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Abstract: One of the problems of information - theoretic security concerns secure communication
over a wiretap channel. The aim in the general wiretap channel model is to maximize the rate of the
reliable communication from the source to the legitimate receiver, while keeping the confidential
information as secret as possible from the wiretapper (eavesdropper).

We introduce and investigate the E - capacity - equivocation region and the E - secrecy capacity

function for the wiretap channel, which are, correspondingly, the generalizations of the capacity -

equivocation region and secrecy - capacity studied by Csiszár and Körner (1978). The E - capacity

- equivocation region is the closure of the set of all achievable rate - reliability and equivocation

pairs, where the rate - reliability function represents the optimal dependence of rate on the error

probability exponent (reliability). By analogy with the notion of E - capacity, we consider the E -

secrecy capacity function that for the given E is the maximum rate at which the message can be

transmitted being kept perfectly secret from the wiretapper.

Keywords: Wiretap channel, information-theoretic security, equivocation rate, E-capacity, secrecy
capacity
Categories: E.4

DOI: 10.3897/jucs.76605

1 Introduction

Security is an important topic in communications. The information - theoretic security
is an approach that demonstrates the possibility of transmitting confidential messages
without using an encryption key. The main idea of the information - theoretic security
is to exploit the inherent noises and difference between the channels to the legitimate
receiver and the eavesdropper. In addition, the transmitter intentionally adds randomness
to prevent eavesdroppers from accepting useful information while guaranteeing the
legitimate receiver to obtain the information. Such an approach to guarantee secrecy has
the advantage of eliminating the key management issue, resulting in lower complexity
and savings in resources. Such an approach was initiated by Wyner [Wyner 1975], who
studied the most basic model called a wiretap channel. Later, Csiszár and Körner [Csiszár
and Körner 1978] studied the broadcast channel with confidential messages, the special
case of which is the more general model of the wiretap channel. It is called a generalized
wiretap channel because the model from [Wyner 1975] is a special case of it, when the
channel to the eavesdropper is a degraded version of the main channel.

In this paper, we consider the generalized model of wiretap channel (see Fig. 1),
which is defined as follows. The source wishes to transmit a messagem to the legitimate
receiver while keeping it as secret as possible from the eavesdropper. The confidential
messagem is assumed to be randomly and uniformly distributed over the message set
M. The encoder fN maps each messagem to a codeword x(m) = (x1, ..., xN ) ∈ XN ,
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where X is the input alphabet, and N is the transmission length. The codeword x(m)
is transmitted over a discrete memoryless channel (DMC) with transition probability
W (y, z|x). The noisy version y ∈ YN is accepted by the legitimate receiver, and z ∈ ZN

- by the eavesdropper, respectively. The decoder gN at the receiver maps the received
sequence y to an estimate m̂ of the message.
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Figure 1: The model of generalized wiretap channel.

The capacity-equivocation region C(W ), as well as the secrecy capacity Cs(W ) of
this model, was obtained in [Csiszár and Körner 1978].

In recent years various extensions of this model has attracted attention and investi-
gated in the literature. Some results are surveyed in [Liang et al. 2008], later publications,
among others, include [Chen, Vinck 2008], [Liang et al. 2009], [Chia, Gamal 2012],
[Nötzel et al. 2016], [Han et al. 2019], [Goldfeld et al. 2020] on state dependent wiretap
channels, [Wang, Safavi-Naini 2016] on wiretap channels with active adversaries.

We are the first to investigate the E - capacity - equivocation region C(E,W ), which
is the closure of the set of all achievable rate - reliability - equivocation pairs (R(E), Re),
where the function R(E) represents the optimal dependence of the rate R on reliability
(error probability exponent)E. It is the analogue ofE - capacity (rate -reliabilty function)
suggested by E. Haroutunian [Haroutunian 2007] and investigated for various channel
models [Haroutunian et al. 2007].

The outer (sphere packing) bound of E - capacity - equivocation region was con-
structed in [Haroutunian 2019]. A version of the inner (random coding) bound was
suggested in [Haroutunian 2020].

In this paper, we bring the improved inner bound with a full proof, introduce and
analyze the concept of E - secrecy - capacity, as well as consider some special classes of
wiretap channels.

The rest of the paper is structured as follows. In Section 2 notations, definitions and
formulation of results are presented. The notion of E-secrecy capacity is introduced and
discussed in Section 3. The particular cases of the generalized model are considered
in Section 4. The proof of the constructed bound is given in Section 5. The paper is
summarized in section 6.
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2 Notations, Definitions and Formulation of Results

Consider the DMC W (y, z|x) with finite input alphabet X , finite output alphabets Y
and Z , where the memoryless property is expressed as

WN (y, z|x) =
N∏

n=1

W (y, z|x).

Let us denote
W1(y|x) =

∑
z

W (y, z|x),

W2(z|x) =
∑
y

W (y, z|x).

To formulate the problem, consider auxiliary random variables U and Q with values
in finite sets U and Q, correspondingly, that satisfy the Markov chain relationship:
Q → U → X → (Y, Z).

Let the probability distribution (PD) of random variables (RVs) Q and U be

P0 = {P0(q, u), q ∈ Q, u ∈ U}

and
P1 = {P1(x|u), x ∈ X , u ∈ U}

be conditional PD of RVX for a given value u. Joint PD of RVs U,X we denote by

P0,1 = {P0,1(u, x) = P0(u)P1(x|u), u ∈ U , x ∈ X}

and the marginal PD of X is

P = {P (x) =
∑
u

P0,1(u, x), u ∈ U , x ∈ X}.

We denote
P1W1(y|u) =

∑
x P1(x|u)W1(y|x),

P1W2(z|u) =
∑

x P1(x|u)W2(z|x).
(1)

We shall use also the PD V = {V (y|x), x ∈ X , y ∈ Y}.
ForN length code (fN , gN ), where fN : MN → XN is encoding and gN : YN →

MN decoding, code rate is

R(fN , gN ) =
1

N
log |MN |

(log and exp are taken to the base 2).Average error probability is defined as

e(fN , gN ,W1) =
1

|MN |
∑

m∈MN

WN
1 {YN − g−1

N (m)|fN (m)},

where g−1(m) = {y : g(y) = m} and ’–’ is the operation between sets.
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The secrecy level of a confidential messagem at the wiretapper is measured by the
equivocation rate, defined as

RN
e =

1

N
HP01,W2

(M |ZN ),

where HP01,W2
(M |ZN ) is the conditional entropy [Cover and Thomas 2006] with

distributions P01,W2. In other words, the equivocation rate indicates the eavesdropper’s
uncertainty about the messagem given the channel outputs ZN . Hence, the larger the
equivocation rate, the higher the level of secrecy.

The rate – equivocation pair (R,Re) is achievable if there exists a sequence of
message setsMN with |MN | = expNR and encoder – decoder (fN , gN ) such that the
average error probability tends to zero as N goes to infinity, and the equivocation rate
Re satisfies

Re ≤ lim
N→∞

infRN
e .

The rate – equivocation pair (R,Re) indicates the confidential rate R achieved at a
certain secrecy level Re.

The capacity - equivocation region C(W ) is defined to be the closure of the set that
consists of all achievable rate – equivocation pairs (R,Re).

The following result was obtained in [Csiszár and Körner 1978] as a special case of
a more general result for the broadcast channel with confidential messages.

Theorem1. The capacity - equivocation region of wiretap channel is given by

C(W ) =
⋃
P0,1



(R,Re) : Q → U → X → (Y, Z),

R ≤ IP0,1,W1(U ;Y ),

0 ≤ Re ≤ R,

Re ≤ IP0,1,W1
(U ;Y |Q)− IP0,1,W2

(U ;Z|Q)


, (2)

where for generic random variables X and Y , I(X;Y ) denotes the mutual information
between RVs X and Y [Cover and Thomas 2006] . The auxiliary random variables
Q and U are bounded in cardinality by |Q| ≤ |X | + 3 and |U| ≤ |X |2 + 4|X | + 3,
respectively.

From this theorem the following corollary was obtained on secrecy capacity ([Csiszár
and Körner 1978]), which is defined as the maximum rate at which the messagem can
be transmitted while being kept perfectly secret from the eavesdropper. Here perfect
secrecy means that observing z will not add information aboutm to the eavesdropper.

Corollary 1. The secrecy capacity of the wiretap channel is given by

Cs(W ) = max
P0,1

[IP0,1,W1(U ;Y )− IP0,1,W2(U ;Z)],

where the auxiliary random variable U satisfies the Markov chain relationship: U →
X → (Y, Z) and is bounded in cardinality by |U| ≤ |X |+ 1.

We investigate the E - capacity - equivocation region C(E,W ), which is defined
as the closure of the set that consists of all E - achievable rate – equivocation pairs
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(R(E), Re), E > 0 with the average error probability satifying e(fN , gN ,W1) ≤
exp{−NE}.

To study this region, a general approach includes two stages: finding
- the achievability region or the inner bound, that is: any rate pair in the region can

be achieved by a certain code,
- the converse region or the outer bound, that is: no rate pairs outside the region can

be achieved.
The outer bound or the so-called sphere packing bound ofE - capacity - equivocation

region was obtained in [Haroutunian 2019], where the following theorem was proved.

Theorem2. For E > 0, the outer bound for E - capacity - equivocation region of
generalized wiretap channel is given by

C(E,W ) ≤ Rsp(E,W )

with

Rsp(E,W ) =
⋃
P0,1



(R(E), Re) : Q → U → X → (Y, Z),

R(E) ≤ min
P1V :D(P1V ||P1W1|P0)≤E

IP0,1,V (U ;Y ),

0 ≤ Re ≤ R(E),

Re ≤ IP0,1,W1
(U ;Y |Q)− IP0,1,W2

(U ;Z|Q)


, (3)

where D(P1V ||P1W1|P0) denotes the divergence between conditional distributions
P1V and P1W1 given PD P0 (for definition see [Cover and Thomas 2006]).

For the achievability part, a message splitting approach is used, when the source
messagem is split into two partsm0 ∈ M0,m1 ∈ M1 with the corresponding rates

R0 =
1

N
log |M0,N | and R1 =

1

N
log |M1,N |.

The first part can be decoded by both the receiver and the wiretapper, while the remaining
part is only for the legitimate receiver to decode and needs to be kept as secret as possible
from the eavesdropper. This rate splitting technique is useful only for the channel models
with secrecy constraint.

The inner bound, which is also called a random coding bound as per method of the
proof, is given in the following theorem.

Theorem3. For E > 0, the inner bound for E - capacity - equivocation region of
generalized wiretap channel is given by

Rr(E,W ) ≤ C(E,W )
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with

Rr(E,W ) =
⋃
P0,1



(R0(E), R1(E), Re(E)) : Q → U → X → (Y, Z),

R0(E) ≤ min{IP0,1,W2
(Q;Z),

min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (Q;Y )+

D(P1V ||P1W1|P0)− E|+},

R1(E) ≤ min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (U ;Y |Q)+

D(P1V ||P1W1|P0)− E|+,

0 ≤ Re(E) ≤ R0(E) +R1(E),

Re(E) ≤ min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (U ;Y |Q)+

D(P1V ||P1W1|P0)− E|+ − IP0,1,W2(U ;Z|Q)



, (4)

where |a|+ = max(a, 0).

The full proof of this theorem is given in the appendix (Section 5).
The proofs are using the method of types [Csiszár 1998], the idea of which is to

partition the set of all N -length sequences into classes according to their empirical
distributions (types). Then useful properties are derived which include;

- the number of types is at most polynomial in N , whereas the number of sequences
is exponential in N ,

- if all sequences are drawn i.i.d. according to the same distribution then the sequences
with the same type have the same probability that depends only on that type,

- number of sequences of a particular type class is also strongly bounded depending
on that type.

The set of all u ∈ UN of the type PN
0 is denoted by T N

P0
(U), and T N

P0,1
(X|u) is the

set of all vectors x ∈ XN with the conditional type PN
1 (x|u) given u ∈ T N

P0
(U). For

further notations and properties we refer to [Haroutunian et al. 2007] section 1.4, or
[Cover and Thomas 2006] section 12.1.

Corollary 2.When E → 0, the inner and outer bounds coincide and are equal to the
capacity - equivocation region (2) obtained in [Csiszár and Körner 1978].

Indeed, the statement of the corollary 2 for the outer bound is obvious. To establish
the statement for the inner bound that is

C(W ) = lim
E→0

Rr(E,W ),
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notice that

lim
E→0

Rr(E,W ) =
⋃
P0,1



(R0, R1, Re) : Q → U → X → (Y, Z),

R0 ≤ min{IP0,1,W1
(Q;Y ), IP0,1,W2

(Q;Z)}

R1 ≤ IP0,1,W1
(U ;Y |Q),

0 ≤ Re ≤ R0 +R1,

Re ≤ IP0,1,W1
(U ;Y |Q)− IP0,1,W2

(U ;Z|Q)


=

⋃
P0,1



(R,Re) : Q → U → X → (Y, Z),

R ≤ min{IP0,1,W1
(Q;Y ), IP0,1,W2

(Q;Z)}+ IP0,1,W1
(U ;Y |Q),

0 ≤ Re ≤ R

Re ≤ IP0,1,W1(U ;Y |Q)− IP0,1,W2(U ;Z|Q)


.

It is clear that limE→0 Rr(E,W ) ⊂ C(W ). To show the opposite, consider two cases:
for any (R,Re) ∈ C(W ) if

- IP0,1,W1
(Q;Y ) ≤ IP0,1,W2

(Q;Z), then (R,Re) ∈ limE→0 Rr(E,W ),
- IP0,1,W1(Q;Y ) > IP0,1,W2(Q;Z), then

Re ≤ IP0,1,W1
(U ;Y |Q)− IP0,1,W2

(U ;Z|Q)

= IP0,1,W1
(U ;Y )− IP0,1,W1

(Q;Y )− IP0,1,W2
(U ;Z) + IP0,1,W2

(Q;Z)

< IP0,1,W1
(U ;Y )− IP0,1,W2

(U ;Z).

The required result is achieved by setting Q = ∅.

3 E - Secrecy - Capacity

Since the case of perfect secrecy, whenR1 = Re, is of particular interest, it is also logical
to consider the function of perfect secrecy depending on the reliability E.

Thus, we introduce the concept of E - secrecy - capacity Cs(E,W ), which for each
E is the largest rate achievable with perfect secrecy and, hence, can be expressed as

Cs(E,W ) = max
R1(E)=Re(E)

R1(E).

From this definition and taking into account that R(E) is a decreasing function, we
derive the upper and lower bounds of this function. The upper bound will be

Cs(E,W ) ≤


max
P0,1

[IP0,1,W1(U ;Y )− IP0,1,W2(U ;Z)], forE ≤ E∗
sp,

max
P0,1

min
P1V :D(P1V ||P1W1|P0)≤E

IP0,1,V (U ;Y ), forE ≥ E∗
sp

 ,
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where E∗
sp is the value of E, for which

max
P0,1

[IP0,1,W1
(U ;Y )− IP0,1,W2

(U ;Z)] = max
P0,1

min
P1V :D(P1V ||P1W1|P0)≤E

IP0,1,V (U ;Y ).

Actually, for small E the situation is similar to the case with secrecy capacity, because

max
P0,1

[IP0,1,W1(U ;Y )− IP0,1,W2(U ;Z)] ≤ max
P0,1

min
P1V :D(P1V ||P1W1|P0)≤E

IP0,1,V (U ;Y )

and max
P0,1

[IP0,1,W1
(U ;Y ) − IP0,1,W2

(U ;Z)] is the maximal value of R(E) for which

R(E) = Re(E). As R(E) is decreasing on E, for E greater than E∗
sp it becomes

max
P0,1

[IP0,1,W1
(U ;Y )− IP0,1,W2

(U ;Z)] ≥ max
P0,1

min
P1V :D(P1V ||P1W1|P0)≤E

IP0,1,V (U ;Y ).

Hence for E ≥ E∗
sp E-secrecy capacity can not be greater than

max
P0,1

min
P1V :D(P1V ||P1W1|P0)≤E

IP0,1,V (U ;Y ).

The lower bound of E-secrecy capacity will be

Cs(E,W ) ≥ max
P0,1

[
min

P1V :D(P1V ||P1W1|P0)≤E
|IP0,1,V (U ;Y |Q)

+D(P1V ||P1W1|P0)− E|+ − IP0,1,W2(U ;Z|Q)
]
.

When E → 0 bounds coincide and are equal to Cs(W ).

4 Some Special Classes of Wiretap Channels

TheE-capacity-equivocation region similar to capacity - equivocation region has simpler
form for special cases of considered model. We discuss here some of them.

4.1 The channel to the legitimate receiver is less noisy than the channel to the
wiretapper

It means that
IP0,1,W2

(U ;Z) ≤ IP0,1,W1
(U ;Y ),

for every U → X → (Y, Z).
It is clear that the secrecy capacity is always positive unless W2 is less noisy than

W1.
The capacity - equivocation region and the secrecy capacity for this class were

obtained in [Csiszár and Körner 1978]:

C(W ) =
⋃
P


(R,Re) : R ≤ IP,W1(X;Y ),

0 ≤ Re ≤ R,

Re ≤ IP,W1
(X;Y )− IP,W2

(X;Z),

 (5)
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and
Cs(W ) = max

P
[IP,W1

(X;Y )− IP,W2
(X;Z)]. (6)

4.2 The channel to the legitimate receiver is more capable than the channel to the
wiretapper

It means that
IP,W2(X;Z) ≤ IP,W2(X;Y ),

for every input distribution P . This condition is weaker than the less noisy condition.
In [Csiszár and Körner 1978] it was shown that (6) is also true for this case.

4.3 Physically degraded wiretap channel

The wiretap channel is called physically degraded if X and Z are conditionally inde-
pendent for a given Y , or X → Y → Z, in other words, the channel distribution
satisfies

W (y, z|x) = W1(y|x)W2(z|x).

4.4 Stochastically degraded wiretap channel

The wiretap channel is called stochastically degraded if there exists a distributionW (z|y)
such that

W2(z|x) =
∑
x

W1(y|x)W (z|y),

in other words, if the conditional marginal distribution of the wiretap channel is the same
as that of a physically degraded one.

It is obvious that the degradedness condition is stronger than the less noisy condition,
and, hence, both (5) and (6) hold for the degraded wiretap channel. That is why it is
enough to consider only the ”less noisy” case, as the result will be true also for other
mentioned cases.

By the analogy of the proof of (5), we can obtain the upper and lower bounds of E -
capacity equivocation region. The upper bound will be

Rsp(E,W ) =
⋃
P



(R(E), Re) : U → X → (Y, Z),

R(E) ≤ min
V :D(V ||W1|P )≤E

IP,V (X;Y ),

0 ≤ Re ≤ R(E),

Re ≤ IP,W1(X;Y )− IP,W2(X;Z)


.

To prove this we must show that every bound in (3) is less than or equal to the corre-
sponding bound here. It is obvious that for any V

IP0,1,V (U ;Y ) ≤ IP,V (X;Y ),

as U → X → Y , hence

min
P1V :D(P1V ||P1W1|P0)≤E

IP0,1,V (U ;Y ) ≤ min
V :D(V ||W1|P )≤E

IP,V (X;Y ).
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The second inequality is the same as in (5).
The lower bounds of E - capacity equivocation region for ”less noisy” case will be

Rr(E,W ) =
⋃
P



(R(E), Re(E)) : U → X → (Y, Z),

R(E) ≤ min
V :D(V ||W1|P )≤E

|IP,V (X;Y )+

D(V ||W1|P0)− E|+,

0 ≤ Re(E) ≤ R(E)

Re(E) ≤ min
V :D(V ||W1|P )≤E

|IP,V (X;Y )+

D(V ||W1|P )− E|+ − IP,W2
(X;Z)



.

This bound follows from theorem 3 by setting Q = ∅ and U = X .
These upper and lower bounds coincide for small E and when E → 0 coincide with

(5).

5 Appendix: Proof of Theorem 3

To prove Theorem 4, we must show that the rate region specified in (4) is E - achievable
for E > 0. This is done by constructing a code of lengthN with certain properties based
on the random coding technique.

The proof consists of 2 steps. In step 1, the existence of a code with the required
properties is proved. In step 2, the estimation of the equivocation rate is given.

5.1 Step 1: Code construction

We must prove that for any δ > 0, E > 0 and sufficiently large N there exists a code of
length N with

|M0,N | = exp{N min{IP0,1,W2
(Q;Z), (7)

min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (Q;Y ) +D(P1V ||P1W1|P0)− E − δ|+},

|M1,N | = exp{N min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (U ;Y |Q)

+D(P1V ||P1W1|P0)− E − δ|+, (8)

such that
1

N
log |M0,N | ≥ R0,

1

N
log |M1,N | ≥ R1

and the receiver decodes the messages m at rates (R0, R1) with e(fN , gN ,W1) ≤
exp{−NE}, and the eavesdropper decodesm0 at rate R0 with small error probability
(e2 < ε).

Let
A = {1, ..., A}, B = {1, ..., B},
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where

A = exp{N{ min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (U ;Y |Q) +D(P1V ||P1W1|P0)− E|+

−IP0,1,W2
(U ;Z|Q)}, (9)

B = exp{NIP0,1,W2(U ;Z|Q)}.

Let PN
0 be a type on (QN ,UN ) and PN on XN . The random codebook is con-

structed by the following steps. |M0,N | vectors q(m0) are drawn uniformly, indepen-

dently from T N
P0

(Q). For each q(m0) ∈ T N
P0

(Q) A × B vectors u(m1|m0) are drawn

uniformly, independently from T N
P0

(U |q(m0)), where A and B satisfy (9), denote them

by u(m0, a, b), wherem0, a, b run over index setsM0,N ,A,B. Finally, for eachmo the
random sub-codebook of A × B codewords ux(m0, a, b) is constructed by randomly

choosing x(m0, a, b) from T N
P0,1

(X|u(m0, a, b)) for each u(m0, a, b) (Fig. 2).

1 2 ... B

1 ux(m0, 1, 1) ux(m0, 1, 2) ... ux(m0, 1, B)

2 ux(m0, 2, 1) ux(m0, 2, 2) ... ux(m0, 2, B)

... ... ... ...

A ux(m0, A, 1) ux(m0, A, 2) ... ux(m0, A,B)

Figure 2: Sub-codebook for each m0

Such a codebook is used because the eavesdropper can decode the column index b at
the maximum rate that its channel supports and is not able to decode the row index.

For decoding we use the divergence minimization criterion suggested by E. Harou-
tunian [Haroutunian 2007] and successfully applied for various models [Haroutunian
et al. 2007]. The idea of this criterion is the following. Each output vector y has various
conditional types P1V with various vectors u(m0, a, b). The decoder is looking for that
P1V , for which the divergence D(P1V ||P1W1|P0) is minimal. In other word, on the

decoder g, each y is decoded to such (m0, a, b) for which y ∈ T N
P1V

(Y |u(m0, a, b)) with
P1V that minimizes D(P1V ||P1W1|P0), i. e.

(m0, a, b) = argmin
P1V :y∈T N

P1V (Y |u(m0,a,b)

D(P1V ||P1W1|P0).

Decoder g can make an error if (m0, a, b) is transmitted, but there exists some
(m′

0, a
′, b′) 6= (m0, a, b) with which the output y has some P1V

′ conditional type with
smaller divergence, i. e.

y ∈ T N
P1V (Y |u(m0, a, b))

⋂
T N
P1V ′(Y |u(m′

0, a
′, b′))
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and
D(P1V

′||P1W1|P0) ≤ D(P1V ||P1W1|P0). (10)

Hence, the set of all possible vectors y that can lead to an error ofm0 at the receiver is

S0(P1V, P1V
′) = T N

P1V (Y |u(m0, a, b))
⋂ ⋃

m0 6=m′
0

⋃
(a,b)

T N
P1V ′(Y |u(m′

0, a, b).

and the set of all possible vectors y that can lead to an error of (a, b) for a givenm0 at
the receiver is

S1(P1V, P1V
′,m0) = T N

P1V (Y |u(m0, a, b))
⋂ ⋃

(a′,b′)6=(a,b)

T N
P1V ′(Y |u(m0, a

′, b′).

We denote by DN (P0) the set of all types P1, V, P1V
′ that satisfy (10). Now the error

probability will be estimated as follows.

e(fN , gN ,W1) =
1

|MN |
∑

m∈MN

WN
1 {YN − g−1(m)|f(m)}

=
1

|M0,N | ×A×B

∑
m0∈M0,N

∑
a∈A,b∈B

WN
1 {YN − g−1(m)|x(m0, a, b)}

=
1

|M0,N | ×A×B

∑
q(m0)

∑
u(m0,a,b)

∑
x(m0,a,b)

PN
1 (x(m0, a, b)|u(m0, a, b))×

WN
1 {YN − g−1(m)|x(m0, a, b)},

where the sums are taken over the following sets

q(m0) ∈ T N
P0

(Q) ∩ f(M0,N ), u(m0, a, b) ∈ T N
P0

(U |q(m0)) ∩ f(A× B),

x(m0, a, b) ∈ T N
P0,1

(X|u(m0, a, b)).

Here and below, for brevity, we only mention the indices over which we sum, so the last
expression equals

1

|M0,N | ×A×B

∑
m0∈M0,N

∑
a∈A,b∈B

P1W
N
1 {YN − g−1(m0, a, b)|u(m0, a, b)}

≤ 1

|M0,N | ×A×B

∑
m0∈M0,N

∑
a∈A,b∈B

P1W
N
1 {

⋃
P1V,P1V ′∈DN (P0)

S0(P1V, P1V
′)

⋃
S1(P1V, P1V

′,m0)|u(m0, a, b)}.

Taking into account that P1W1(y|u) is constant for fixed types P0, P1V and equals

P1W1(y|u) = exp{−N [D(P1V ||P1W1|P0) +HP0,1,V (Y |U)]},

(follows from the property of method of types) the error probability will be upper
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estimated by

1

|M0,N | ×A×B

∑
m0∈M0,N

∑
a∈A,b∈B

∑
P1V,P1V ′∈DN (P0)

exp{−N [D(P1V ||P1W1|P0)

+HP0,1,V (Y |U)]} [|S0(P1V, P1V
′)|+ |S1(P1V, P1V

′,m0)|] . (11)

We will show that the following statement is true.
Lemma 1. There exists at least one code such that for everym0 ∈ M0,N , a ∈ A, b ∈

B and for any conditional types P1V, P1V
′ and N large enough

|S0(P1V, P1V
′)| ≤

exp{NHP0,1,V (Y |U)} exp{−N |E −D(P1V
′||P1W1|P0)|+}, (12)

and
|S1(P1V, P1V

′,m0)| ≤

exp{NHP0,1,V (Y |U)} exp{−N |E −D(P1V
′||P1W1|P0)|+}. (13)

Then from (11), (12) and (13) we will obtain that error probability is not greater than

e(fN , gN ,W1) ≤

1

|M0,N | ×A×B

∑
m0∈M0,N

∑
a∈A,b∈B

∑
P1V,P1V ′∈DN (P0)

2 exp{−N [D(P1V ||P1W1|P0)

+HP0,1,V (Y |U)]} exp{NHP0,1,V (Y |U)} exp{−N |E −D(P1V
′||P1W1|P0)|+}

≤ exp{−N(E − ε)}, ε > 0.

The last inequality is true, since types P1V, P1V
′ from DN (P0) satisfy (10) and the

number of all possible P1V, P1V
′ according to the properties of the method of types is

not greater than (N + 1)2|Y||U|.
Proof of Lemma 1. First notice that if u(m0, a, b) satisfies (12), (13) for any P1V,

P1V
′, then u(m′

0, a
′, b′) 6= u(m0, a, b) for (m, a, b) 6= (m′, a′, b′). To verify this, it is

enough to choose P1V = P1V
′ and D(P1V

′||P1W1|P0) < E. If P1V
′ is such that

D(P1V
′||P1W1|P0) ≥ E,

then
exp{−N |E −D(P1V

′||P1W1|P0)|+} = 1

and (12), (13) are valid for any |M0,N |, A,B.
It remains to prove (12), (13) for P1V

′, such that D(P1V
′||P1W1|P0) < E. Let us

denote this set by D(P0, E)

D(P0, E) = {P1V : D(P1V
′||P1W1|P0) < E}.
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To this end it is enough to show that for N large enough∑
P1V ′∈D(P0,E)

[E|S0(P1V, P1V
′)|+ E|S1(P1V, P1V

′,m0)|]

× exp{N(E −D(P1V
′||P1W1|P0)−HP0,1,V (Y |U))} ≤ 1.

For the random code the first mathematical expectation can be bounded in the
following way

E|S0(P1V, P1V
′)| ≤

∑
y∈T N

P0,1V (Y )

∑
m0 6=m′

0

Pr{y ∈ T N
P0,1V (Y |u(m0, a, b))}

×Pr{y ∈
⋃
(a,b)

T N
P0,1V ′(Y |u(m′

0, a, b)},

since the events in the brackets are independent. Notice, that the first probability is
different from zero if and only if y ∈ T N

P0,1V
(Y ), then for N large enough

Pr{y ∈ T N
P0,1V (Y |u(m0, a, b))} =

|T N
P0,1V

(U |y)|
|T N

P0,1V
(U)|

≤ (N + 1)|U| exp{N(HP0,1V (U |Y )−HP0(U))} ≤ exp{−N(IP0,1V (U ;Y )− δ/4)}.
Here the number of vectors in the type class was estimated by the method of types.

The second probability, by a similar reasoning, is upper estimated by

Pr{y ∈
⋃
(a,b)

T N
P0,1V ′(Y |u(m′

0, a, b)} ≤ Pr{y ∈ T N
P0,1V ′(Y |q(m′

0)}

=
|T N

P0,1V ′(Q|y)|
|T N

P0V ′(Q)|
≤ exp{−N(IP0,1V ′(Q;Y )− δ/4)}.

Finally we have

E|S0(P1V, P1V
′)| ≤ (|M0,N | − 1)|T N

P0,1V (Y )| × exp{−N(IP0,1V (U ;Y )

+IP0,1V ′(Q;Y )− δ/2)}.

From (7) it follows that for any P1V
′ ∈ D(P0, E)

|M0,N | − 1 ≤ exp{N(IP0,1,V ′(Q;Y ) +D(P1V
′||P1W1|P0)− E − δ)}

and we obtain

E|S0(P1V, P1V
′)| exp{N(E −HP0,1V (Y |U)−D(P1V

′||P1W1|P0))}

≤ exp{−Nδ/2}.
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By analogy we obtain

E|S1(P1V, P1V
′,m0)| exp{N(E −HP0,1V (Y |U)−D(P1V

′||P1W1|P0))}

≤ exp{−Nδ/2}.
It means that there exists at least one code satisfying properties (12) and (13). Lemma 1
is proved.

The proof of Theorem 4 will be completed by estimating the equivocation rate.

5.2 Step 2: Estimation of the equivocation rate

We now estimate the equivocation ofM = (M0,M1) at the eavesdropper.

HP01W2
(M |ZN ) = HP01W2

(M0,M1|ZN ) ≥ HP01W2
(M0|M1, Z

N )

= HP01W2
(ZN ,M1|M0)−HP01W2

(ZN |M0)

= HP01W2
(ZN ,M1, U

N |M0)−HP01W2
(UN |ZN ,M1,M0)−HP01W2

(ZN |M0)

= HP01W2(M1, U
N |M0) +HP01W2(Z

N |M1, U
N ,M0)

−HP01W2
(UN |M1, Z

N ,M0)−HP01W2
(ZN |M0)

≥ HP01W2
(UN |M0) +HP01W2

(ZN |UN ) (14)

−HP01W2
(UN |M0,M1, Z

N )−HP01W2
(ZN |M0).

We will bound each term separately. Given M = m, UN has A × B possible values.
From [Csiszár and Körner 1978] we know that

HP01W2
(UN |M0) ≥ logA+ logB − 1

hence,

1

N
HP01W2

(UN |M0) ≥ min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (U ;Y |Q)+

D(P1V ||P1W1|P0)− E − δ/4|+ − 1

N
. (15)

For the second term it is easy to see that

1

N
HP01W2

(ZN |UN ) = HP01W2
(Z|U), (16)

as u ∈ T N
P0

(U).
The third term in (14) can be upper bounded by Fano’s inequality.

1

N
HP01W2

(UN |M0,M1, Z
N ) ≤ 1

N
(1 + e2 log(|M0N |AB)). (17)
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To estimate the fourth term in (14), consider a RV Ẑ as

ẑ = z, if (q(m0), z) ∈ T N
P0W2

(QZ).

Then
HP01W2(Z

N |M0) ≤ HP01W2(Z
N , ẐN |M0)

= HP01W2
(ZN |M0, Ẑ

N ) +HP01W2
(ẐN |M0)

≤ HP01W2
(ZN |ẐN ) +HP01W2

(ẐN |M0). (18)

Now, by Fano’s inequality

1

N
HP01W2

(ZN |ẐN ) ≤ 1

N
+ ε log |Z|

and
1

N
HP01W2(Ẑ

N |M0) ≤ HP01W2(Z|Q).

Hence, from (18) the fourth term in (14) is

1

N
HP01W2(Z

N |M0) ≤ HP01W2(Z|Q). (19)

Substituting (15), (16), (17) and (19) into (14), we obtain

1

N
HP01W2

(M |ZN ) ≥ min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (U ;Y |Q)

+D(P1V ||P1W1|P0)− Eδ/4|+ − 1

N
+HP01W2(Z|U)−HP01W2(Z|Q)

− 1

N
(1 + e2 log(|M0,N |AB)).

Since the inequality is valid for N large enough, we conclude

lim
N→∞

1

N
HP01W2

(M |ZN ) ≥ min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (U ;Y |Q)

+D(P1V ||P1W1|P0)− E|+ − IP01W2(U ;Z|Q).

By the definition of Re we conclude

Re(E) ≤ min
P1V :D(P1V ||P1W1|P0)≤E

|IP0,1,V (U ;Y |Q)

+D(P1V ||P1W1|P0)− E|+ − IP01W2(U ;Z|Q).

The proof of Theorem 3 is completed.
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6 Conclusions and Future Work

E - capacity - equivocation region and E - secrecy - capacity new notions of wiretap
channel are introduced and investigated by constructing outer and inner bounds. These
notions are, correspondingly, the generalizations of capacity - equivocation region and
secrecy - capacity introduced and studied by [Csiszár and Körner 1978], since the
latter can be obtained from the corresponding constructed bounds as a particular case
when E → 0. Special classes of the basic wiretap channel are considered and the
corresponding bounds are constructed. In the future, other models of wiretap channels
will be investigated from this point of view.
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