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Abstract: Effective root cause analysis (RCA) of performance issues in modern cloud environ-
ments remains a hard problem. Traditional RCA tracks complex issues by their signatures known
as problem incidents. Common approaches to incident discovery rely mainly on expertise of
users who define environment-specific set of alerts and target detection of problems through their
occurrence in the monitoring system. Adequately modeling of all possible problem patterns for
nowadays extremely sophisticated data center applications is a very complex task. It may result in
alert/event storms including large numbers of non-indicative precautions. Thus, the crucial task for
the incident-based RCA is reduction of redundant recommendations by prioritizing those events
subject to importance/impact criteria or by deriving their meaningful groupings into separable
situations. In this paper, we consider automation of incident discovery based on rule induction
algorithms that retrieve conditions directly from monitoring datasets without consuming the sys-
tem events. Rule-learning algorithms are very flexible and powerful for many regression and
classification problems, with high-level explainability. Since annotated or labeled data sets are
mostly unavailable in this area of technology, we discuss data self-labelling principles which
allow transforming originally unsupervised learning tasks into classification problems with further
application of rule induction methods to incident detection.
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1 Introduction

Automated and intelligent root cause analysis (RCA) is of great importance for proactive
detection and self-remediation of IT issues in large-scale distributed cloud environments
before they impact an end-user via application/infrastructure performance degradation.
One of the common approaches to RCA is a problem detection and identification by its
accompanying group of symptoms known as fingerprint or incident. Automated discovery
of data center symptom-patterns is recently gaining a lot of popularity. A problem incident
is a group of symptoms (alerts, alarms, events, metric changes, property changes, etc.)
with sufficient historical evidence in reoccurrence and similarity. All discovered incidents
should be stored in a knowledge-base together with available expert annotations regarding
the problem description and its possible resolutions. The knowledge-base of incidents
with sufficient coverage of system’s possible failures is an invaluable asset for any system
administrator and one of the important components of data-analytics for a self-driving
data center.

The most challenging vision of IT management is realization of Al-powered self-
driving data centers with predictive maintenance, workload optimization and self-healing
in case of service-critical issues ([Gartner Research, 2019]). The main purpose of RCA
is proactive detection, identification and resolution of upcoming infrastructure and
application problems (in particular, performance degradations) before they negatively
affect customers’ environments. The main requirement from RCA is the low response
time of a problem remediation with minimum resource utilization. The latest is especially
important for cloud environments with larger restrictions on resources like CPU, GPU,
memory, etc. compared to on-premises implementations. However, the most expected
and valuable characteristic is the explainability of the outcome of RCA. Explainable Al
(XAI) (see [Barredo Arrieta et al., 2020]) builds a trust towards the recommendations
and increases the expertise for better system administration.

The traditional approach to management of cloud environments is monitoring of
system-indicators like time series, logs and traces (known as three pillars of observabil-
ity) for analysis, visualization, and reporting (see [Gartner Research, 2020a, Gartner
Research, 2020b]). Self-driving data centers require the availability of proactive and
intelligent analytics in view of nowadays very large-scale cloud environments. One of
the important elements of the analytics is RCA on all acquired data for an anomaly
detection, problem identification and self-remediation, risk management, intrusion de-
tection, etc. (see [Mirgorodskiy et al., 2006, Mi et al., 2012, Marvasti et al., 2013, Agar-
wal and Agrawal, 2014, Kostro$ et al., 2014, Wang et al., 2015, Sauvanaud et al.,
2016, Tak et al., 2016, Soléet al., 2017, Neuvirth et al., 2015, Josefsson, 2017, Poghosyan
et al., 2016, Harutyunyan et al., 2014, Harutyunyan et al., 2018b, Harutyunyan et al.,
2020b, Chen et al., 2020, Das et al., 2020, Ferreira et al., 2020, Salaiin et al., 2020, Bo-
nandrini et al., 2020, Marcia et al., 2021, Jedrzej et al., 2019, Bilal et al., 2021, Vieira
et al., 2021, Mejia et al., 2021, Ibrahim Kure and Islam, 2019, Poghosyan et al., 2021]
with references therein).

Accumulated historical experience, while tackling similar problems, potentially can
support proactive prediction of well-known issues ([Schnepp et al., 2017]). Ideally,
the purpose of RCA should be identification of the main causes with assignment to
proper administrators that will lead to accelerated remediation. Unfortunately, this ideal
situation with the main roots within our control rarely realizes in practice. Normally, a
problem can be identified and resolved only by controlling (monitoring) and managing
the accompanying symptoms. Many RCA vendors like VMware (see [Harutyunyan
et al., 2020a, Poghosyan et al., 2020, Marvasti et al., 2013]), BigPanda (see [BigPanda,
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2020]) and Moogsoft (see [Sahil K., 2016]) follow this practical guidance describing a
problem by its group of symptoms (alarms, alerts, events, etc.) within time and topology
proximity named as an incident (episode or fingerprint). According to Moogsoft, an
incident is a Probable Root Cause of a problem assuming that the surrounding symptoms
possibly will help with a problem identification and resolution. According to BigPanda, an
incident represents a high-level issue in an environment. They are created automatically
by grouping together related alerts from the monitoring tools.

The flowchart of Figure 1 shows the classical approach to an incident detection and
its application to a problem identification and accelerated remediation. The crucial role is
given to alerts which should be defined by an expert or experienced user with sufficient
knowledge regarding an environment, application and infrastructure key performance
indicators, monitored data peculiarities, correlations and thresholds. They should be
enough accurate to reduce the number of false positives and negatives.

Monitoring
Dataset

Incidents Knowledge Base

Figure 1: The common approach to RCA based on alert definitions.

The process of Figure 1 might be rather complicated for realization in large-scale
distributed environments with inconsistent behavior. The alert-based incident detection
arises many questions as there is no common and straightforward approach. However, if
those incidents are known with sufficient historical evidence, then the history of their
resolutions will help to attach some annotations and store in the knowledge-base of
historical patterns. In a run-time mode, a pattern matching process will compare the
default group of alerts with the incidents of the knowledge-base and perform identification
of the current status of an application or infrastructure. For a detected incident, the
corresponding annotations will clarify its remediation strategies. Hence, the efficiency
of the common RCA is entirely depending on the completeness of the alert space and on
the ability of an incident generation. This method is very powerful and has a high-level
explainability for many applications.

In this paper, our intention is the reinforcement of the common RCA (see Figure 1) by
the automation of the incident generation process (see Figure 2). The process consists of
data self-labelling and rule induction sub-processes. It works independently of alerts and
directly utilizes monitoring datasets via machine learning algorithms. Figure 2 shows that
rule-induction methods are responsible for an incident detection. Those methods can be
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applied both to regression and classification problems where a preliminary data labelling
is needed. The focus of our paper is application of classification rule-learner known as
RIPPER (Repeated Incremental Pruning to Produce Error Reduction) (see [Cohen, 1995]).
We consider data self-labelling via outlier detection as a system potential anomalies.
The corresponding rules with sufficient statistical evidence explain/predict those outliers
and serve as historical incidents. Incidents can be stored in the knowledge-base for
further utilization. In the run-time mode, the RCA can perform pattern matching between
monitoring datasets (without labelling) and the incidents (rules) of the knowledge-base
for a problem identification.

Data Labelling Rule Induction Incidents Knowledge Base

Monitoring
Dataset

Figure 2: Intelligent RCA with data self-labelling and rule induction.

Paper [Poghosyan et al., 2020] realizes the procedure of Figure 2 via decision trees. It
considers application of principal component analysis (PCA) (see [Jolliffe, 2002]) to the
original monitoring dataset for dimensionality reduction and important/independent fea-
ture extraction. Principal components are uncorrelated and their simultaneous deviation
from normality can be indication of a system anomaly behavior. Those deviations can be
revealed by anomaly/outlier detection approaches. The paper applies the modification
of the k-means clustering known as k-mod ([Chawla and Gionis, 2013]) to the space
of principal components for outlier detection. Then, decision trees for classification are
applied for prediction/explanation of the outliers. Each subtree predicting the outlier can
be reformulated as a rule. The strong” rules should be considered as incidents.

Decision trees have several disadvantages like sensitivity to noise, low predictive
power and many others. The current paper considers application of more powerful rule-
learning methods for classification problems. One of the most powerful rule-induction
systems is RIPPER. It has several benefits like scalability, flexibility and explainability.
RIPPER detects patterns in data as IF-THEN rules. The body of a rule (see [Fiirnkranz
and Kliegr, 2015]) consists of conditions each one containing a constraint that needs
to be satisfied. The rule is said to fire if all conditions are satisfied and an instance is
said to be covered by the rule. The rule head consists of a single class value (an outlier
or a normal data point), which is predicted in case the rule fires (see [Fiirnkranz and
Kliegr, 2015]). The RIPPER rules can be simple (with only one condition) or complex
(consisting of multiple conditions). The importance of a rule can be characterized by the
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following two measures:

N (body — head)
N (body)

(1)

Confidence =

and
N (body — head)

N (positive class)’

Coverage = (2)
where N (body — head) is the number of instances that satisfy both the body and head
of the rule, N (body) is the number of instances that satisfy the body of the rule and
N (positive class) is the number of outliers. For an incident management, we need rules
with high confidence (pure rules) while the coverage can be small for rare issues and
large for more frequent ones. Collection of such pure rules makes our store of incidents.

In many applications/infrastructures the labelling of monitoring datasets can be per-
formed via available key performance indicators (KPI-metrics). For example, application
response time metric can be such an indicator. Then, there can be two different scenarios.
The first one is data labelling based on those KPI-metrics, for example via some known
thresholds with further application of classification rule-induction methods. The second
approach can be direct application of regression rule-induction methods (like C4.5 or
C5.0 regression methods) that can explain the values of the KPI-metrics through other
indicators or capacity metrics. Finally, it is very important incorporation of users/experts
knowledge into filtering of useless incidents and labels for overall improvement of the
RCA. Moreover, incidents can be personalized for different users subject to their roles
like application administrator, infrastructure administrator, security manager, etc..

The paper is organized as follows. Section 2 presents related works regarding RCA,
outlier detection, rule-learners and their applications. Section 3 gives more detailed
description of our approach. Section 4 considers experimental results for an application
server. It discusses rule generation via principal components, monitored metrics and data
labelling scenarios. Section 5 makes conclusions and gives ideas for future works.

2 Related work

One of the most important capabilities of the Al-powered data-analytics for IT operations
(AIOps) is fully automated RCA ([Gartner Research, 2019]). Many AIOps platform
vendors like IBM (see [IBM, 2021]), Facebook (see [Lin et al., 2020]), VMware (see
[Marvasti et al., 2013, Marvasti et al., 2014a, Marvasti et al., 2014b, Marvasti et al.,
2016, Marvasti et al., 2018, Poghosyan et al., 2016, Poghosyan et al., 2019a, Poghosyan
et al., 2019b, Harutyunyan et al., 2019a, Harutyunyan et al., 2020b, Harutyunyan et al.,
2020c]), HPE (see [HPE, 2019]), BigPanda (see [BigPanda, 2020]), DataDog (see
[Othmane A.-A., 2021]), Moogsoft (se [Sahil K., 2016]) and others ([Moogsoft, 2016])
have almost complete vision and solution for the domain-centric RCA described in Figure
1.

Large-scale distributed cloud environments require intelligent RCA for self-driving
data centers. It has been in the focus of researchers for decades with diverse ideas
including anomaly detection, event correlations, causal inference, correlation analysis,
predictive models and many others (see [ABS Consulting et al., 2014, Zawawy et al.,
2010, Chuah et al., 2010, Cai et al., 2019, Marvasti et al., 2014b, Poghosyan et al., 2020]
with references therein). Ideally, RCA should analyze all acquired monitoring datasets
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including logs (see [Poghosyan et al., 2020, Harutyunyan et al., 2019b, Harutyunyan
et al., 2018a, Harutyunyan et al., 2014, Mi et al., 2012, Kostros et al., 2014, Tak et al.,
2016, Chuah et al., 2010, Bird et al., 2015, Zawawy et al., 2010, Michalski, 1983]),
traces (see [Suriadi et al., 2013, Lin et al., 2020]) and time series data (see [Jeyakumar
et al., 2019, Pearl, 2009, Spirtes et al., 2000]) with possible correlations among them.
Distributed tracing is the classical approach to application monitoring and diagnostics
(see [Opentracing, 2019]). It is the best-known approach to the RCA of distributed
systems.

Explainability of RCA improves the satisfaction with the recommendations and
lead to more actionable insights. One of the powerful approaches to explainability is
utilization of incidents with sufficient historical evidence ([Cohen et al., 2005, Bodik,
2010]). In this paper, we consider rule induction approaches to incident discovery. Rule-
learners are the best if simplicity and explainability are important ([Fiirnkranz, 1997,
Fiirnkranz, 1999, Fiirnkranz et al., 2012, Fiirnkranz and Kliegr, 2015, Agrawal et al.,
1993, Galarraga et al., 2013, Quinlan, 2014, Clark and Niblett, 1989, Clark and Boswell,
1991]). RIPPER (Repeated Incremental Pruning to Produce Error Reduction) was the
first rule learning system that effectively countered the overfitting problem ([Cohen,
1995, Hiihn and Hiillermeier, 2009]). It is based on several previous works, most notably
is the incremental reduced error pruning (IREP) idea ([Fiirnkranz and Widmer, 1994]). In
several independent studies, RIPPER has proved to be among the most competitive rule
learning algorithms available today. RIPPER is a classification rule induction approach
and the crucial steps for its realization is data labelling and feature selection/extraction
in case of very large datasets. It is still the state-of-the-art in inductive rule learning with
several important features like supporting missing values, numerical and categorical
variables and multi-class classification problems.

Rule learning systems have wide applications including analysis of log-data and
trace-data. Papers ([Suriadi et al., 2013, Lin et al., 2020]) consider analysis of log-data.
Paper [Suriadi et al., 2013] compares RIPPER to C4.5 ([Quinlan, 2014]) for RCA on
log data. It uses implementation of both algorithms in WEKA ([Witten et al., 2005])
known as JRip and J48 for RIPPER and C4.5, respectively. Paper ([Lin et al., 2020])
considers RCA in a large-scale production environment based on structured logs. It
explores application of the Apriori algorithm ([Agrawal et al., 1993]) with subsequent
improvement with FP-Growth ([Han et al., 2004]).

Papers ([Lee and Stolfo, 1998, Helmer et al., 2002, Helmer et al., 1998]) consider the
problem of intrusion and abuse detection in computer systems in networked environments
based on application traces. Paper ([Lee and Stolfo, 1998]) applies RIPPER to anomaly
predictions. It also considers application of collective classifiers like association rules
([Hoppner, 2005]) and frequent episodes algorithm ([Wu et al., 2012]) for improvement
of the effectiveness in detecting intrusions. Paper ([Helmer et al., 2002, Helmer et al.,
1998]) proposes a feature vector construction technique for system call-traces with further
application of RIPPER for an anomaly classification. They also discussed a complexity
reduction approach for learning algorithms.

Accurate and fast anomaly/outlier detection leads to proactive problem resolution
and remediation before it affects a customer environment. Historical anomalies with their
resolution experience are a valuable source for intelligent data labelling. Anomaly detec-
tion has been investigated by numerous authors for many applications (see [Thudumu
et al., 2020, Blazquez-Garcia et al., 2020, Pang et al., 2020, He et al., 2020, Chandola
et al., 2009, Hodge and Austin, 2004, Zhang et al., 2020, Burguefio et al., 2020, Carta
et al., 2020, Amarbayasgalan et al., 2020, Breunig et al., 2000, Chawla and Gionis,
2013, Marvasti et al., 2014a]). NN-based methods and deep learning are now becoming
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very popular and powerful (see [Pang et al., 2020, Geiger et al., 2020] with references
therein).

Another important step towards efficient RCA is data preprocessing via feature
extraction or selection methods ([Cios et al., 2007, Ghojogh et al., 2019, Jolliffe, 2002,
John et al., 1994]). Naturally, the complexity is directly connected with the number of
features involved in the learning. It should be very reasonable application of learning
systems to only the important features. Feature subset selection has been shown to
improve the performance of a learning algorithm and reduce the effort and amount of

data required for machine learning on a broad range of problems ([Liu and Motoda,
1998]).

3 The main idea

We consider the scenario of Figure 2 for an incident generation, and Figure 3 describes
the process in more details.

Incidents

g Labeled
Monitoli Monitoring RIPPER
Dataset

Incidents
Labeled
PC-Dataset RIEEEE

K-mod
Clustering

Figure 3: Incident generation via PCA, k-mod clustering and RIPPER.

RIPPER is selected for a rule construction. One of its main benefits compared to
decision trees (see [Poghosyan et al., 2020]) is capability of automation of the rule
generation process. RIPPER is a classification rule learner and preliminary data labelling
is required. We suggest data self-labelling procedure in case if the time periods of
performance degradations are unknown.

Data labelling consists of two steps: construction of principal components and detec-
tion of outliers. Application of PCA reduces the number of features for further analysis.
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The final reduction rate of the original metric-space depends on a parameter for selection
of the number of principal components that explain the required percentage of a dataset
total variance. The value of the parameter can be within 90% — 99%. We select 95%
for our experiments. The resultant principal components are uncorrelated which is im-
portant for outlier detection as simultaneous deviations of those metrics serve as a good
indication of the system uncommon behavior. We perform outlier detection via k-mod
approach ([Chawla and Gionis, 2013]). It utilizes k-means clustering with additional
robustness to outliers.

Those labels can be attached to the original monitoring dataset with further application
of RIPPER. In this case, the incidents/rules will be in terms of the original metrics. As
we mentioned before, application of preliminary feature selection approaches should
improve the quality of rules. This problem will be considered elsewhere. Those labels
can be attached also to the dataset of principal components and RIPPER will generate
rules based on those components. The latest approach has better performance due to
smaller number of uncorrelated features compared to the original dataset, but worse
explainability. Principal components as the linear combinations of the original metrics are
difficult to interpret in the sense of application/infrastructure behavioral analysis. Further,
the rules with large confidence measures can be stored as incidents. In our experiments,
we used rules with confidences bigger than 90%.

In general, PCA is rather computationally complicated procedure. At least, in some
implementations pairwise correlations should be calculated which can heavily impact the
resources in case of big number of monitoring metrics. Hence, it is possible to perform
data labelling directly based on the original metrics exactly by the same procedure.
Both methods will coincide in case of small number of correlated metrics. Also, it is
possible to apply feature selection or feature construction methods via other less complex
approaches. Moreover, it is always beneficial to rely on an expert knowledge which can
tremendously simplify the labelling process.

4 Results and discussions

We consider experimental realization of the approach described by Figure 3 and use real
customer data from an application server. The monitoring dataset has 1290 features. The
corresponding dataframe has 1290 columns and 44392 rows corresponding to 1-minute
monitoring interval and almost 1-month data. We named the columns of the dataset as
”V17,7°V2”,....,”V1290”. The exact names of the metrics are known and later will be
provided.

We scale the original dataset by subtracting from each feature-column its average
and dividing over its standard deviation. We apply PCA to the scaled dataset, and Figure
4 shows the percentage of variance explained by the first n principal components. We
use the first 183 components for explaining 95% of the original variance. It provides
with the 86% reduction of the original feature-space. We also see that for explaining the
99% of the variance, 300 principal components will be required with the compression
rate of 77%.

Those 183 components compose a new PC-dataset. We reveal the outliers of the
PC-dataset (the system possible anomalies) by application of k-mod algorithm designed
for data clustering and outlier detection. It requires several parameters like the number
of clusters and the percentage of possible outliers. We use the default setting k = 5
for the number of clusters and 7% for outliers (3000 data points). K-mod returns data
points with outlying behavior which are labeled as anomaly class (”A” class) otherwise



1160 Poghosyan A., Harutyunyan A., Grigoryan N., Kushmerick N.: Incident Management ...

as normal class ("N” class). Some of those outliers will be combined into rules while the
others will remain as unexplained (miss-classified).
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Figure 4: The percentage of variance explained by the principal components.

Figure 5 presents those outliers for the PC-dataset where the graph corresponds to the
average of the absolute values of the first 183 principal components. Naturally, not all
detected outliers visually match the correct ones as the 183-dimensional space is projected
into the 1-dimensional average-metric space with distortion of some usefull information.
Other approaches for data labelling also should be considered elsewhere. Similarly,
Figure 6 shows the detected outliers on the graph corresponding to the average of the
absolute values of the scaled original metrics. We see that the time stamps corresponding
to the outliers in the PC-space properly indicate outliers in the original metric-space. It is
also connected with the properties of the principal components to preserve the required
percentage of variance of the monitoring dataset.

In our experiments, we use implementation of RIPPER in WEKA library (see [Witten
et al., 2005, Xu and Frank, 2020]). It is well-known under the name JRip (Java RIPPER)
and was used by different authors for many similar problems. One of the important
parameters of JRip (and RIPPER) is the number of optimizations. It is known as RIPPERk
in case of k-step optimizations. The default is RIPPER2. We applied RIPPER10 for
dramatic reduction of possible rules. Even in this case RIPPER provides with many rules
that need further filtering based on the importance measures depending on the area of
applications. We have selected the rules that have confidence higher than 90%. We don’t
use the “coverage” for historical incidents. In case of the run-time RCA both coverage
and confidence should be large for a rule selection.

First, we apply RiPPER10 to the labeled PC-dataset. Figure 7 shows the output of
JRip. The first line shows that we applied RIPPER10 (parameter optimizations” = 10
indicating the number of optimization runs) and minNo” = 50 indicating the total weight
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Figure 5: Qutlier detection via PCA and k-mod clustering.

of the instances in a rule (see [Xu and Frank, 2020] for more details). The second and
third lines show the dimensions of the PC-dataset together with the labels (named as
”status”). RIPPER uses 10-fold cross validation for the testing. JRip reveals 17 rules.
The first 16 rules explain anomaly labels (status = ’A”). The fraction at the end of each
rule indicates the number of instances that fire the rule (numerator) and the number of
misclassifications (denominator). We calculate the confidence and coverage measures
based on the fractions. The rules with high confidences are shown in Table 1 with the
corresponding measures. We see both simple (with only one condition) and complex
rules. They all predict/explain the ”A” classes corresponding to outliers/anomalies (status
= A). The execution time of JRip was 224 seconds.

Figure 8 shows the first 6 incidents of Table 1 across the time axis in different colors
and shapes. We see incidents with different characteristics. Some of them are rare while
the others are frequent. Some of the incidents contain bigger number of data points than
the others. Additional expert knowledge might be very helpful for further rule filtering.

Second, we apply RIPPER10 to the original monitoring dataset with the labels derived
as for the previous PC-dataset. The corresponding rules with confidences larger than
90% are shown in Table 2. The rules are in terms of the original metrics preliminary
scaled before application of PCA, k-mod and RIPPER. The advantage of the rules in
Table 2 is that experts can understand the nature of incidents and match them with real
problems. The same matching process should be much difficult for the rules of Table
1. Figure 9 shows the incidents of Table 2 across the time axis. We see that the same
outlying processes can be explained both via PC-rules and metric-rules. However, the
best description remains unknown at this stage without proper system analysis.

We see from Figures 8 and 9 that measures like coverage and confidence (precision/re-
call) are not sufficient for further incident characterization. We need also to estimate
the distribution of incidents across the time axis and duration of each one which will



1162 Poghosyan A., Harutyunyan A., Grigoryan N., Kushmerick N.: Incident Management ...

3- Object Status
*  Abnormal
*
), * ® Normal
*
* «
) *
> * *
§ i
= ¥
© %
S :
T
K
3
»
.
0 10000 20000 30000 40000
Data Index
Figure 6: Outliers of Figure 5 shown for the original metric-space.
Incidents Rules Coverage Confidence
1 (PC6 > 8.08)&(PC4 < —20.07) 19.4% 98.98%
2 PC11 < -7.45 21.7% 92.4%
3 (PC4 < —14.57T)&(PC6 > 16.64) 1.9% 98.3%
4 (PC24 > 3.90)&(PC19 > 0.83) 3.4% 97.2%
5 (PC11 < —5.28)&(PC2 < —16.88) 1.8% 90.0%
(PC6 > 7.42)&(PC5 > —0.68)&
6 (PC41 < —1.03)&(PC2 < 4.55)& 2.5% 91.6%
(PC1 < 19.88)
(PC126 < —0.95)&(PC129 > 0.69)&
7 3.23% 97.0%

(PC131 > 1.57)

(PC24 > 1.66)&(PC23 < —5.72)&
8 2.0% 98.4%
(PC113 > —0.25)

Table 1: Incidents in terms of the principal components via RIPPERI0.

help to match them properly with actual known problems. Detected incidents should
pass further expert validation and scoring before storing in the knowledge base. Let
us dig into the context of rules presented in Table 2. The third rule is the simplest
one. The real name of ”V21” metric is “alerting.copy-alert-latency.duration.max”. The
incident corresponds to Incident 3 of Figure 9. Incident 1 of Figure 9 is the most fre-
quent. The real names of ”V53”, ”V680” and ”V844” are “alerting.latency.rate.m5”,
”fdb.tx.avrobase.get-with-ve”, and “fdb.tx.bloom”, respectively. Incident 4 is the most
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Run information
Scheme: weka.classifiers.rules.JRip -F 3-N 50.0-0 10-S 1
Instances: 44392
Attributes: 184
Test mode: 10-fold cross-validation

JRIP rules:
(PC6 > 8.08)&(PC4 < -20.065) => status=A (588/6)
(PC11 < -7.45) => status=A (707/54)
(PC4 <-14.57)&(PC6 > 16.64) => status=A (59/1)
(PC24 > 3.90)&(PC19 > 0.83) => status=A (106/3)
(PC11 <= -5.28)&(PC2 < -16.88) => status=A (60/6)
(PC6 > 7.42)&(PC5 > -0.68)&(PC41 < -1.029)&(PC2 < 4.55)&(PC1 < 19.88) => status=A (83/7)
(PC45 < -1.98) => status=A (127/32)
(PC6 = 7.91)&(PC4 < -14.72)&(PC10 < 1.77) => status=A (159/46)
(PC126 < -0.95)&(PC129 =>0.69) & (PC131 = 1.57) => status=A (100/3)
(PC24 > 1.66)&(PC23 < -5.72)&(PC113 > -0.25) => status=A (62/1)
(PC141 < -0.84)&(PC172 < -0.70)&(PC54 > -0.37) => status=A (91/20)
(PC45 < -0.46)&(PC138 > 0.80)&(PC110 < 0.16) => status=A (143/69)
(PC6 > 8.43)&(PC137 > 0.60) => status=A (174/86)
(PC46 > 4.05) => status=A (110/31)
(PC22 = 1.04)&(PC33 > 14.81) => status=A (86/20)
(PC142 < -1.63) => status=A (174/84)

=> status=N (41563/640)

Number of Rules : 17
Time taken to build model: 223.7 seconds

Figure 7: JRip output.

rare in Figure 9. The real names of V575 and ”V578” are ”fdb.tx.alert.alert-default-
reindexer”, and “fdb.tx.alertJob-box.advance.duration”, respectively. Time series V583
and ”V576” are almost duplicates of the first two ones. It shows why preliminary feature
selection should be highly important.

The process of data self-labelling can be simplified in case of available application
or infrastructure performance indicators like workload or health that can directly specify
anomalies. Time series outlier detection approaches can be applied to those indicators with
the huge reduction of complexity. A powerful approach were considered in [Hyndman
and Khandakar, 2008] based on time series STL decomposition (see [Cleveland et al.,
1990, Hyndman and Athanasopoulos, 2018]) or smoothing methods. This method is
implemented in R library as “’tsoutliers” function. The case of key performance indicators
will be considered elsewhere. Here, we deal with a synthetic indicators like the time
series shown in previous figures. They are somehow identical to the application server
workload.

We applied “tsoutliers” to the average of the absolute values of the first 183 principal
components with detection of 1686 outliers presented in Figure 10. We can attach those
labels both to the original dataset and to the PC-dataset. The RIPPER will reveal the
rules in terms of the principal components or original metrics. Figure 11 shows some of
the important rules found by RIPPER10 for the PC-dataset and labels from Figure 10.
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Figure 8: Incidents from Table 1 across the time axis.
Incidents Rules Coverage Confidence
(V53 < —0.63)& (V680 > 0.33)&
1 14.1% 99.5%
(V844 < —1.7)
(V480 > —0.02)&(V1123 > 2.53)&
2 7.9% 97.5%
(V739 > 2.18)& (V1278 < —0.52)
3 V21 >9.23 3.2% 96.9%
(V583 > —0.15)&(V575 > 4.71)&
4 0.8% 92%

(V578 > 9.95)&(V576 > 6.52)

Table 2: Incidents in terms of the original metrics via RIPPER10.

We see that some of the anomalies are frequently spread across the time axis while others
are rather rare and localized. The latest incidents should be more important. The graph in
Figure 11 corresponds to the average of the absolute values of the scaled original metrics.

5 Conclusions and Future Work

We considered an approach to the root cause analysis of problems of cloud environments
based on incidents with historical evidence. Historical evidence was indirectly revealed
via rule induction systems. Detected incidents should be validated/scored by experts and
stored in a knowledge-base with assigned annotations based on historical experience
that led to accelerated or automated remediation of issues. The latests are one of the
important components of the ML-powered data-analytics of self-driving data centers.
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Figure 9: Incidents from Table 2 across the time axis.

The outcome of rule-induction methods is the list of rules for prediction or explana-
tion of anomalies. The importance of rules can be estimated by several measures like
coverage, confidence, and time frequency. The most important rules should be consid-
ered as incidents for further utilization. We used in our experiments the well-known
method RIPPER as classification rule-learner. It has several benefits compared to other
approaches and is the state-of-the-art in inductive rule learning. It can appropriately
handle large noisy datasets. The corresponding significant rules serve as a problem
identification with resolution recommendations. Interesting should be application of
RIPPER to RCA for log-data and application traces.

Rule induction systems solve regression or classification problems and data labelling
is the crucial step for the entire approach. We considered self-labelling approach based
on combination of PCA and k-mod clustering. PCA reduces the dimensionality of the
original monitoring space before application of the clustering. Moreover, it provides
with uncorrelated principal components that preserve the variance and whose outlying
behavior serves as an indication for an uncommon behavior. We considered application
of RIPPER to the principal components and original metrics. The resultant rules can
be either in terms of the principal components or the original metrics. The drawback
of the first approach is in inexplicability of the principal components as application or
infrastructure indicators. An interesting approach should be important feature selection
before application of RIPPER to the original metric-dataset which will be considered
elsewhere.

Overall, worth mentioning several important components of our approach. Labeled
data is very rare and its derivation is connected with time and budget consuming proce-
dures. Hence, the first benefit comes from self-supervised learning recommendations. In
some applications semi-supervised approaches also can be applied. There is an ample of
literature devoted to self-supervised learning ([Liu et al., 2021]) and semi-supervised
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Figure 10: Outliers derived via "tsoutliers” function from R library.

learning ([Reddy et al., 2018]) problems and it should be discussed elsewhere for specific
applications. The second benefit of our approach is the set of final rules that enhance the
explainability of the RCA. They not only detect anomalies but explain and specify them.
Explainability enhances our understanding of environments by uncovering different
types of problems. Many of them can lead to proactive optimizations, restructuring and
removal of potential bottlenecks.
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Figure 11: Incidents via principal components with data labels of Figure 10.
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