSN). Along with the novel path

count based features, defined on proposed heterogeneous DSN, multifaceted proximity features

are used to generate a feature set for machine learning classifiers. Our experiments performed

on 5 popular open source projects (Spark, Kafka, Flink, WildFly, Hibernate) indicate that the

proposed approach can predict the future collaborations among developers on both the platforms

i.e. VCS as well as ITS with a significant accuracy (AUROC up to 0.85 and 0.9 for VCS and

ITS respectively). A generic metric- recall of gain in social capital is proposed to investigate

the efficacy of these predicted collaborations in improving the social capital of the project. We

also concretised this metric on various measures of social capital and found that collaborations

predicted by our approach have significant potential to improve the social capital at project level

(e.g. Recall of gain in cohesion index up to 0.98 and Recall of gain in average godfather index up

to 0.99 for VCS). We also showed that structure of collaboration network has an impact on the

accuracy and usefulness of predicted collaborations. Since the past research suggests that many

newcomers abandon the open source project due to social barriers which they face after joining

the project, our research outcomes can be used to build the recommendation systems which might

help to retain such developers by improving their social ties based on similar skills/interests.

Keywords: Developer Social Network (DSN), Online Collaboration, Social Capital, Link Predic-
tion, Heterogeneous Developer Social Network, Homogeneous Developer Social Network, Issue
Tracking System, Version Control System
Categories: D.2, D2.7, H.3.4, H.3.5, H.4, M.3

DOI: 10.3897/jucs.76602

https://orcid.org/0000-0002-2945-4300
https://orcid.org/0000-0002-2945-4300
https://orcid.org/0000-0001-9083-5033
https://orcid.org/0000-0001-9083-5033


Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1241

1 Introduction

Bug fixing is largely a collaborative task where developers collaborate to fix the issues or
bugs. Two major information systems where developers contribute and discuss towards
fixing the issues are issue tracking system (ITS) and version control system (VCS). The
discussion among developers on issue tracking system and their commit activities in
version control systems lead to form an implicit DSN. For instance, the interaction among
developers on ITS can be modelled as the network where developers are nodes and edges
between pair of developers signify the fact that they have commented on at least one
common bug report. Similarly, the DSN formed out of version control data could have
nodes as authors and edges between pair of nodes can signify that they have committed
at least one common file.
DSNs have been investigated in the past for solving many software engineering problems.
It has been used for defect prediction [Meneely et al., 2008] [Bird et al., 2009] [Abreu
and Premraj, 2009], automatic bug triaging [Wu et al., 2011] [Bhattacharya and Neamtiu,
2010] [Banitaan and Alenezi, 2013] [Jeong et al., 2009], for code review [Kerzazi
and El Asri, 2016] and evolution of software and developer communication patterns
[Bhattacharya et al., 2012] [Datta et al., 2011] [Hong et al., 2011] [Kumar and Gupta,
2013] etc.

One of the motivations for OSS contributors to contribute to the development and
maintenance of the open source software is to improve their social connections and social
status in the open source development community. In management and social science, the
rewards obtained by individuals owing to their position in community and connections
with their peers are referred to as social capital. Though social capital has been very
popular in social science [Burt, 1998] [Chiu et al., 2006] [Aguilera, 2002] [Brown
and Ferris, 2007] [Guiso et al., 2004] [Hahn et al., 2008], a systematic classification
of social capital and network metrics to measure it, was proposed only recently by
Jackson [Jackson, 2019].

In open source software development, the importance and impact of social capital has
been studied from team composition [Tan et al., 2007], return from investment [Méndez-
Durón and García, 2009] and project’s success point of view [Chou and He, 2011] [Singh
et al., 2011] [Daniel et al., 2018]. Recently Qui et al. [Qiu et al., 2019] found that social
capital of developers has a significant impact on their sustainability with the project. One
way to help the developers in improving their social capital is by recommending new
peers whom they can collaborate with, towards completing the given task e.g. bug fixing.

In this paper, we use link prediction approach in recommending the new ties among
developers to improve their social capital. Link prediction is a popular problem and
has been explored extensively in the field of data mining and social network analysis.
Hasan and Jaki [Al Hasan and Zaki, 2011], Martinez et al. [Martínez et al., 2016] and
Samad et al. [Samad et al., 2020] provide a exhaustive literature review on this area.
Some past studies have utilized link prediction approach in solving some of the software
engineering problems. For instance, software engineering researchers have used link
prediction in detecting architecture smells [Díaz-Pace et al., 2018], recommending right
project or repository to Github developers [Nielek et al., 2016] [Akula et al., 2019],
predicting design dependencies [Diaz-Pace et al., 2018], predicting right web service to
the web service developers [Huang et al., 2013] etc.

Compared with the past research on link prediction in software engineering, our work
is novel in many aspects as indicated below:

1. First, we predict the future collaborations among the developers based on their



1242 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

current associations and activities. That is, we predict pairs of developers who have
not communicated in the past, but are likely to communicate in the future to fix a
bug. This can be helpful to design the tools that can recommend developers who
are likely to cooperate in a bug fix and expedite the bug fixing process. This is a
useful problem also because its solution can be useful in improving the social capital
of developers in the project which in turn results into the longer associations of
the developers with the project as described by Qiu et al. [Qiu et al., 2019]. To the
best of our knowledge, no prior study has attempted the link prediction approach in
predicting future collaborations among developers in open source projects.

2. Second, instead of just restricting ourselves to the homogeneous representation of
DSN like many past studies, we proposed an integrated heterogeneous network
schema and defined various meta paths based on this schema. Along with some
activity based features, we used these meta paths to enrich the features set for our
classifiers. In this way, we use three kinds of features i.e. based on homogeneousDSN,
based on heterogeneous DSN and based on the number of activities of developers on
VCS and ITS platform,making our feature set diverse enough.While in homogeneous
DSN, nodes and edges are of same types, in heterogeneous DSN, both nodes and
edges can be of different types. For example, we can have Homogeneous DSN
where nodes are developers and edge between developers represent the fact that they
commented on the same bug report at least once. Heterogeneous DSN helps to capture
richer information present in software bug (We use Bug and issue interchangeably in
this article) repositories. The developers who have commented on two different bug
reports of the same component can also be connected through a path in heterogeneous
DSN even if they did not comment on the same bug report. Such deeper multiple
types of connections can not be leveraged using homogeneous DSN. Despite being
very popular in the data mining field, no past study in software engineering domain
leverages heterogeneous network structure for link prediction task, to the best of our
knowledge.

3. Third, we relied on two sources of data for the construction of the homogeneous
and heterogeneous networks i.e. issue comments and commit history of the projects.
That is, we also consider developers committing the same file as collaborators. In
this way, we have two versions of homogeneous as well as heterogeneous networks,
one for comment data and another for commit data.

4. Finally, apart from using common metrics, widely used to measure the performance
of link prediction tasks e.g Precision, Recall, AUROC, we also investigated the
usefulness and relevance of new links predicted by our method. Apart from using
various standard network measures described recently by Jackson [Jackson, 2019],
we proposed two novel network measures to investigate how much gain in the
average social capital of the developers working in open source software project
could be achieved using our method. We also investigate if different levels of
collaborations (collaboration based on commit activity and collaboration based on
comment activities) among developers have different potential of improving their
social capital.

In nutshell, we investigate the following research questions in this paper.

RQ1: Can we use link prediction technique to predict the future collaborations among
the developers? How accurately the popular binary classifiers can predict the future



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1243

collaborations in the bug fixing process?

RQ2: How useful the recommended developer-developer links are in terms of improving
the social capital of the developers?

RQ3: How does the performance of link prediction vary across different types of DSNs
in improving the social capital i.e. comment data based DSN or commit data based DSN?
What causes this difference in performance?

To address the above research questions, 5 popular open source projects i.e. Spark,
Flink, Hibernate, Kafka and Wildfly have been used. We found that our approach could
improve the social capital of the developers significantly. It is also noted that the links
predicted using commit based DSN has more potential to improve the social capital of
the developers.

The rest of the paper is organized as follows- section 2 provides the overview of
related work to our paper, section 3 discusses the methodology, section 4 presents the
experimental setup and details of the dataset, we used while section 5 discusses the
results. Finally, we conclude the paper in section 6.

2 Related Work

An implicit developer social network is created when developers work on same artefact
to perform their development and maintenance duties. Here we review some of the most
related work on DSN and how they have been used to solve some interesting problems
in software engineering. For example, Canfora et al. [Canfora et al., 2012] identify the
mentors to the newcomer developers by analyzing the mailing lists of the project. Bird et
al. [Bird et al., 2006] performed network analysis on DSN constructed from mailing lists
to discover the social status of OSS contributors in the network and how this status is
related to their commit activities. Hong et al. [Hong et al., 2011] compared the evolution
of general social network e.g. Facebook, Twitter etc. with the evolution of developer
social network. Kumar and Gupta [Kumar and Gupta, 2013] on the other hand, extend
the work of Hong et al. by investigating the evolution of DSN for other OSS projects
and how the structural properties of these DSNs influence the efficiency of bug fixing
process. Zhang et al. [Zhang et al., 2013] [Zhang et al., 2016] used heterogeneous DSN
constructed from ITS data to study the nature of developers contributions and to automate
the bug triaging process. We also use DSN for our study. However, our study is more
comprehensive as we use three different types of DSNs-commit based Homo-DSN,
comment based Homo-DSN and integrated Hetero-DSN. Moreover the problem which
we attempt to solve is significantly different from the past research.

Developers having many social connections hold social capital and always desirable
in an organization. Many studies including Hahn et al. [Hahn et al., 2008] shows how
prior relationships among developers can help in team formation in the project. Newcomer
software developers usually prefer to be part of software teams where they know some
of their peers [Casalnuovo et al., 2015]. Mendez et al. [Mendez et al., 2018] report that
newcomer software developers face social and technical barriers when they join the
open source community and how tools can help them to address this issue. Qiu et al.
took these studies forward to see how social capital at the project level has an impact on
the sustained participation of the developers in the OSS project. We complement these
studies on social capital firstly by introducing the concrete network measures to evaluate
the social capital of open source project as proposed by jackson [Jackson, 2019] and Qiu



1244 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

et al. [Qiu et al., 2019]. Secondly, the importance of link prediction on various types of
DSNs to improve social capital is also demonstrated.

3 Methodology

In this section, we cover some background concepts related to our work and discuss how
they can be leveraged in answering our research questions.

3.1 Homogeneous DSN

Both, VCS as well as ITS have been used to construct the DSN in the past. In homo-
geneous DSN, the nodes and edges are of the same types i.e. nodes are developers and
edges between pair of developers signify the communication/collaboration that happened
between pair of developers. To further illustrate the Homo-DSN, let us consider the toy
example of ITS and VCS data shown in Table 1 and Table 2. Table 1 shows the issue
comment data where developers discuss the issue by making comments on ITS.

Table 1: Toy Example of Issue Comment Data

CommentID IssueID Developer Reporter Assignee Component

CMT1 I1 D1 R1 A1 COM1

CMT3 I2 D3 R1 A2 COM2

CMT4 I2 D2 R1 A2 COM2

CMT5 I2 D4 R1 A2 COM2

CMT6 I3 D4 R2 A2 COM1

CMT7 I3 D5 R2 A2 COM1

Table 2: Toy Example of Commit Data for issues mentioned in Table 1

IssueID CommitID Developer File Path Package

I1 CIT1 D1 α1|β1|γ1|δ1.py α1|β1|γ1
I1 CIT2 D5 α1|β1|γ2|δ2.py α1|β1|γ2
I2 CIT3 D6 α1|β1|γ1|δ1.py α1|β1|γ1
I3 CIT4 D5 α1|β2|γ3|δ3.py α1|β2|γ3
I1 CIT5 D6 α1|β1|γ2|δ2.py α1|β1|γ2
I2 CIT6 D3 α1|β1|γ1|δ4.py α1|β1|γ1

The corresponding Homo-DSN (graph on the left side of the Figure 1) has developers
as nodes and edge exist between the pair of developers if they have commented on at



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1245

least one common issue. Similarly Table 2 shows the commit activities corresponding to
the issues mentioned in Table 1. The commit based Homo-DSN is shown on the right
side of Figure 1.

D1 D2

D5 D4

D3

D1 D3

D5 D6

Figure 1: Homogeneous Developer Social Networks: Based on Table1(Left) and Based

on Table 2(Right)

(D1, D6) and (D5, D6) are only two pairs where developers have committed on
a common file and hence this network is relatively sparser. The network proximity
measures e.g. common neighbours between developers implies how closer they are in
their work profiles.

3.2 Proposed integrated heterogeneous DSN Schema

While computing the proximity measures between developers, Homo-DSN have some
limitations. For instance, two developers commenting on two different issue reports of
the same software component or developers commenting on two different issue reports
which have caused to change the same file, are semantically closer with each other but
such similarity might be overlooked in Homo-DSN. To address this issue, we proposed
Hetero-DSN, based on the network schema shown in Figure 2.

It can be noted that Figure 2 shows the meta-network and not the actual network.
The actual Hetero-DSN is instantiated based on this abstract network schema. The nodes
of the Hetero-DSN are connected by following the meta paths. A meta path is a path
defined over an abstract network schema. It is the sequence of node types where node
types are connected through edge types. For instance, in figure 2, a meta path, developer-
commit-file-directory exists between developer and directory. Needless to say, there
are many possible meta paths that can be defined on meta-network (network schema).
However, only a few, which are relevant to our problem have been used in our study.
Since we require to measure the proximity among developers, all our meta paths have
developers as end nodes in the meta path. The intuition behind identifying the meta paths
is that developers who share some similarities in their work profiles (e.g. developers
who have worked on different issues, found in the same component) are likely to work
together in future even if they have not worked together in the past. All the meta paths
used in our work is listed in Table 3.3.2 and Table 3.3.2. Each meta path signifies a
different semantic meaning and captures the different hidden similarities between the
developers. For example, using the meta path D-I-A-I-D, developers commenting on two
different issue reports, assigned to the same assignee could be connected. It can be noted



1246 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

has/has−1

makes/makes−1

co
m
m
en
ts/co

m
m
en
ts −

1as
si
gn
ed
_t
o/
as
si
gn
ed
_t
o−

1

has
/ha
s−1

reported_by/reported_by−
1

found_in/found_in −
1

ch
an
g
es/ch

an
g
es −

1

present_in/present_in−1

fixes/fixes−
1

fo
un
d_
in
_p
at
h_
of
/f
ou
nd
_i
n_
pa
th
_o
f
−
1

depends_On

IssueReport

Assignee

Term

Reporter

Developer

Component

Commit

File Directory

Figure 2: Schema of Heterogeneous Developer Social Network

that developers who are not connected in Homo-DSN can be connected in Hetero-DSN.
For instance, in Homo-DSN based on comment data, (D1, D5) and (D1, D2) are not
connected. However, both of them could be connected in Hetro-DSN with the help of
paths, D1–I3–COM1–I3–D5 (using meta path D-I-C-I-D) and D1–I1–R1–I1–D2 (using
meta path D-I-R-I-D) respectively. Similarly in Homo-DSN based on commit data, (D1,
D3) and (D3, D5) are not connected to each other while they are connected in Hetero-DSN
using the paths D1—CIT1—α1|β1|γ1|δ1.py—α1|β1|γ1—α1|β1|γ1|δ4.py—CIT6—D3

(using meta path D-CIT-F-DR-F-CIT-D) and D3–CIT6–I2–A2–I3–CIT4–D5 (using meta
path D-CIT-I-A-I-CIT-D) respectively. From the above examples, it is clear that a meta
path describes the way to connect concrete objects and hence there can exist multiple
concrete paths following a specific meta path. The proximity among developers can be
measured using Homo-DSN based measures (e.g. common neighbours) and Hetero-DSN
based measures (e.g. path counts based on various meta paths). Good proximity scores
among developers indicate the similarity in their profiles and developers who share good
proximity measures are likely to collaborate in the bug fixing process. In our work, we
use Homo-DSN and Hetero-DSN based proximity measures to build supervised learning



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1247

classifiers in predicting future collaborations among them. We constructed three DSNs
in total-Homo-DSN based on comment data, Homo-DSN based on commit data and one
integrated Hetero-DSN based on Meta-Network shown in Figure 2.

3.3 Link Prediction

In link prediction, given a network in time t, future connections are predicted among
nodes of the network in time t+1 [Liben-Nowell and Kleinberg, 2007]. Predicting future
collaborations among existing developers is equivalent to predicting the new edges
(links) in the DSN. Note that we make predictions of future links among developers who
are common across times t and t+1. Even though we do not predict possible links with
new developers entering the project, We found a significant number of new connections
between those nodes that are common across the time periods (t and t+1). These links
can be predicted by our approach. We create three DSNs for our study-comment based
Homo-DSN, commit based Homo-DSN and Hetero-DSN based on the schema defined in
Figure 2. To predict new collaborations at the comment and commit level we apply link
prediction on comment based Homo-DSN and commit based Homo-DSN respectively.
It should be noted that though we do not apply link prediction on Hetero-DSN, the path
based measures defined on it are used as features in classifiers used for both types of
Homo-DSNs.

We used three types of features in our link prediction classifiers i.e. features based
on homogeneous DSN, features based on heterogeneous DSN and features based on
the number of contributions of the developers. In total, we used 16 features for both
commits based and comment based DSNs. Among these 16 features, 5 are based on
homogeneous DSN, 5 are contribution based features and 6 are based on the path counts
in the heterogeneous DSN. Details of these features are given as follows.

3.3.1 Features based on homogeneous DSN

Since we studied the DSNs at two levels i.e. comment level and commit level, we
constructed two different DSNs and computed following measures based on both the
types of DSNs.

3.3.1.1 Number of common neighbours :

The intuition behind this metric is that if two developers sharing more number of neigh-
bours between them, then they themselves are likely to be connected in the future. Adamic
Adar, Jaccard Coefficient and Preferential Attachment measures are also based on the
number of neighbours of the developers and are defined below.

3.3.1.2 Jacard Coefficient:

This is defined as the number of common neighbours divided by the total number of
neighbours of both the developers. Mathematically, Jaccard Coefficient (JC) is defined
as

JC (d1, d2)= |N(d1)∩N(d2)|
|N(d1)∪N(d2)|

where N (d) is the set of neighbours of developer d.



1248 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

3.3.1.3 Adamic/Adar:

Adamic/Adar (AA) score calculation gives less significance to those common neighbours
who themselves have a very large number of neighbours/connections. It is defined as
follows

AA (d1, d2)=
∑

D∈N(d1)∩N(d2)
1

log |N(D)|

3.3.1.4 Preferential Attachment:

The Preferential Attachment (PA) score is simply the product of the number of neighbours
of two developers. It is defined as follows

PA (d1, d2)=|N (d1) | · |N (d2) |

3.3.1.5 Length of Shortest Path:

This measure returns the length of the shortest path between pair of developers in the
graph. Shorter the length between two nodes in the graph, higher are the chances that
they will collaborate in future.

3.3.2 Features based on heterogeneous DSN:

Hetero-DSN based features are prepared based on meta paths defined on Hetero-DSN.
For predicting future links in comment based Homo-DSN, we compute the number of
paths i.e. path counts based on each meta path listed in Table 3.3.2 while to predict
the links in commit based Homo-DSN, we use path counts based on the meta paths
listed in Table 3.3.2. This way, we use 6 features based on Hetero-DSN for each of the
Homo-DSNs (i.e. comment based DSN and commit based DSN).

Table 3: Meta Paths used to connect developers in Heterogeneous Developer Social

Network(Based on Comment data)

D:Developer, I:Issue, A:Assignee, CIT:Commit, F:File, DR:Directory, C:Component,

R:Reporter

Meta Path Elucidation of Meta Path

D-I-A-I-D Developers commenting on the issues assigned to same assignee
D-I-CIT-F-CIT-I-D Developers commenting on issues which cause changing the same

file
D-I-CIT-F-DR-F-CIT-I-D Developers commenting on issues which cause changing files

in same directory
D-I-C-I-D Developers commenting on issues found in same component
D-I-I-D Developers commenting on two related issues
D-I-R-I-D Developers commenting on issues reported by same reporter



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1249

Table 4: Meta Paths used to connect developers in Heterogeneous Developer Social

Network (Based on Commit data)

D:Developer, I:Issue, A:Assignee, CIT:Commit, F:File, DR:Directory, C:Component,

R:Reporter

Meta Path Elucidation of Meta Path

D-CIT-F-C-F-CIT-D Developers authoring the files which share a component present in their directory path
D-CIT-F-DR-F-CIT-D Developers authoring the files present in the same directory
D-CIT-I-A-I-CIT-D Developers contributing in fixing the issues assigned to the same assignee
D-CIT-I-C-I-CIT-D Developers contributing in fixing the issues found in the same component
D-CIT-I-I-CIT-D Developers contributing in fixing two related issues
D-CIT-I-R-I-CIT-D Developers contributing in fixing the issues reported by same reporter

3.3.3 Contribution based features

These features are based on the contributions of the developers, they make on the issue
tracking systems and version control systems to resolve the issues. We use many similar
but distinguishable measures to compute the number of contributions of the pair of
developers on ITS and VCS. Our intuition is that developers who are more active and
contribute frequently are more likely to form new associations with other developers.
For predicting the links in comment based DSN, we use contributions made to ITS while
predicting links in commit based DSN, we use contributions made on VCS. We use the
following contribution based measures as features in our link prediction classifiers.

3.3.3.1 Sum of the number of bug reports/files, the developers worked upon :

For comment based DSN, we compute the sum of the number of bug reports, the two
developers commented upon while for commit based DSN, we compute the sum of files
the pair of developers committed in VCS.

3.3.3.2 Sum of the number of comments/commits, made by the developers :

For comment based DSN, we compute the sum of the number of comments made by
two developers while for commit based DSN, we compute the sum of commits made by
the pair of developers in VCS.

3.3.3.3 Sum of the number of distinct components, the developers worked upon :

This feature measures the expertise breadth of a developer. If a developer has breadth in
expertise and comments on bug reports associated with many components (or commits
files to fix the issues associated with many components), it suggests that he/she has
diversity in his/her expertise.



1250 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

3.3.3.4 Sum of the neighbours of the developers :

The intuition behind choosing this feature is that if developers are directly engaged with
many developers in the discussion for a bug fix, then they are more likely to form newer
connections. In other words, developers who communicate/collaborate more with other
developers are more likely to form new ties. We compute the sum of neighbours of pair
of developers in both commit based and comment based DSNs.

3.3.3.5 Shared TFIDF score :

The intuition behind this measure is that the developers who work on the issue report
with similar text are likely to work together. In this measure, we extract the keywords
from the title and description of the issue reports which have been worked upon by the
pair of developers. Then we compute the TF-IDF based cosine similarity score [Manning
et al., 2008] between sets of keywords fetched from issue reports of developer pairs.

3.4 Social capital

The social capital has a significant impact on the success of the Open Source Software
(OSS) project and longer association of contributors with the project [Daniel et al.,
2018] [Qiu et al., 2019].

To see the importance of our predicted links in improving the social capital of the
developers in the project, we require some concrete measures to measure the social capital.
Recently, Jackson [Jackson, 2019] proposed some network measures for measuring social
capital. However, these metrics are defined at individual level while we require some
project level measures. Qui et al. [Qiu et al., 2019] proposed some project level metrics,
but we found some drawbacks in their approach and did not use them. Qui et al. consider
two developers familiar if they have worked on the same project. In a large open source
project, this assumption may not be true. Since developers introduce less number of
defects if they are focused in their code contributions [Posnett et al., 2013], OSS strive
for focused contributions from the developers and hence the assumption made by Qui et
al. is not always true. That is, two developers who are part of the same project may not
share their expertise and can be quite unaware of each other’s contributions. We observed
such a phenomenon in the projects of our case study also. Some of the developers are
confined to only a few source code packages and source files. To address these issues,
first, three main individual measures defined by Jackson are converted to the project level
measures by taking the average value of the measure. The higher value of this metric
indicates the higher level of overall social capital of the project. Second, we propose
two new project level metrics i.e. cohesion index and average agility index. Since we
compute the values of metrics based on developers’ interactions at the file level and issue
level, the drawbacks present in the metrics proposed by Qui et al are no longer present in
our metrics. In total, we used 5 metrics which are described below.

3.4.1 Cohesion Index (CI):

Cohesion Index measures the level of direct collaboration existing among the developers
of the project. Higher the value of this metric, higher is the pairwise familiarity among
the developers. Mathematically, it can be defined as follows:



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1251

CI= 2
n(n−1)

(∑
x>y

exy

)
where exy is 1 if (x, y) are adjacent to each each other and 0 otherwise. n is the number
of nodes in the network.

3.4.2 Average Decay Centrality (ADC):

The Decay Centrality of a node is high if a node can reach to many other nodes. In a
network, nodes can be reached directly (adjacent nodes) or through a path. The farther
reachable nodes contribute less in the computation of the decay centrality in comparison
to those who are closer to the node. Since we measure social capital at the project level
and not at the developer level, we take the average of the decay centralities of all the
developer nodes in the project. Mathematically, it is defined as follows:

ADC = 1
n

(∑
x

∑m
q=1 α

q |χq
x (G)|

)
Here , |χq

x (G)| denotes the number of nodes reachable from x , in graph G , using q hops.
α is a decay factor and m is the maximum number of hops considered in the computation.
n is the total number of nodes (developers) in the graph. In our calculation, we took the
value of α as 0.5 and value of m as 10, since, in all the practical networks, it is rare that
two nodes are only connected with more than 10 hops.

3.4.3 Average Godfather Index (AGI):

A Godfather Index of a node in network describes its ability to connect pair of nodes
which are otherwise not connected. This measures the bridging ability of a node. A graph
having good value of AGI indicates that it has many Godfather nodes. Mathematically,
the AGI is defined as follows:

AGI= 1
n

∑x

∑
z>y:

ezy=eyz=0

ezxeyx


Where, eab is 1 if nodes a and b are adjacent to each other and 0 otherwise. The term∑

z>y:
ezy=eyz=0

ezxeyx indicates the Godfather index of individual node x.

3.4.4 Average Diffusion Index (ADI):

The Diffusion Index of a node in the network is its ability to diffuse the information to
other nodes. It should be noted that though Diffusion Index and Decay Centrality sound
similar, they are quite distinct. While Decay Centrality of a node depends on the node
counts which are reachable from the given node, Diffusion Index also counts the number
of paths which exist to that reachable set of nodes. This measure is computed based
on the n × n probability matrix α where αxy indicates the probability of passing the
information from x to y. We choose the default probability as 0.5 (to make a case of
equally likely) and hence (x, y) entry in our matrix is set as 0.5 if edge (x, y) exist in the
graph, otherwise, the value is set as 0. The term [αq]xy indicates the (x, y) entry in the

qth power of the matrix α. Average Diffusion Index is defined as follows:



1252 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

ADI= 1
n

(∑
x

∑
y

∑m
q=1 [α

q]xy

)
.

Here, the term
∑

y

∑m
q=1 [α

q]xy indicates the diffusion index of node x. The value of m
chosen by us is 10 as it is very unlikely for a node to be connected via path length of
more than 10 if it is not connected through a path of length ≤ 10.

3.4.5 Average Agility Index (AAI):

The intuition behind this metric is that a developer can expect a more agile response from
those developers who are closer to him in the collaboration network. The high value of
AAI indicates that developers in the projects are reachable to each other via a short path.
Mathematically, it can be defined as follows:

AAI= 1
n

∑
x

(
n−1∑n−1

y=1 MinDist(y,x)

)
, where, MinDist (y, x) is the minimum dis-

tance between x and y and n is the total number of nodes in the network.

3.5 Measuring the improvement in the social capital:

Developers increase their associations over time and hence improve their social capital.
Here we investigate if we can help them to improve their social capital by recommending
the links in developer social network. In link prediction, we use three time stamps-t1, t2
and t3. First, we identify the common developers between two time periods i.e. (t1, t2)
and [t2, t3). Then features extracted based on data between t1 and t2 are used to train the
classifier. This classifier is used to predict the links among common developers during
[t2, t3). To evaluate our method, we make use of three DSNs-The original DSN NO

constructed from data during (t1, t2), the DSN NA is constructed by augmenting NO

with the actual new links formed among the common developers during [t2, t3) and
a DSN NP which is constructed by augmenting NO with all the new predicted links
among the common set of developers during [t2, t3) by our classifiers. We compute the
values of various social capital measures defined above for these three networks and use
Recall of Gain in Social Capital (RGSC) to evaluate our method. Mathematically, we
can define it as follows:

RGSC= Social Capital ofNP —Social Capital ofNO

Social Capital ofNA —Social Capital ofNO

RGSC describes the fraction of the additional social capital that could be earned
at time t2, by a possible recommender system built upon our approach, which would
otherwise be possible to achieve at t3.

Based on the measures defined for social capital in the previous section, we use
5 different concrete measures for RGSC i.e. Recall of Gain in AAI (RGAAI), Recall
of Gain in ADI (RGADI), Recall of Gain in AGI (RGAGI), Recall of Gain in ADC
(RGADC) and Recall of Gain in CI (RGCI).

4 Experimental setup and dataset

In this section, First, we explain dataset and classifiers used in our works. Then we
propose our experimental design with pseudo-code describing our process of answering
our research questions.



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1253

4.1 Dataset and classifiers:

To perform our study, we used ITS and VCS data of 5 Open Source projects (Spark,
Kafka, Flink, Hibernate and Wildfly) from the openly available SEOSS dataset [Rath
and Mäder, 2019]. We chose SEOSS dataset because it has an integrated view of ITS and
VCS data. That is, issues and their related commits are linked together. We chose these
project as they are good mix of different types of categories. While Spark, Kafka and
Flink are popular projects in big data domain and vary in their nature and size, Wildfly is
a popular application server software and Hibernate is popular object relational mapping
software. The dataset supports the generality of our study. One common issue in using
ITS and VCS data together is that developers have multiple identities in VCS and ITS
and it is not easy to merge these identities. Though many automatic identity merging
approaches have been proposed by researchers recently [Amreen et al., 2020], to avoid
the inherent potential errors in the process, we performed the identity merging task
manually and hence our data is free from ambiguity related to multiple identities of
the developers. The details of our dataset are given in Table 5. For classification, we
used Weka [Hall et al., 2009] implementation of 6 popular classifiers-J48 (Decision
Tree), Random Forest, Logistic Regression, Logistic Model Tree, SMO (Support Vector
Machine) and Bayes Net.

Table 5: Details of the Dataset

Project #Issues #Comments #Commenters #Commits #Files #Authors

Flink 4810 48783 480 4354 10629 288

Hibernate 1871 6050 894 1793 6904 182

Kafka 3484 15766 966 2777 2938 319

Spark 11797 41779 2816 7189 7056 657

WildFly 2473 6919 524 8791 10800 164

4.2 Experimental design:

To answer our research question 1, we use supervised link prediction approach as pro-
posed by Hasan et al. [Al Hasan et al., 2006]. The supervised link prediction problem
can be posed as a binary classification problem. We prepare the classification dataset by
splitting the 2 years of ITS and VCS data of projects into training (Nov 2015-Oct, 2016)
and testing (Nov 2016-Oct, 2017) time periods. To create the data for classifiers, we con-
sider developers who are common across the periods, since we are predicting new links
that might emerge among the developers who are present in the training period as well as
a testing period. We need to label this dataset before running the classifier. To do so, we
identify all those developers who did not share an edge in the training period. We then
check whether the pair shared a link in the test period, if yes it is labelled as 1 (positive),
otherwise it is labelled as 0 (negative). Typically all link prediction tasks face a problem
of class imbalance where the instances with negative labels outnumber the instances with
positive labels. To address this issue, we randomly chose as many negative instances
(from the entire pool of negative instances) as positive instances to make the dataset



1254 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

Conventions and assumptions:

P: Set of projects for our study = {Spark,Wildfly,Flink,Kafka ,Hibernate}
C: Set of all classifiers we used for prediction tasks = {SVM,BayesNet,J48,Logis-

tic Model Tree, Logistic Regression,Random Forest}
D: Kinds of dataset = {commit,comment}
coll(x,y,t): This function returns 1 if developer x and y collaborated in time period

t, otherwise 0 is returned. t can be either a training period or test period. Com-

menting on same issue report and committing the same source file are considered

collaborations for comment data and commit data respectively.

min(A, B): The function receives two sets as arguments and returns the one with

minimum cardinality.

max(A, B): The function receives two sets as arguments and returns the one with

maximum cardinality.

ran(A,n): The function receives a set A and a number n as arguments and returns

a set with n elements randomly chosen from A.

generate_features(d): The function generates the values of all the similarity fea-

tures between developer pair d.

classifier(data,10): classifier is run on the data with 10 fold cross-validation

scheme and generate the performance vector [Precision, Recall, F-Measure, AU-

ROC] and label mapM :Q → L is the output map returned by the classifier. Here,

Q is a set of developer pairs in data and L is the label set {0,1}.
find_label(L,d): This finds a label for developer pair, d in label map L.

social_capital(N): This function returns a vector([CI,AAI,ADC,AGI,ADI]) con-

taining all the network based social capital measures for network N , defined for

the project.

compute_network_measures(N): This function returns the vector ([Number of

connected components, Density, Average Degree, Average Clustering Coeffi-

cient]) of numerical values of global network properties for network N.

Figure 3: Conventions and implicit functions used in our pseudo code

balanced. This is a common technique used in past research also [Al Hasan et al., 2006].
To investigate the performance of classifiers, we use 10 fold cross-validation scheme.
The evaluation metrics we used for our experiments are Precision, Recall, F-Measure
and AUROC (Area Under ROC curve). These are very popular metrics and have been
used in link prediction literature [Liben-Nowell and Kleinberg, 2007] [Al Hasan et al.,
2006] [Sun et al., 2011]. The proposed approach is presented in form of a pseudo code.
Figure 3 describes the conventions and implicit/primitive functions, used in our pseudo
code. The pseudo-code starts with some common operations e.g. network construction etc.
which are used for the computations required to answer all RQs. This set of initialization
operations are presented in Figure 4. The pseudo-code corresponding to RQ1 is presented
in Figure 5. Once all future collaborations are predicted, we use the scheme presented
in section 3.5 to answer our research question 2. We compute the value of RGSC with



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1255

∀project in P ∧ ∀classifier in C ∧ ∀dataset in D
classifier_data = φ
Dtrain=The set of developers in training period
Dtest=The set of developers in test period
Dcommon=Dtrain ∩Dtest

NO
train={(x, y) | (x, y) ∈ Dtrain ×Dtrain ∧ coll(x,y,train)=1}

NO
test={(x, y) | (x, y) ∈ Dtest ×Dtest ∧ coll(x,y,test)=1}

PS={(x, y) | (x, y) ∈ Dcommon × Dcommon ∧ (x, y) 6∈ NO
train ∧ (x, y) ∈

NO
test}
NS={(x, y) | (x, y) ∈ Dcommon × Dcommon ∧ (x, y) 6∈ NO

train ∧ (x, y) 6∈
NO

test}
CDS=min (PS,NS) ∩ ran (max (PS,NS) , |min (PS,NS) |)

Figure 4: Declarations and initialization used for our pseudo code

∀d in CDS:
FV = generate_features(d)
L=1, if d ∈ PS, 0 otherwise
classifier_data=classifier_data ∪ < d, FV, L >

performance_vector, label_vector=classifier (classifier_data, 10)
print (performance_vector) /*Answer to the RQ-1*/

Figure 5: Pseudo code for RQ1

respect to each of the social capital measures described in section 3.4 and report the
results. The pseudo-code corresponding to RQ2 is presented in Figure 6. Finally, to
answer our research question 3, we study the network properties of comment based and
commit based DSN, to see if network structure of DSN can explain the difference in the
performance of link prediction classifiers and their ability to improve the social capital.
For this, we used some simple but relevant network metrics i.e. Number of connected
components (NCC), Average Clustering Coefficient (ACC), Average Degree and Den-
sity of the graph. To compute the average clustering coefficient, we used the definition
proposed by Kaiser [Kaiser, 2008] as this has been used in many past studies. The other
metrics are very simple and common in graph theory. These metrics measure the level of
connectedness and group structure in the network. For instance, a lower value of NCC
(number of connected components) indicates that individuals in the network are well
connected. Similarly higher value of ACC, Average Degree and Density also indicates
cohesiveness and good connectivity among nodes (individuals). Figure 7 describes the
pseudo-code capturing the steps to be executed in answering RQ3.



1256 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

NP=NO
train

∀d in CDS:
if (find_label (label_vector, d)==1) :
NP=NP ∪ {d}

NA=NO
train ∪ {(x, y) | (x, y) ∈ Dcommon ×Dcommon ∧ (x, y) ∈ NO

test}
OSC=social_capital

(
NO

train

)
PASC=social_capital

(
NP
)

AASC=social_capital
(
NA
)

for i in range(0, OSC.length):
RGSC[i] = PASC[i] —OSC[i]

AASC[i] —OSC[i]

print (RGSC) /* Answer to the RQ-2*/

Figure 6: Pseudo code for RQ2

if(dataset==’commit’):

commit_based_measures = compute_network_measures
(
NO

train

)
else:
comment_based_measures=compute_network_measures

(
NO

train

)
print (comment_based_measures)
print (commit_based_measures) /* Answer to the RQ-3*/

Figure 7: Pseudo code for RQ3

5 Results and discussion:

The results are discussed with respect to the research questions posed in section 1. (RQs).

RQ1: Can we use link prediction technique to predict the future collaborations among
the developers? How accurately the popular binary classifiers can predict the future
collaborations in the bug fixing process?

To answer this research question, we ran multiple popular classifiers on comment
based DSN and commit based DSN. The results are shown in Table 6 and Table 7. For
link prediction and related tasks, AUROC has been used as the main metric to study
the performance of the classifiers and associated recommender systems in past research.
Hence, the analysis of results is mainly based on AUROC. From the tables, it is clear that
classifiers are able to predict the future collaborations decently. Out of the classifiers,
we selected for our study, Random Forest is found to perform consistently better than
other classifiers. However, except SVM and J48, the performance of other classifiers e.g.
Logistic Regression, Logistic Regression Tree and Bayes Net is also close to Random



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1257

Table 6: Result for RQ1:Prediction of future collaborations among developers based on

comment data

Project Classifier Precision Recall F-measure AUROC

Hibernate J48(Decision Tree) 0.881 0.881 0.881 0.848

Random Forest 0.853 0.853 0.853 0.903

Logistic Model Tree 0.853 0.853 0.853 0.901

Logistic Regression 0.804 0.803 0.803 0.873

SMO(Support Vector Machine) 0.854 0.853 0.852 0.853

BayesNet 0.861 0.86 0.86 0.9

Spark J48(Decision Tree) 0.796 0.796 0.796 0.811

Random Forest 0.799 0.799 0.799 0.863

Logistic Model Tree 0.8 0.8 0.8 0.851

Logistic Regression 0.777 0.775 0.774 0.839

SMO(Support Vector Machine) 0.785 0.783 0.783 0.783

BayesNet 0.8 0.8 0.8 0.86

Flink J48(Decision Tree) 0.776 0.775 0.774 0.752

Random Forest 0.767 0.766 0.766 0.813

Logistic Model Tree 0.787 0.777 0.775 0.821

Logistic Regression 0.782 0.772 0.77 0.821

SMO(Support Vector Machine) 0.799 0.783 0.78 0.783

BayesNet 0.798 0.793 0.793 0.805

Kafka J48(Decision Tree) 0.744 0.74 0.74 0.768

Random Forest 0.759 0.759 0.759 0.851

Logistic Model Tree 0.764 0.759 0.758 0.832

Logistic Regression 0.755 0.746 0.744 0.816

SMO(Support Vector Machine) 0.748 0.733 0.729 0.733

BayesNet 0.756 0.755 0.755 0.835

Wildfly J48(Decision Tree) 0.737 0.737 0.737 0.715

Random Forest 0.752 0.752 0.752 0.829

Logistic Model Tree 0.749 0.749 0.749 0.816

Logistic Regression 0.755 0.749 0.748 0.814

SMO(Support Vector Machine) 0.753 0.752 0.752 0.752

BayesNet 0.77 0.77 0.77 0.845

Forest. Between comment based DSN and commit based DSN, the performance of the
classifiers is better on comment data (approximate average AUROC value 0.82) than
commit data (approximate average AUROC Value 0.70). However, the approximate
average recall value of classifiers on commit based DSN (0.81) is slightly higher than
comment based DSN (0.783).



1258 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

Table 7: Result for RQ1: Prediction of future collaborations among developers based on

commit data

Dataset Classifier Precision Recall F-measure AUROC

Hibernate J48(Decision Tree) 0.878 0.887 0.882 0.773

Random Forest 0.869 0.898 0.877 0.847

Logistic Model Tree 0.85 0.887 0.864 0.853

Logistic Regression 0.902 0.909 0.905 0.683

SMO(Support Vector Machine) 0.851 0.897 0.863 0.522

BayesNet 0.921 0.849 0.873 0.841

Spark J48(Decision Tree) 0.815 0.859 0.818 0.605

Random Forest 0.834 0.866 0.828 0.757

Logistic Model Tree 0.825 0.863 0.817 0.686

Logistic Regression 0.827 0.864 0.813 0.691

SMO(Support Vector Machine) 0.739 0.738 0.736 0.667

BayesNet 0.81 0.75 0.774 0.677

Flink J48(Decision Tree) 0.768 0.8 0.766 0.68

Random Forest 0.762 0.792 0.767 0.765

Logistic Model Tree 0.761 0.796 0.757 0.689

Logistic Regression 0.777 0.805 0.769 0.662

SMO(Support Vector Machine) 0.781 0.796 0.722 0.529

BayesNet 0.775 0.78 0.778 0.687

Kafka J48(Decision Tree) 0.737 0.761 0.729 0.618

Random Forest 0.752 0.771 0.746 0.722

Logistic Model Tree 0.714 0.747 0.702 0.682

Logistic Regression 0.695 0.738 0.68 0.676

SMO(Support Vector Machine) 0.644 0.731 0.622 0.502

BayesNet 0.711 0.702 0.706 0.679

Wildfly J48(Decision Tree) 0.83 0.837 0.831 0.776

Random Forest 0.853 0.859 0.852 0.874

Logistic Model Tree 0.83 0.838 0.831 0.818

Logistic Regression 0.757 0.78 0.731 0.735

SMO(Support Vector Machine) 0.751 0.766 0.680 0.522

BayesNet 0.809 0.792 0.799 0.818

RQ2: How useful are the recommended developer-developer links in terms of im-
proving the social capital of the developers? Since we are investigating the usefulness
of the link prediction scheme on improving the social capital of developers, results of
our experiments towards answering this research question are shown in Table 8 and



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1259

Table 8: Recall of Gains in various measures characterizing the Social Capital (Based

on Comment Data)

Project Classifier RGCI RGADC RGAGI RGADI RGAAI

Flink BayesNet 0.536 0.682 0.53 0.31 0.684

J48(Decision Tree) 0.548 0.654 0.527 0.323 0.653

Logistic Model Tree 0.569 0.71 0.568 0.351 0.713

Logistic Regression 0.577 0.716 0.575 0.349 0.719

Random Forest 0.515 0.671 0.517 0.296 0.674

SMO(Support Vector Machine) 0.603 0.737 0.604 0.376 0.74

Hibernate BayesNet 0.507 0.603 0.574 0.451 0.595

J48(Decision Tree) 0.521 0.593 0.576 0.481 0.582

Logistic Model Tree 0.549 0.613 0.592 0.501 0.605

Logistic Regression 0.521 0.617 0.598 0.483 0.612

Random Forest 0.507 0.594 0.563 0.447 0.588

SMO(Support Vector Machine) 0.563 0.619 0.603 0.51 0.611

Kafka BayesNet 0.526 0.574 0.487 0.326 0.592

J48(Decision Tree) 0.552 0.605 0.52 0.341 0.62

Logistic Model Tree 0.552 0.605 0.515 0.352 0.622

Logistic Regression 0.59 0.671 0.585 0.413 0.685

Random Forest 0.488 0.536 0.449 0.293 0.557

SMO(Support Vector Machine) 0.621 0.708 0.615 0.428 0.717

Spark BayesNet 0.511 0.36 0.402 0.332 0.338

J48(Decision Tree) 0.496 0.397 0.393 0.323 0.415

Logistic Model Tree 0.491 0.391 0.38 0.313 0.41

Logistic Regression 0.53 0.384 0.423 0.349 0.359

Random Forest 0.5 0.451 0.419 0.325 0.466

SMO(Support Vector Machine) 0.535 0.421 0.424 0.35 0.431

WildFly BayesNet 0.564 0.602 0.539 0.362 0.626

J48(Decision Tree) 0.545 0.526 0.507 0.349 0.535

Logistic Model Tree 0.539 0.553 0.511 0.343 0.567

Logistic Regression 0.612 0.615 0.58 0.421 0.636

Random Forest 0.515 0.534 0.499 0.332 0.549

SMO(Support Vector Machine) 0.576 0.597 0.542 0.376 0.621

Table 9. This is evident from the tables that the social capital of the projects can be
improved significantly using the proposed method. As can be seen, the approximate
average RGSC (average on all the classifiers and all the 5 concrete measures of social
capital) achieved on comment data is 0.52 while on commit data we can achieve the
average RGSC value of 0.82. It should also be noted that though ADC and ADI look
similar in nature, the proposed method is able to improve ADC more than ADI which
suggests that new links recommended by the method can improve the reachability of the



1260 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

Table 9: Recall of Gains in various measures characterizing the Social Capital (Based

on Commit Data)

Project Classifier RGCI RGADC RGAGI RGADI RGAAI

Flink BayesNet 0.788 0.843 0.828 0.669 0.852

J48(Decision Tree) 0.889 0.92 0.909 0.824 0.926

Logistic Regression Tree 0.929 0.943 0.941 0.869 0.943

Logistic Regression 0.904 0.93 0.931 0.843 0.934

Random Forest 0.859 0.891 0.878 0.755 0.893

SMO(Support Vector Machine) 0.722 0.824 0.737 0.687 0.824

Hibernate BayesNet 0.667 0.781 0.792 0.649 0.808

J48(Decision Tree) 0.944 0.937 0.938 0.95 0.935

Logistic Regression Tree 0.778 0.844 0.861 0.798 0.861

Logistic Regression 0.778 0.844 0.861 0.798 0.861

Random Forest 0.778 0.844 0.861 0.798 0.861

SMO(Support Vector Machine) 0.333 0.056 0.196 0.466 0.044

Kafka BayesNet 0.765 0.785 0.791 0.663 0.783

J48(Decision Tree) 0.856 0.885 0.887 0.769 0.888

Logistic Regression Tree 0.891 0.912 0.919 0.81 0.913

Logistic Regression 0.94 0.95 0.946 0.89 0.949

Random Forest 0.884 0.902 0.921 0.816 0.903

SMO(Support Vector Machine) 0.4 0.562 0.471 0.379 0.586

Spark BayesNet 0.767 0.801 0.783 0.674 0.805

J48(Decision Tree) 0.97 0.975 0.982 0.955 0.976

Logistic Regression Tree 0.978 0.979 0.983 0.969 0.98

Logistic Regression 0.986 0.988 0.99 0.979 0.988

Random Forest 0.98 0.98 0.984 0.973 0.98

SMO(Support Vector Machine) 0.734 0.818 0.743 0.693 0.792

WildFly BayesNet 0.711 0.718 0.96 0.416 0.698

J48(Decision Tree) 0.801 0.806 0.973 0.555 0.792

Logistic Regression Tree 0.809 0.813 0.981 0.567 0.8

Logistic Regression 0.923 0.925 0.962 0.804 0.919

Random Forest 0.812 0.816 0.943 0.582 0.804

SMO(Support Vector Machine) 0.702 0.781 0.963 0.699 0.783

developer by connecting him/her to a new set of peer developers. Good value of RGAGI
indicates that new links predicted by our method are also influential and important as
by adding them in the network, the node may connect unconnected pair or set of the
developers. Good value of RGCI and RGAAI indicate that the proposed method can not
only improve the direct connections (path of length 1) among developers but also can
reduce the length of the shortest paths among them. In nutshell, the proposed method
has the potential to improve the social capital of the project from many perspectives.



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1261

RQ3: How does the performance of link prediction vary across different types of
DSNs in improving the social capital i.e. comment data based DSN or commit data based
DSN ? What explains this difference in performance?

Answer to this research question is riveting. By comparing the Table 6 and Table
7, it can be seen that the performance of classifiers are better on comment based DSN.
However, the RGSC value is far more in commit based DSN than comment data. This
suggests that higher accuracy in link prediction does not always imply that these links
are useful in improving social capital. That is, though we achieve better accuracy in
predicting new association at comment level, the links predicted at the commit level are
more useful in improving the social capital of the project. One possible reason for this
could be that collaborations at VCS level are more technical in nature than at ITS level.
Two developers who commit on the same source file/package are more likely to have
common expertise (and hence would like to have a professional relationship) than those
who comment on the same issue report. Comments can also be made by software users
which may otherwise not be interested in forming a professional relationship with each
other. To investigate this further, we also compared commit based DSN and comment

Figure 8: Comparison of Network Characteristics of Commit based-DSN and Comment

based-DSN

based DSN based on network metrics described in section 4.2. (i.e. Number of connected
components (NCC), Average Clustering Coefficient (ACC), Average Degree and Density
of the graph). It is evident from Figure 8 that commit based DSN is more connected and



1262 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

cohesive than comment based DSN. The results presented in Figure 8, Table 8 and Table
9 suggest that though it is harder to predict new collaborations accurately if developers
are cohesively and densely connected to each other, yet the predicted links/collaborations
are more useful to recall the improvement in the social capital of the project.

In nutshell, the proposed approach can predict future collaborations among developers
with decent accuracy. If these predicted links are recommended to developers, the social
capital of developers and the project could increase significantly.

6 Implementation detail and Performance

In this section, we discuss the implementation detail and scalability of our approach. In
particular, we discuss how we optimized the implementation to make the approach more
tractable and scalable.

6.1 Theoretical Analysis

In this section, we discuss the theoretical time and space complexity of our approach.
Since our study is around answering three research questions, we present our analysis
based on these research questions. For the first research question(RQ-1), our entire
approach can be decomposed into three phases- graph construction, computing the
feature set for classifiers and running the classifiers on the training and testing data
composed of this feature set.
Homogeneous graph construction using adjacency list implementation takes O(E) time
where E is the number of edges in the graph. In adjacency list implementation of the
graph, a graph is denoted as an array of linked lists. This applies to both commits based
Homo-DSN as well as comment based Homo-DSN. From the basic understanding of
the graph theory, we know that the space complexity of adjacency list implementation
of the homogeneous graph is O(E + V ) where V and E are the numbers of nodes and
edges in the graph respectively.
To implement Hetero-DSN, wemaintain a set of adjacency lists. This set of adjacency lists
is determined by the set of meta paths that have been used in our approach. All of the meta
paths used in our work (defined in table 3.3.2 and table 3.3.2) are symmetric. Symmetry
and concatenability of meta paths are two properties that are very helpful in optimizing
the run time complexity of our approach. A symmetric meta path represents a symmetric
relationship between end objects. For instance, D-I-C-I-D of table 3.3.2 represents a
symmetric relationship i.e. two developers commenting on issues found in the same
component. Two meta paths, A1 −A2 −A3 − .........An and B1 −B2 −B3 − .......Bm

are concatenable if An=B1. In our work, symmetric paths are of two categories i.e.
odd length meta paths (where the number of node types in the meta path is odd in
number) and even length meta paths (where the number of node types in meta path is
even in number). The odd length meta paths are of the form A1−A2−A3........An−1−
An − An−1........A3 − A2 − A1 while the even length meta paths are of the form
A1−A2−A3........An−B−B−An........A3−A2−A1. For each odd length meta path
likeA1−A2−A3........An−1−An−An−1........A3−A2−A1, we build n−1 adjacency
lists capturing the relationship betweenAi andAi+1. Here, 1≤i≤n−1. Similarly, for each
even length meta path likeA1−A2−A3........An−B−B−An........A3−A2−A1, we
build n adjacency lists. Out of these n adjacency lists, n− 1 lists capture the relationship
between Ai and Ai+1 where 1≤i≤n− 1 and one list is between An and B. In general,
we can say that we might have to create O(n) adjacency lists for the types of meta



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1263

paths that have been considered. If the number of meta paths is m then in total we may
have to create O(m× n) adjacency lists in the worst case. It should be noted that each
adjacency list captures a different semantic relationship between two types of nodes.
For instance, corresponding to the meta path D-I-C-I-D of table 3.3.2, we maintain two
adjacency lists, one between D and I and another between I and C. The adjacency list
between D-I captures the information about issues, each developer has commented upon.
The adjacency list I-C records the components which the issues spanned over (the issue
spans over at least one component. However, there can be a multi-component issue
as well). Similarly, corresponding to a meta path D-CIT-I-I-CIT-D of table 3.3.2, we
require two adjacency lists i.e. D-CIT and CIT-I. The adjacency list D-CIT records
the set of commits made by the developers while the adjacency list CIT-I records the
issue which has been fixed using the contributions made through the commits. If we
denote the number of vertices and edges in ith adjacency list by Vi and Ei respectively
and Vmax = max(V1, V2, V3....Vmn) and Emax = max(E1, E2, E3....Emn) then total
time complexity of creating the heterogeneous DSN is O(m× n× Emax).
Similarly the space complexity in worst case is O(m× n× (Vmax + Emax)).

The second phase of answering the research question-1 (RQ-1) requires the computa-
tion of many features which are then used to train and test the classifiers. The first kind of
features is computed from homogeneous graphs (Homo-DSNs based on commit data and
comment data). The common neighbour count for all pairs takes O(V z3) time [Martínez
et al., 2016], where V is a number of nodes and z is the maximum degree of a node in
the graph. Since Adamic-Adar and Jaccard Coefficients are based on common neighbors
count, their time complexity is also O(V z3). However, since Preferential Attachment
requires less computation, it can be performed in O(V z2). Since the length of the short-
est path between all pairs of nodes is computed using Floyd-Warshall’s algorithm, it
can be computed in O(V 3). Therefore total time complexity of this set of features is
max(O(V z3),O(V z2),O(V 3)), which turns out to be O(V 3). Since all the features
except the length of the shortest path can be computed without consuming additional
space and the Floyd-Warshall algorithm consumes O(V 2) space, the space complexity
remains in O(V 2)
The next set of features are defined for the heterogeneous developers’ social network.
It should be noted again that there can exist many real concrete paths between two
developer nodes following a specific meta path. In general, we denote a type of ob-
ject (node) by a capital letter and a concrete object (node) by a lowercase letter. For
instance, a concrete path d1i1ci2d2, following a meta path DICID may exist between
d1 and d2 if they comment on two different issues (i1,i2) which are found in the same
component c. |X| denotes the number of concrete objects (nodes) of node type X. The
worst-case complexity of computing the path counts between two objects by a brute

force method will be either O(|An| ×
∏n−1

i=1 |Ai|2) ( if the meta path is of the form
A1−A2−A3........An−1−An−An−1........A3−A2−A1) orO(|B|2×

∏n
i=1 |Ai|2) (

if the meta path is of the formA1−A2−A3........An−B−B−An........A3−A2−A1).
This is very expensive. However, by utilizing two properties of the meta paths i.e. symme-
try and concatenability, we can reduce this time complexity quite significantly. We now
first discuss a few definitions and notations, which we use to illustrate how we improved
the computational performance of our proposed approach. After that, we analyse the
time complexity of our alternative method of computing the path counts. For space
complexity, apart from maintaining O(m× n) adjacency lists as mentioned earlier, we
may require one path count adjacency list which may require O(Vmax + Emax) space
in the worst case.



1264 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

1. Type(x): This returns the type of node for concrete node x. For example, Type(d)
returns D, if d is a specific developer node and D denotes the type of all developer
nodes.

2. Path count(x, y|ρ): This denotes the number of paths existing between concrete
nodes x and y by following a path ρ.

3. Path count adjacency list(X,Y |ρ): This denotes the array of linked lists where
each linked list records the number of path counts, from a certain concrete node e.g.
x of type X to all the concrete nodes of type Y , which are connected to node x by
following a meta path ρ. This way, the path count information ( based on meta path
ρ) among all nodes of type X and Y is recorded in this Path count adjacency list.

4. Path count(x, y|XY ) =1 if y is present in the linked list of x. if y is not present in
the linked list of x then value returned by the function is 0. Here, Type(x)=X and
Type(y)=Y.

5. Path count(x, z|XρYZ) =
∑
∀yi:

Type(yi)=Y

Path count(x, yi|ρ)× Path count(yiz|Y Z).

We use the concatenability property of meta paths in the above equation (5). We compute
the path counts between two nodes by breaking the composite meta paths. That is, we
can use the above equation to compute the path counts between node x of type X and
node z of type Z (by following a meta path XρYZ). The above equation (5) is key to
reduce the time complexity of computing path counts between two nodes.
To compare this method with the brute force method, lets assume that we have to compute
all pair path counts for nodes of type A1 using the two types of the symmetric meta
paths i.e. A1 −A2 −A3........An−1 −An −An−1.......A3 −A2 −A1 and A1 −A2 −
A3........An − B − B − An........A3 − A2 − A1. In both the types of meta paths, we
can use definition 4 and equation 5 successively to produce the Path count adjacency list
defined in definition 3. For instance, to compute the Path count adjacency list between
A1 and A1 using A1 − A2 − A3........An−1 − An − An−1.......A3 − A2 − A1 meta
path, we can first compute Path count adjacency list between A1 and A3 using meta path
A1A2A3. This takes O(|A1| × |A2| × |A3) time. Then we use this Path count adjacency
list and adjacency list between A3 and A4 to compute the Path count adjacency list
between A1 and A4. This takes O(|A1| × |A3| × |A4|) time. This way, to compute

the Path count adjacency list between A1 and An takes O(
n−1∑
i=2

|A1| × |Ai| × |Ai+1|).

However, to compute the path counts between two concrete objects of type A1 (using
A1 − A2 − A3........An−1 − An − An−1.......A3 − A2 − A1 meta path), we might
have to look up O(|An|) entries in Path count adjacency list between A1 and An in
worst case. Therefore, we can compute the path counts between two objects of type
A1 using meta path A1 − A2 − A3........An−1 − An − An−1.......A3 − A2 − A1 in

O(|An| ×
n−1∑
i=2

|A1| × |Ai| × |Ai+1|) time. Similarly the time complexity due to second

type of meta path (A1−A2−A3........An−B−B−An........A3−A2−A1) could be

proved as O(|B| × ((
n−1∑
i=2

|A1| × |Ai| × |Ai+1|) + |A1| × |An| × |B|)). For both types

of meta paths, it is a significant improvement over the brute force method. Apart from
keeping the required adajacency lists, we require to keep one path count adjacency lists



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1265

for our calculations and hence the space complexity is O(m × n × (Vmax + Emax))
+O(Vmax + Emax) =O(m× n× (Vmax + Emax)).
Computing contribution-based features (section 3.3.3) is relatively easy. For all the
features from 3.3.3.1 to 3.3.3.3, we simply require a single scan of issue reports, issue
comment data and commit data and build the dictionaries at the same time. For the
dictionaries, the developers are the keys and total contributions are the values. For
instance, the dev_issue dictionary maintains developers as key and the number of issue
reports which he has commented/committed for, are the values. Fetching a value from
the dictionary for a certain developer takes O(1) time while building such dictionaries
take O(|comments| + |issues| + |commits|) time. Here, |comments|,|issues| and
|commits| are total number of comments , total number of issues and total number of
commits present in our dataset. Apart from the dictionaries ( of size O(V ) each), we do
not require any space and hence onlyO(V ) is added to the space complexity. For feature
3.3.3.4, we can use the homogeneous networks and hence the number of elements in the
linked list of a certain developer in the adjacency list of the graph can return the required
information. No extra space complexity is required for this. For TF-IDF based features,
we require to compute the TF-IDF matrix. The details of the time and space complexity
could be found in [Manning et al., 2008].

In the third phase of computation for RQ-1, we used Weka [Hall et al., 2009], a
popular machine learning and data mining toolkit. We used popular machine learning
classifiers in our study. A detailed study about their time and space complexity is avail-
able in literature [Hassine et al., 2019] [Cooper, 1990] [Su and Zhang, 2006] [Landwehr
et al., 2005] [Bulso et al., 2019] [Abdiansah and Wardoyo, 2015] [Sani et al., 2018].

For the second research question (RQ-2), apart from the computations done for
RQ-1, we require to compute various measures of social capital. These measures are
network-based measures and are to be computed on homogeneous graphs of training and
test periods. Cohesion Index takesO(V 3) time if the number of vertices is V in the graph.
This is because we have to investigate O(V 2) pairs of developers if they are adjacent to
each other or not. However, to determine this adjacency between developers we may
have to traverse the entire linked list of the developer i.e. requiring O(V ) time in the
worst case. For Average Decay Centrality, with little modification, we can use BFS to
find the k-reachable nodes (nodes that are reachable using k hops) from the certain node.
Since BFS takesO(V +E) time, total complexity turns out to beO(V ×m× (V +E)) .
Average Godfather Index takesO(V 3) time as investigating the pairwise connectivity be-
tween nodes takesO(V 2) time (inner summation) and this has to be investigated for each
node (outer summation). Average Diffusion Index is the costliest operation because it
involves matrix multiplication. To compute qth power of the matrix takesO(q×V 3) time.
Since all entries of it are to be summed up, the total time complexity of it is O(m× V 5).
The shortest distance between two nodes of an undirected graph can be computed in
O(V +E) time. However, we may have to compute thisO(V 2) times for the calculation
of Average Agility Index and hence the time complexity of AAI isO(V 2(V +E)). Since
no extra space ( other than the adjacency list of the homogeneous graph) is required,
the additional space complexity to compute all measures of social capital remains inO(1)

For RQ-3, we require to compute some network properties. For the degree of the
node, in the worst case, the number of neighbours of a particular node can be computed
in O(V ) time. Since average is to be taken for all the nodes for computing the average
degree, it takes O(V 2) time in total. Similarly, it is easy to see that number of connected
components in a graph can be found inO(V +E) time using the DFS traversal algorithm.



1266 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

For density, we require to traverse the graph to find the number of edges that takes
O(E) time. Hence the time complexity of the Average degree computation takes only
O(E) time. For average clustering coefficient as defined in [Kaiser, 2008], we first
have to compute the number of edges between the neighbours of each node. Since in
the worst case, the number of neighbours of a node could be V. To find edges between
them can take O(V 2) time. The degree of a node can be computed in O(V ) time. Hence
for individual nodes, computational effort of O(V 2) may be required. Since we have
to make this effort for each node, the worst-case time to compute average clustering
coefficient is O(V 3). Since all computations are to be performed on the homogeneous
graph, we do not require any additional space and hence space complexity remains to be
in O(1).

6.2 Pragmatic Analysis

The above theoretical analysis seems to suggest that the computational task involved in the
study is practically intractable. However, in practice, we could perform the computations
more efficiently. One of the reasons is that the real graph constructed out of data is
sparse while the worst-case analysis done in the previous section assumed the graph as
quite dense. For example, many times, we considered the number of neighbors of the
node as V (the set of nodes in the graph) while in reality, the number of neighbors of a
node is far less than the total number of nodes. Second, in the case of a heterogeneous
graph, we took the general case for the meta paths where the length of meta paths was
considered arbitrarily large. In reality, we found that meta paths longer than 9 are not
able to improve the performance significantly, and hence the maximum length of our
meta path is only 9 (a constant). Similarly, the meta paths are chosen before computing
the path count measures and hence number of meta paths is also constant. In our case,
the total number of meta paths is 12. It should also be noted that since parts of the meta
paths are overlapping with each other, we do not require to maintain the adjacency lists
exclusively and separately for each meta path. For instance, the adjacency list D-I for
comment data (table 3.3.2) and D-CIT (table 3.3.2) for commit data are part of many
meta paths, and hence only a single copy of such adjacency list may be created and
maintained. This way, time and space complexity could be reduced significantly. Since
the number of nodes in the homogeneous network i.e. developers in the project are not
beyond a few hundred and the graph is sparse enough, the social capital measures also
could be computed in a reasonable time. For our experiments, we used a machine with
16 GB RAM, an Intel-i5 processor with a clock frequency of 2.10 GHz, and with 512
GB SSD drive. Running the entire sequence of tasks ( for all the research questions)
takes 2 hours (WildFly) to 21 hours (Spark) depending on the size of project data.

7 Threats to Validity

Though we have conducted our experiments on 5 popular and diverse OSS projects to
make our study generalizable, we could not perform our study on all 33 projects of the
SEOSS dataset. This leaves the study, limited to only a few projects and hence puts a
threat to its validity. The prime reason for restricting our study to only 5 projects is that
developers have multiple identities in different types of datasets. That is, many times,
the same developer uses separate identities to version control systems and bug tracking
systems. Since our study is around developer profiling ( helping them to connect with
each other for a task and measuring and improving their social capital), it is very essential



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1267

to be accurate in their identification. Matching the identities of developers from both
types of datasets i.e. VCS and ITS is not trivial. For instance, there are more than 40000
comments and more than 7000 commits in Spark’s ITS and VCS data respectively. Each
comment and commit has the developer associated with it. Therefore, we require to match
40000× 7000 entries in total. Fortunately, some entries match exactly and hence can be
filtered out from manual search space. However, the unmatched and ambiguous entries
are significant in number (more than 10 % ) in the data set. That is even after performing
auto filtration, more than 4000× 700 matches may require removing ambiguity from the
data. This requires significant manual effort and hence we restricted our study to only
5 projects. Automated identity merging is an active research area and many automated
tools have been developed to solve this problem. However, these tools are not perfect
and we can not rely on them.
In our study, we consider every OSS contributor as a developer. In fact, developers and
contributors are used synonymously in our study. We made this assumption particularly
because work division among OSS contributors in Open Source projects is not as strict
as in closed source projects and hence many times, OSS contributors play multiple
roles. Though many past studies in the software engineering field have also made this
assumption [Hong et al., 2011] [Zhang et al., 2013], in practice, especially in a closed
source environment, this assumption may not be true. Many times, the roles/positions of
contributors are not specified on the ITS and VCS platforms and hence it also creates a
hindrance for the researchers to perform the role-based study. For instance, comments
can be made by users of the software, developer, quality analyst, reporter, integrator,
etc. Similarly, the commits can be made by an integrator or tester. However, the roles
and organizational positions of the commenters and the committers are not specified in
the ITS and VCS dataset. Though our study is towards helping OSS contributors to be
connected with each other and helping them to improve their social capital, ignoring the
roles of these contributors puts a threat to the validity of the study.

8 Conclusion

Social capital of the project is instrumental in attracting the sustained participating of the
developers. In this paper, an approach to improve the developers individual social capital
has been proposed and the cumulative effect of this improved individual social capital
to elevate the social capital of the project is also established. The proposed approach
uses three DSNs -commit based Homo-DSN, comment based Homo-DSN and integrated
Hetero-DSN to model the collaborations among developers on ITS, and VCS platforms.
The proposed approach uses network proximity and developer activity based features
to build the classifier for predicting the future collaborations among developers. Such
predicted collaborations can be recommended to the developers which can help them
to improve their social ties and social capital. Proposed approach established that the
predicted links are significantly useful in improving the social capital at the project level.
Through experimental analysis, it is evident that the prediction accuracy of predicting
future collaborations is better on ITS data than VCS data. Likewise, new links predicted
for VCS data are more useful in improving the social capital of developers. Results of
the experiments also establish that accuracy of predicted links and their importance are
correlated with the values of global network properties capturing the network structure
of DSN.



1268 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

ACKNOWLEDGMENT

First author thanks Mahen Gandhi (Swiggy Labs, Bangalore) for his valuable inputs in
validating the relevance of the problem in its early stage.

References

[Abdiansah and Wardoyo, 2015] Abdiansah, A. and Wardoyo, R. (2015). Time complexity anal-
ysis of support vector machines (svm) in libsvm. International journal computer and application,
128(3):28–34.

[Abreu and Premraj, 2009] Abreu, R. and Premraj, R. (2009). How developer communication
frequency relates to bug introducing changes. In Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and software evolution (Evol)
workshops, pages 153–158.

[Aguilera, 2002] Aguilera, M. B. (2002). The impact of social capital on labor force participation:
Evidence from the 2000 social capital benchmark survey. Social science quarterly, 83(3):853–874.

[Akula et al., 2019] Akula, R., Yousefi, N., and Garibay, I. (2019). Deepfork: Supervised predic-
tion of information diffusion in github. arXiv preprint arXiv:1910.07999.

[Al Hasan et al., 2006] Al Hasan, M., Chaoji, V., Salem, S., and Zaki, M. (2006). Link prediction
using supervised learning. In SDM06: workshop on link analysis, counter-terrorism and security,
volume 30, pages 798–805.

[Al Hasan and Zaki, 2011] Al Hasan, M. and Zaki, M. J. (2011). A survey of link prediction in
social networks. In Social network data analytics, pages 243–275. Springer.

[Amreen et al., 2020] Amreen, S., Mockus, A., Zaretzki, R., Bogart, C., and Zhang, Y. (2020).
Alfaa: Active learning fingerprint based anti-aliasing for correcting developer identity errors in
version control systems. Empirical Software Engineering, pages 1–32.

[Banitaan and Alenezi, 2013] Banitaan, S. and Alenezi, M. (2013). Decoba: Utilizing developers
communities in bug assignment. In 2013 12th International Conference on Machine Learning
and Applications, volume 2, pages 66–71. IEEE.

[Bhattacharya et al., 2012] Bhattacharya, P., Iliofotou, M., Neamtiu, I., and Faloutsos, M. (2012).
Graph-based analysis and prediction for software evolution. In 2012 34th International Conference
on Software Engineering (ICSE), pages 419–429. IEEE.

[Bhattacharya and Neamtiu, 2010] Bhattacharya, P. and Neamtiu, I. (2010). Fine-grained in-
cremental learning and multi-feature tossing graphs to improve bug triaging. In 2010 IEEE
International Conference on Software Maintenance, pages 1–10. IEEE.

[Bird et al., 2006] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and Swaminathan, A. (2006).
Mining email social networks. In Proceedings of the 2006 international workshop on Mining
software repositories, pages 137–143.

[Bird et al., 2009] Bird, C., Nagappan, N., Gall, H., Murphy, B., and Devanbu, P. (2009). Putting
it all together: Using socio-technical networks to predict failures. In 2009 20th International
Symposium on Software Reliability Engineering, pages 109–119. IEEE.

[Brown and Ferris, 2007] Brown, E. and Ferris, J. M. (2007). Social capital and philanthropy:
An analysis of the impact of social capital on individual giving and volunteering. Nonprofit and
voluntary sector quarterly, 36(1):85–99.

[Bulso et al., 2019] Bulso, N., Marsili, M., and Roudi, Y. (2019). On the complexity of logistic
regression models. Neural computation, 31(8):1592–1623.

[Burt, 1998] Burt, R. S. (1998). The gender of social capital. Rationality and society, 10(1):5–46.



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1269

[Canfora et al., 2012] Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S. (2012). Who is
going to mentor newcomers in open source projects? In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, pages 1–11.

[Casalnuovo et al., 2015] Casalnuovo, C., Vasilescu, B., Devanbu, P., and Filkov, V. (2015).
Developer onboarding in github: the role of prior social links and language experience. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages
817–828.

[Chiu et al., 2006] Chiu, C.-M., Hsu, M.-H., and Wang, E. T. (2006). Understanding knowledge
sharing in virtual communities: An integration of social capital and social cognitive theories.
Decision support systems, 42(3):1872–1888.

[Chou and He, 2011] Chou, S.-W. and He, M.-Y. (2011). The factors that affect the performance
of open source software development–the perspective of social capital and expertise integration.
Information Systems Journal, 21(2):195–219.

[Cooper, 1990] Cooper, G. F. (1990). The computational complexity of probabilistic inference
using bayesian belief networks. Artificial intelligence, 42(2-3):393–405.

[Daniel et al., 2018] Daniel, S., Midha, V., Bhattacherhjee, A., and Singh, S. P. (2018). Sourcing
knowledge in open source software projects: The impacts of internal and external social capital on
project success. The Journal of Strategic Information Systems, 27(3):237–256.

[Datta et al., 2011] Datta, S., Sindhgatta, R., and Sengupta, B. (2011). Evolution of developer
collaboration on the jazz platform: a study of a large scale agile project. In Proceedings of the 4th
India Software Engineering Conference, pages 21–30.

[Diaz-Pace et al., 2018] Diaz-Pace, J. A., Tommasel, A., and Godoy, D. (2018). Can network
analysis techniques help to predict design dependencies? an initial study. In 2018 IEEE Interna-
tional Conference on Software Architecture Companion (ICSA-C), pages 64–67. IEEE.

[Díaz-Pace et al., 2018] Díaz-Pace, J. A., Tommasel, A., and Godoy, D. (2018). Towards antici-
pation of architectural smells using link prediction techniques. In 2018 IEEE 18th International
Working Conference on Source Code Analysis and Manipulation (SCAM), pages 62–71. IEEE.

[Guiso et al., 2004] Guiso, L., Sapienza, P., and Zingales, L. (2004). The role of social capital in
financial development. American economic review, 94(3):526–556.

[Hahn et al., 2008] Hahn, J., Moon, J. Y., and Zhang, C. (2008). Emergence of new project teams
from open source software developer networks: Impact of prior collaboration ties. Information
Systems Research, 19(3):369–391.

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten,
I. H. (2009). The weka data mining software: an update. ACM SIGKDD explorations newsletter,
11(1):10–18.

[Hassine et al., 2019] Hassine, K., Erbad, A., and Hamila, R. (2019). Important complexity
reduction of random forest in multi-classification problem. In 2019 15th International Wireless
Communications & Mobile Computing Conference (IWCMC), pages 226–231. IEEE.

[Hong et al., 2011] Hong, Q., Kim, S., Cheung, S. C., and Bird, C. (2011). Understanding a
developer social network and its evolution. In 2011 27th IEEE international conference on
software maintenance (ICSM), pages 323–332. IEEE.

[Huang et al., 2013] Huang, K., Fan, Y., Tan, W., and Li, X. (2013). Service recommendation in
an evolving ecosystem: A link prediction approach. In 2013 IEEE 20th International Conference
on Web Services, pages 507–514. IEEE.

[Jackson, 2019] Jackson, M. O. (2019). A typology of social capital and associated network
measures. Social Choice and Welfare, pages 1–26.



1270 Kumar A., Agarwal S.: Leveraging multifaceted proximity measures…

[Jeong et al., 2009] Jeong, G., Kim, S., and Zimmermann, T. (2009). Improving bug triage with
bug tossing graphs. In Proceedings of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering, pages
111–120.

[Kaiser, 2008] Kaiser, M. (2008). Mean clustering coefficients: the role of isolated nodes and
leafs on clustering measures for small-world networks. New Journal of Physics, 10(8):083042.

[Kerzazi and El Asri, 2016] Kerzazi, N. and El Asri, I. (2016). Who can help to review this piece
of code? In Working Conference on Virtual Enterprises, pages 289–301. Springer.

[Kumar and Gupta, 2013] Kumar, A. andGupta, A. (2013). Evolution of developer social network
and its impact on bug fixing process. In Proceedings of the 6th India Software Engineering
Conference, pages 63–72. ACM.

[Landwehr et al., 2005] Landwehr, N., Hall, M., and Frank, E. (2005). Logistic model trees.
Machine learning, 59(1-2):161–205.

[Liben-Nowell and Kleinberg, 2007] Liben-Nowell, D. and Kleinberg, J. (2007). The link-
prediction problem for social networks. Journal of the American society for information science
and technology, 58(7):1019–1031.

[Manning et al., 2008] Manning, C. D., Schütze, H., and Raghavan, P. (2008). Introduction to
information retrieval. Cambridge university press.

[Martínez et al., 2016] Martínez, V., Berzal, F., and Cubero, J.-C. (2016). A survey of link
prediction in complex networks. ACM computing surveys (CSUR), 49(4):1–33.

[Mendez et al., 2018] Mendez, C., Padala, H. S., Steine-Hanson, Z., Hilderbrand, C., Horvath,
A., Hill, C., Simpson, L., Patil, N., Sarma, A., and Burnett, M. (2018). Open source barriers to
entry, revisited: A sociotechnical perspective. In Proceedings of the 40th International Conference
on Software Engineering, pages 1004–1015.

[Méndez-Durón and García, 2009] Méndez-Durón, R. and García, C. E. (2009). Returns from so-
cial capital in open source software networks. Journal of Evolutionary Economics, 19(2):277–295.

[Meneely et al., 2008] Meneely, A., Williams, L., Snipes, W., and Osborne, J. (2008). Predicting
failures with developer networks and social network analysis. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engineering, pages 13–23. ACM.

[Nielek et al., 2016] Nielek, R., Jarczyk, O., Pawlak, K., Bukowski, L., Bartusiak, R., and
Wierzbicki, A. (2016). Choose a job you love: predicting choices of github developers. In
2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pages 200–207. IEEE.

[Posnett et al., 2013] Posnett, D., D’Souza, R., Devanbu, P., and Filkov, V. (2013). Dual eco-
logical measures of focus in software development. In 2013 35th International Conference on
Software Engineering (ICSE), pages 452–461. IEEE.

[Qiu et al., 2019] Qiu, H. S., Nolte, A., Brown, A., Serebrenik, A., and Vasilescu, B. (2019).
Going farther together: The impact of social capital on sustained participation in open source. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 688–699.
IEEE.

[Rath and Mäder, 2019] Rath, M. and Mäder, P. (2019). The seoss 33 dataset—requirements,
bug reports, code history, and trace links for entire projects. Data in brief, 25:104005.

[Samad et al., 2020] Samad, A., Qadir, M., Nawaz, I., Islam, M. A., and Aleem, M. (2020). A
comprehensive survey of link prediction techniques for social network. EAI Endorsed Trans.
Indust. Netw. & Intellig. Syst., 7(23):e3.

[Sani et al., 2018] Sani, H. M., Lei, C., and Neagu, D. (2018). Computational complexity analysis
of decision tree algorithms. In International Conference on Innovative Techniques and Applications
of Artificial Intelligence, pages 191–197. Springer.



Kumar A., Agarwal S.: Leveraging multifaceted proximity measures… 1271

[Singh et al., 2011] Singh, P. V., Tan, Y., and Mookerjee, V. (2011). Network effects: The
influence of structural capital on open source project success. Mis Quarterly, pages 813–829.

[Su and Zhang, 2006] Su, J. and Zhang, H. (2006). A fast decision tree learning algorithm. In
Aaai, volume 6, pages 500–505.

[Sun et al., 2011] Sun, Y., Barber, R., Gupta, M., Aggarwal, C. C., and Han, J. (2011). Co-author
relationship prediction in heterogeneous bibliographic networks. In 2011 International Conference
on Advances in Social Networks Analysis and Mining, pages 121–128. IEEE.

[Tan et al., 2007] Tan, Y., Mookerjee, V., and Singh, P. (2007). Social capital, structural holes
and team composition: Collaborative networks of the open source software community. ICIS 2007
Proceedings, page 155.

[Wu et al., 2011] Wu, W., Zhang, W., Yang, Y., and Wang, Q. (2011). Drex: Developer rec-
ommendation with k-nearest-neighbor search and expertise ranking. In 2011 18th Asia-Pacific
Software Engineering Conference, pages 389–396. IEEE.

[Zhang et al., 2016] Zhang, W., Wang, S., andWang, Q. (2016). Ksap: An approach to bug report
assignment using knn search and heterogeneous proximity. Information and Software Technology,
70:68–84.

[Zhang et al., 2013] Zhang, W., Wang, S., Yang, Y., and Wang, Q. (2013). Heterogeneous
network analysis of developer contribution in bug repositories. In 2013 International Conference
on Cloud and Service Computing, pages 98–105. IEEE.


	Introduction
	Related Work
	Methodology
	Homogeneous DSN
	Proposed integrated heterogeneous DSN Schema 
	Link Prediction
	Features based on homogeneous DSN
	Features based on heterogeneous DSN:
	 Contribution based features 

	Social capital
	Cohesion Index (CI):
	Average Decay Centrality (ADC):
	Average Godfather Index (AGI):
	Average Diffusion Index (ADI):
	Average Agility Index (AAI):

	Measuring the improvement in the social capital:

	Experimental setup and dataset
	Dataset and classifiers:
	Experimental design:

	Results and discussion:
	Implementation detail and Performance
	Theoretical Analysis
	Pragmatic Analysis

	Threats to Validity
	Conclusion

