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Abstract: In this paper, we consider genetic risk assessment and genetic counseling for breast

cancer from the point of view of reliable uncertainty handling. In medical practice, there exist

fairly accurate numerical tools predicting breast cancer (or gene mutation) probability based on

such factors as the family history of a patient. However, they are too complex to be applied in

normal doctors’ offices, so that several simplified, questionnaire-type support tools appeared. This

process is highly affected by uncertainty. At the same time, reliability of test interpretations and

counseling conclusions is especially important since they have direct influence on humans and

their decisions. We show how expert opinions on mutation probabilities can be combined using

the Dempster-Shafer theory. Based on multi-criteria binary decision trees and interval analysis,

we combine the referral screening tool designed to determine patients at risk of breast cancer

(and recommend genetic counseling or testing for them) with three further risk assessment tools

available for this purpose. A patient’s confidence in the outcome of a genetic counseling session

can be heightened by the proposed method since it combines different sources to provide score

ranges leading to more information. Finally, based on this approach, a decision tree for assigning a

risk category is proposed which enhances the existing methodology. The great impact of epistemic

uncertainty is reflected through large overlapping intervals for the risk classes.
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1 Introduction

Imperfect or unknown information leading to uncertainty is an intrinsic part of both
our everyday lives and science. Especially in the area of medicine, it is necessary to
make qualified decisions which significantly affect human lives using highly uncertain,
ambiguous, or unreliable data. Until approximately the 1960s, the major way to deal
with uncertainty has been offered by the classical probability theory. Since then, various
further approaches to uncertainty quantification and propagation have started to establish
themselves, ranging from fully deterministic ones (e.g., interval analysis IA [Moore et al.
2009]) to those generalizing the classical probability measure (e.g., the Dempster-Shafer
theory DST [Yager and Liu 2008]).
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Uncertainty handling is an important, although at the moment still optional, part of
the general verification and validation (V&V) assessment scheme [IEEE 2017]. V&V
is a prerequisite in many areas of science or engineering, in particular, if safety critical
applications are concerned. In our previous work, we employed it in the context of visual
analytics [Auer et al. 2020] and biomechanics [Auer et al. 2013], with a focus on its
reliability. In this contribution, we apply its parts in the context of BRCA 1 or 21 related
cancer and BRCA1/2 mutation probability prediction tools [Amir et al. 2010, Nelson
et al. 2019] as a case study, with a special emphasis on risk assessment and decision
making under epistemic uncertainty.

In Figure 1, the general treatment scheme for patients concerned about their BRCA
related cancer risk is shown. Although most kinds of breast, ovarian, prostate, and
pancreatic cancers are sporadic, a minority are actually caused by germline mutations
in breast cancer susceptibility genes (BRCA1/2). Inherited mutations in these genes
can lead to an increased risk of breast cancer (BC). That is why the first step might
seem to be to test concerned patients for DNAmutations in these genes. However, the
actual genetic testing (GT), while expensive, is not always worthwhile or even helpful
(e.g., leading to an increased instead of decreased anxiety without being able to provide
decisive results). In consequence, the patients are not referred for testing directly but
undergo first a risk assessment (RA) procedure and then a genetic counseling session
(GC). That is, mathematical models are applied first to assess the mutation probability
(or BC risk) based on various factors such as the age of cancer onset of a given patient or
their family history of cancer. Then, the pros and cons of GT and general results of RA
are explained during a GC session. Finally, if an actual genetic test becomes necessary,
its results are explained in a further GC session. Reliability of RA and GC stages in
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Figure 1: Genetic risk assessment, counseling and testing scheme

the process from Figure 1 is especially important because they are quite frequent and,
possibly in combination with GT results, have a direct influence on humans and their
decisions.

The process in Figure 1 is highly influenced by uncertainty, in particular, while
interpreting its results. For example, it is known that mutations in BRCA1/2 genes reduce
their tumor-suppressor qualities essential for the repair of DNA double-strand breaks by
homologous recombination (HR). However, the HR pathway for DNA repair is disrupted

1 So-called tumor suppressor genes
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by pathogenic mutations not only in BRCA1/2, but also in other involved genes [Stoppa-
Lyonnet 2016], making it harder to pin the probability of getting cancer on BRCA1/2
mutation alone. Other sources of uncertainty are pointed out later on.

An introduction to genetic screening, test performance measures, and clinical testing
of BC genes can be found in [Struewing et al. 1995]. An overview of existing V&V
standards as well as quality criteria and metrics for GC and clinical molecular testing
is given in [Christian Jr. and Drilling 2009, Mattocks et al. 2010, Dequeker 2017]. In
[Li et al. 2018, Ye et al. 2018], the authors emphasize RA as well as sense and decision
making under various forms of uncertainty. At the RA stage, Claus tables [Claus et al.
1994], Frank tables [Frank et al. 1998, Frank et al. 2002], BRCAPRO2, BOADICEA3,
and the Penn II risk model4 are five important mathematical models for computing
the probability of breast or ovarian cancer based on Mendelian genetics and the Bayes
theorem [Evans et al. 2004]. However, their usage might be considered too complicated
by a normal cancer specialist, so that several simplified, questionnaire-type support
tools are usually employed for identifying candidates for whom GT is necessary, for
example, the Family History (FH) Assessment Tool FHAT [Gilpin et al. 2000], the
Referral Screening Tool RST [Bellcross et al. 2009], the Manchester Scoring System
MSS [Evans et al. 2004], or the FH Screen FHS-7 [Ashton-Prolla et al. 2009].

At the RA stage, there are several influential studies which aim at validating various
approaches for predicting BRCA1/2 mutations. In [Parmigiani et al. 2007], the authors
quantify the accuracy of seven publicly available models (including BRCAPRO, Penn II
and FHAT) employing them for 3342 persons to predict the status of a mutation carrier.
The study is based on three population-specific sample groups of participants from
research and eight samples from GC clinics. As validation criteria, it relies on sensitivity
and specificity of predictions as well as on how well a model discriminates between
individuals testing positive for a BRCA1/2 mutation and those testing negative using
statistical methods as a metric. Conducting comprehensive statistical analysis with data
of 9390 FH, [Kast et al. 2014] validates the recalibrated MSS model using pathology
information on the histological subtype, on the grade of differentiation, on estrogen and
other factors. Quite recently, [Himes et al. 2019] assesses five currently widely used
screening tools for genetics referral, namely, FHS-7, Pedigree Assessment Tool [Teller
et al. 2010], MSS, RST, and FHAT. Finally, the comprehensive and thorough meta-study
in [Nelson et al. 2019] reviews 103 medical studies and 110 research articles (with 92712
patients overall) w.r.t. their methodology, scientific rigor, study parameters, relevance,
quality criteria and metrics, performance, accuracy, limitations as well as adverse effects
and benefits for the patients. A common drawback of such studies or meta-studies is that
women with unknown BRCA1/2 mutation status are not included, so that, for example,
adverse GC effects and the suggested treatment options after testing cannot be evaluated
appropriately. As stated in [Owens et al. 2019], there is fair evidence that RA, GC, GT,
and interventions have (moderate) benefits only for patients whose family or personal
history corroborates an increased risk for harmful mutations in the BRCA1/2 genes.
However, regardless of family or personal history, overall harms of RA, GC, GT, and
interventions are small to moderate. It is therefore important to be able to reliably assign
patients to risk classes. Although a person’s assignment to a risk class w.r.t. a genetic
mutation can be validated with reliable genetic tests, population groups must be stratified
according to given criteria and test persons interviewed about their own illnesses and

2 https://projects.iq.harvard.edu/bayesmendel/brcapro
3 https://ccge.medschl.cam.ac.uk/boadicea/
4 https://pennmodel2.pmacs.upenn.edu/penn2/
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those in their family (i.e., first, second and third degree relatives on the maternal and
paternal side) for the purpose of reliability.

Young women with BRCA1/2 mutations and their families usually face conflicting
healthcare decisions regarding family formation and risk management. They must decide
whether they prioritize risk reducing interventions or family formation goals. Documented
with 115 references, [Peshkin and Isaacs 2020] gives an up-to-date overview on GC and
management of individuals at risk of hereditary BC and ovarian cancer (OC) syndromes
covering topics from genetic criteria for risk evaluation and RA models to pre-test
and post-test counseling to, finally, approaches to treat positive results as well as risk
management for negative or uninformative results. In a prior study [Interrante et al.
2017], it is shown that patients subjected to telephonic post-test GC were at least non
inferior to patients under usual care w.r.t. their GT decision, distress, quality of life and
uptake of cancer risk management strategies. In [Li et al. 2019], a survey and evaluation
tool Feelings About genomiC Testing Results (FACToR) is presented that measures the
psychosocial impact of presenting genomic findings to patients in research and clinical
practice. Finally, [Richardson et al. 2020] comes to the conclusion that oncology clinic-
based GT using a multi-gene panel approach combined with post-test GC significantly
reduces wait times and is acceptable for patients and healthcare providers.

From the studies and meta-studies on mutation prediction tools, it is evident that
there is significant uncertainty both in data and in the processes/models. Aside from the
usual, in this case less influential, sources of uncertainty due to the employed numerical
methods and the modeling error, the major uncertainty factors, from the point of view of
a FH, are the age of cancer onset in a patient’s relative, the degree of kinship of the patient
and the affected as well as the number of instances and kinds of cancer in the family tree.
Moreover, interpretation/handling of the RA or GT results and prevailing strategies for
advising people from various risk classes about appropriate behavior, treatments and
preventive examinations need to be critically monitored and assessed according to a
set of standardized rules for a longer period of time. The bottom line of all the above
mentioned research is that it is important to standardize V&V management for RA and
GC, to pose common requirements on the quality of heterogeneous data, to systematize
dealing with a large number of parameters during test subjects’ selection, to consider
explicitly further kinds of epistemic uncertainty and to ensure interaction between experts
during the evaluation, interpretation and conclusions for counseling, care and treatment
of the subjects.

In this paper, we take a first step towards a consistent and reliable V&V framework
for RA of GC stages by addressing the topic of uncertainty in the data. It is structured as
follows. In Section 2, we discuss approaches to uncertainty handling and point out its
role in the reliable V&V assessment procedure. Additionally, we overview briefly the
two methods we rely on for this purpose, IA and DST. Having outlined the major tools
serving as the basis for RAand GC in Section 3, we consider application of methods from
Section 2 to these stages in Section 4. First, we show an example of how expert opinions
on mutation probabilities can be combined using the DST in Subsection 4.1. To take into
account uncertainty in patient data in combination with the advantages of established
models and to ensure validation, we present a new multi-criteria categorical counseling
test ERST in Section 4.2. It combines the binary decision structure of RST with the
features of FHAT and MSS and uses an accumulated interval risk function. We propose
to use interval scores and lower limits for probabilities of pathogenic variants since
crisp scores do not reflect the available information correctly. The result of the original
RST test combines the presence of different constellations of cancers in the FH. Now, a
referral vector U for eight decision paths is produced to help assign participants to low,
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moderate and high risk categories. Our validation for the scores is based on prevalence
and frequency of mutations in BRCA1/2 correlated with various combinations of personal
and FH of cancer given by tables from [Frank et al. 2002]. In this way, patients can
be assigned an individual, family and fused risk category (cf. [Bellcross et al. 2015])
characterizing the likelihood of a BRCA1/2 mutation more accurately (cf. Section 4.3).
Conclusions and an outlook on future work are in the last section.

This article is an updated and extended version of the contribution [Auer and Luther
2020] presented at the CODASSCAmeeting on Collaborative Technologies and Data
Science in Smart CityApplications inYerevan,Armenia, September 14–17, 2020 [Hajian
et al. 2020].

2 Approaches to Uncertainty Treatment and Its Place in the Gen-
eral V&V Procedure

In this paper, we show how to apply parts of the general V&V procedure in the context
of RA and GC5 with the focus on uncertainty in Section 4. Therefore, in this section, we
give a short overview of approaches to uncertainty handling, their role in the reliable
V&V assessment scheme, and of two particular techniques for dealing with epistemic
uncertainty (IA and DST).

2.1 Uncertainty Handling

As explained in the Introduction, uncertainty as a constituent part of almost any field of
science needs to be considered a priori while developing a systemmodel to obtain reliable
simulation results. Therefore, uncertainty quantification dealing with characterization and
reduction of uncertainty [Smith 2013] has become a cutting-edge research area. There are
two directions for propagation of uncertainties through systems, forward (from uncertain
inputs to the outcomes) and backward (answering the question of what uncertainty is
allowed in the inputs if a given uncertainty in the outputs should not be exceeded).

In this paper, we rely on forward propagation. Three general types of methods for
forward uncertainty propagation can be discerned [Ferson et al. 2003]: rigor-preserving
(or with result verification, or outer enclosure: the result is guaranteed to enclose the
uncertainty completely, if inputs enclose it completely); best possible (or inner enclo-
sure: the enclosure of the output cannot get any tighter without more information); and
statistical, providing a guarantee of the type “in x percent of the trials, the result is sure
to enclose the uncertainty completely”.

Although one of the prevalent directions to deal with uncertainty is through proba-
bility, other techniques emerged that generalize the classical probability measure. For
various types of uncertainty, the probability-based approach is arguably not the best (cf.
Figure 2). For example, methods with result verification (such as IA) were originally
designed to provide a guarantee that the result obtained in a computer simulation us-
ing floating point instead of real arithmetic was correct. However, they can be used to
represent and propagate bounded epistemic uncertainty in a rigor-preserving way using
solely deterministic techniques. Moreover, such techniques as DST can provide more
conclusive results than the traditional probability theory if both aleatory and epistemic

5 Although V&V assessment in GT is not in the foreground, some of the results and conclusions
of procedures existing there can also be applied here
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(bounded) uncertainty is present in an application. Sometimes authors differentiate be-
tween uncertainty and impreciseness. To represent the latter kind of incertitude, fuzzy sets
are developed [Zadeh 1996], which also can be combined with the classical probability
techniques. In this paper, we rely on IA to combine the RST with FHAT and MSS in
Section 4.2 and on DST to merge data on mutation probabilities in Section 4.1.

2.2 Reliable V&VAssessment

In accordance with the IEEE Std 1012TM-2016 norm [IEEE 2017], Figure 3 shows a
broad approach to reliable V&V assessment advocated in [Auer et al. 2020]. It allows
its users to relate the concept of reliability to data, design strategies, processes, software
and outcome analysis; to define requirements, quality criteria and metrics for the result
of the considered process or task; to analyze the process systematically (e.g., w.r.t.
uncertainty) at the early stages in its development cycle; to choose the appropriately
evaluated tools (e.g., for data mining, visualization, analysis, decision making and risk
assessment) or get them recommended; and to facilitate interaction between experts
during the decision-making process. The usual modeling and simulation cycle [Schwer
2007] on the outermost left of Figure 3 with verification at the level of implementation
and validation at the level of simulation can be augmented with reliable computing
techniques from the third column of the figure. At each stage of the cycle (which can be
reiterated), certain methodologies and technologies (shown in Column 2) have to be used,
complemented by optional features such as those from Column 4, of which uncertainty
quantification, propagation and visualization play an especially important role [Markov
and Akyildiz 1996, Weyers et al. 2019]. From the point of view of genetic RA and GC,
the item in the right bottom corner of Figure 3 is also fairly significant. Methods and
design criteria to support online collaborative help seeking actions and decision processes
through the exchange of questions and answers in the area of healthcare are presented,
for example, in [Santos et al. 2016].

As mentioned in the Introduction, there are many studies and meta-studies that
review/evaluate RA and GC tools and validate GT and RA, for example, [Amir et al.
2010, Bellcross et al. 2015, Himes et al. 2019, Kast et al. 2014, Louro et al. 2019, Nelson
et al. 2013, Nelson et al. 2019, Owens et al. 2019, Parmigiani et al. 2007] among a
multitude of other publications. However, they focus on aleatory uncertainty mainly and
consider the epistemic one rather indirectly through comparisons. From these studies,
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it is clear that V&V assessment in GT primarily describes positive assurances, makes
evident that specifications and quality criteria are met and the test achieves previsions and
objectives [Nelson et al. 2019] as in “fit for the intended use” [ISO 2005]. The authors
point out that negative results, damage, misinterpretation and uncertainty should also be
highlighted. Additionally, V&V assessment should include implications of inaccurate
risk assessment; inappropriate testing; false-positive and false-negative results; adverse
effects on the patient’s family relationships; overdiagnosis and overtreatment; false
reassurance; incomplete testing; misinterpretation of test results; anxiety; cancer worry;
and ethical, legal, and social implications.At the same time, these requirements constitute
the corresponding specifications for (post-test) GC sessions.

As examples of quality metrics (cf. Column 3 in Figure 3) used in the area of RA
and GT, sensitivity, specificity, and discriminatory accuracy can be named [Mattocks
et al. 2010, Panchal et al. 2008]. They are usually described by a confidence interval
around the mean result. With the abbreviations P (positive), N (negative), T (true), F
(false), PR (positive rate), and LR (likelihood ratio), sensitivity (or true positive rate, or

recall) is defined as
TP

(TP+ FN)
. The formula

TN

(TN+ FP)
is used for specificity (or the

true negative rate) and
TP

(TP+ FP)
for precision. Then, the positive likelihood ratio can



1354 Auer E., LutherW.: Uncertainty Handling in Genetic Risk Assessment…

be defined as
sensitivity

(1− specificity)
. Discriminatory accuracy is formalized as the power of a

method (or risk factor/criterion) to predict true or false outcome of test cases. In [Panchal
et al. 2008], a comprehensive graphical representation of the performance of the RA
tools BRCAPRO, FHAT, MSS and Penn II mentioned in the Introduction is assessed
according to these metrics.

At the moment, different studies use different criteria for choosing test persons, ages
or degrees of kinship that often cannot be mapped to each other, which requires careful
data fusion (or sometimes even prevents it). In particular, it is necessary to work with
sets or confidence intervals while comparing approaches. In summary, V&V assessment
in RA, GC, GT deals with determining accuracy in its various meanings, detection limit,
specificity, linearity, repeatability, reproducibility, robustness and cross-sensitivity. It is
always a balance between costs, risks and technical possibilities. There are many cases
in which the range and uncertainty of the values can only be given in a simplified way
due to lack of information [ISO 2005].

2.3 Interval Analysis

Interval analysis [Moore et al. 2009] is an approach for result verification with applica-
tions in many areas of engineering, medical science, (bio)mechanics and others. Methods
based on IA ascertain formally that the outcome of a simulation implemented on a com-
puter using them is correct despite such factors as numerical or discretization errors
(assuming that the underlying implementation is correct). The results are intervals with
bounds expressed by floating point numbers which with certainty contain the exact
solution to the model. A common drawback of such rigor-preserving methods, caused by
the dependency problem or the wrapping effect, is the possibility of too wide bounds for
the solution sets (e.g., between −∞ and +∞).

An interval [x, x], where x is the lower, x the upper bound, is defined as [x, x] =
{x ∈ R|x ≤ x ≤ x}. For an operation ◦ = {+,−, ·, /} and two intervals [x, x], [y, y],
the corresponding interval operation can be defined as

[x, x] ◦ [y, y] = [min(x ◦ y, x ◦ y, x ◦ y, x ◦ y),max(x ◦ y, x ◦ y, x ◦ y, x ◦ y)],
that is, the result of an interval operation is also an interval. Every possible combination
x ◦ y with x ∈ [x;x] and y ∈ [y; y] lies inside this interval. (For division of intervals,
usually 0 /∈ [y, y] is assumed.) The general formula can be simplified for a given ◦
(e.g., [x, x] + [y, y] = [x + y, x + y]). Based on this interval arithmetic, higher-level
interval methods can be defined, for example, those for solving systems of algebraic or
differential equations.

2.4 The Dempster-Shafer Evidence Theory

The Dempster-Shafer theory described, for example, in [Ferson et al. 2003], makes it
possible to combine evidence from different experts or other sources and to provide a
measure of confidence that a given event occurs. A special feature of this theory is its
ability to characterize uncertainties arising because of the lack of knowledge as discrete
probability assignments associated with the power set of values from a given set Ω.
Wheres a classical probability mass function produces as its result the probability that
the random variable X is equal to a certain crisp value xi, DST allows us to assign a
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probability to the event that a realization ofX belongs to a given set (e.g., [xi, xi])
6. That

means that only lower and upper bounds (belief and plausibility) on the probability of a
subset ofΩ can be computed using the DST.A random DST variable can be characterized
by its basic probability assignment (BPA)m. If A1, . . . , An are the sets of interest where
each Ai ∈ 2Ω, then

m : 2Ω → [0, 1], m(Ai) = pi, i = 1 . . . n, m(∅) = 0,

n∑
i=1

m(Ai) = 1 . (1)

The mass of the impossible event ∅ is equal to zero. Every element Ai with a mass
unequal zero is called a focal element. The sum of masses of focal elements should be
equal to one. This condition might lead to the necessity to normalize real life evidence
because experts tend to provide BPAs for which it does not hold. The plausibility (”worst
case”) and belief (”best case”) functions can be defined with the help of the BPAs for all
i = 1 . . . n and Y ⊆ Ω as

Pl(Y ) :=
∑

Ai∩Y 6=∅

m(Ai), Bel(Y ) :=
∑

Ai⊆Y

m(Ai). (2)

If two or more experts provide different estimations in the same area, the BPAs have
to be aggregated. There exist several methods for this purpose [Ferson et al. 2003], of
which Dempster’s rule is used in this paper:

mDR(Ai) =
m1,2(Ai)

1−K1,2
=

∑
all Aj∩Ak=Ai

m1(Aj)m2(Ak)

1−
∑

allAj∩Ak=∅
m1(Aj)m2(Ak)

, Ai 6= ∅, m1,2(∅) = 0 .

(3)
The constantK1,2 in the denominator has the meaning ofm1,2(∅).

3 Gene Mutation Risk Scoring Tools and Probability Tables

One in four cancers diagnosed in women worldwide is a case of BC. Overall, an estimated
5–10% of all breast cancers is hereditary, that is, caused by a germline mutation in a
high-risk gene.Among other BC predisposition genes, “germline mutations in the BRCA1
and BRCA2 genes are related to an increased risk for breast, ovarian and other cancers
[…]. Specific features in the family history may suggest the diagnosis of a hereditary
breast cancer syndrome” [Ashton-Prolla et al. 2009], hence the need for the procedure
shown in Figure 1. In this section, we give a brief overview of probability tables and
simplified, questionnaire-type RA tools we rely on in this paper, the purpose of which is
to identify individuals with high risk of BC.Additionally, where necessary, we reorganize
the existing material to suit out later purposes (e.g., provide the corresponding intervals
or combine data).

3.1 Probability Tables

Generally, RA goals can be either to provide the chances of developing BC over a given
time span (including the lifetime) or the probability of a mutation in a high-risk gene

6 A similar interpretation is possible for continuous random variables
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(abbreviated as mp in the following). Tables from [Claus et al. 1994] give predictions for
cumulative BC probability based on a survey considering primarily age-specific and FH
risk factors and using a Bayesian model (with data on 4730 patients with confirmed BC
matched against 4688 control subjects). In contrast, [Frank et al. 1998, Frank et al. 2002]
provide predictions for mutations in BRCA1/2 correlated with such risk factors as age of
diagnosis, personal and FH, or ethnicity (compiled in tables, denoted Frank tables in the
following). The first study considered 238 women with BC before age 50 or OC at any
age and at least one first or second degree relative with either diagnosis. The participants
underwent sequence analysis of BRCA1 followed by analysis of BRCA2 for those of
them who agreed to it. Based on the results of this survey, the authors identified risk
factors for BRCA1/2 mutations (cf. Table 2, Column 1) and correlated them with rates
for developing BC, BC with subsequent OC, and contralateral BC. This allowed them
to model the probability of detecting a mutation in BRCA1/2 with the help of logistic
regression analysis (cf. Table 2, Column 2).

The second study [Frank et al. 2002] considered a bigger proband group of 2,233
[4,716] [Non]-Ashkenazi individuals. With the aim of accurately and reliably identifying
different risk classes, this study describes the prevalence of mutations in BRCA1 and 2
in correlation with the personal and FH taking into account the first and second degree
relatives of the individual undergoing the test. We describe tables from it in some detail
since we will use them for validation inside the proposed method ERST.

In Table 1, we reproduce Tables 1 and 2 from [Frank et al. 2002] in full for better
understanding. This is a rectangular scheme of BC/OC disease constellations in the
patient’s FH and for the patient herself with the age as a parameter. The patient has the
role of a child with her first degree relatives defined as parents, siblings, children. One
of risk factors explicitly identified in this survey is the occurrence of BC at the age over
50 (possibly, in combination with other criteria). Although this criterion is not explicitly
mentioned on the FH side, the entry in the upper left corner of the table shows mutations
in 3.9% of cancer-free individuals. It is explained as follows: “This finding may result
from individuals who were prompted to seek testing by a strong family history of breast
cancer after age 50 years” [Frank et al. 2002]. That is, from the logical point of view, the
entry should be interpreted as: “no breast cancer <50y or ovarian cancer is diagnosed
in anyone in the FH of the patient; none, one (or two) cases of BC ≥50y occur in the
FH; the patient has no BC or OC diagnosis at any age”, which is not directly readable
from the table. That is, we can assume that, although cases of BC≥50y in FH are not
explicitly reflected in the risk factors from the table, they are somehow considered in
the study. The occurrence of genetic mutations seems to be rather probable for patients
diagnosed with multiple cancers (BC and OC) at age under 50. However, the data set
supporting this conclusion is quite small (cf. the right bottom half of the table).

A further example of how to interpret Table 1 is the entry in the 3rd row and 1st
column: BRCA1 or 2 mutations occur in 55 out of 579 individuals diagnosed with BC
at age below 50 with no diagnosis of BC or OC for anyone below age 50 in the FH. If
BC is diagnosed between 40 and 50 years of age, the mp is 5.6% (16/284). From this
information, we can conclude that the corresponding mp for the probands at ages below
40 is 13.2% (55-16=39 out of 579-284=295). Another example is the entry in the same
column, Row 4: the mp for a proband diagnosed with OC at any age with no BC and the
same FH of cancer as in the first example is 6.5% (5/77), with mp for OC diagnosed at
age over 50 being 6.7% (3/45); that is, under the same conditions, mp for OC diagnosed
at age less than 50 is 6.9% (2/29).



Auer E., LutherW.: Uncertainty Handling in Genetic Risk Assessment… 1357

Family history (includes 1st/2nd degree relatives; excludes the proband)

No breast
cancer
<50y or
ovarian
cancer in
anyone

Breast
cancer
<50y in

one relative,
no ovarian
cancer in
anyone

Breast
cancer

<50y in>
one relative,
no ovarian
cancer in
anyone

Ovarian
cancer at
any age in
one relative,
no breast
cancer
<50y in
anyone

Ovarian
cancer in>
one relative,
no breast
cancer
<50y in
anyone

Breast
cancer

<50y and
ovarian
cancer at
any age

Proband No. % No. % No. % No. % No. % No. %

No breast
cancer or
ovarian
cancer at
any age

9/229 3.9 19/434 4.4 46/419 11 6/153 3.9 10/117 8.5 58/354 16.4

Breast
cancer
≥50y

4/172 2.3 22/197 11.2 12/118 10.2 3/69 4.3 1/18 5.6 19/87 21.8

Breast
cancer
<50y
(40-49y)

55/579
16/284

9.5 89/484
31/289

18.4 117/322
41/172

36.3 34/194
15/115

17.5 7/42
3/25

16.7 126/267
55/141

47.2

Ovarian
cancer at
any age

(≥50y), no
breast
cancer

5/77
3/45

6.5 14/41 34.1 11/26 42.3 23/83 27.7 12/28 42.9 38/71 53.5

Breast
cancer

≥50y and
ovarian
cancer at
any age

5/27 18.5 1/9 11 4/11 36.4 1/6 17 1/3 33 3/6 50

Breast
cancer

<50y and
ovarian
cancer at
any age

5/25 20 7/14 50 4/5 80 5/9 56 2/2 100 13/18 72.2

Table 1: Table 1 combined with Table 2 from [Frank et al. 2002]: Prevalence of
mutations in BRCA1 and BRCA2 correlated with personal and family history of cancer

in 4,716 Non-Ashkenazi individuals

3.2 Ontario Family History Assessment Tool (FHAT)

The FHAT test published by [Gilpin et al. 2000] is designed to select individuals for GC
who are at approximately twice the population risk of BC or OC based on their FH. The
underlying survey considered 184 patients with BC or OC who accepted the offer of
BRCA1/2 testing and answered a questionnaire on BC, OC, bilateral BC, BC and OC in
the same person, male BC, colon and prostate cancer in first, second, and third degree
relatives, and (broadly specified) age of diagnosis. Each of these factors is assigned an
individual score from 1 to 10 points. These are summed up to a final score for a person
undergoing the test. The cutoff threshold of 10 indicates referral for GC and corresponds
to doubling of lifetime BC risk in comparison to general population (22% by BRCAPRO
to carry a BRCA1 or BRCA2mutation in their families). FHAT was validated using Claus
tables and BRCAPRO, among others.

In Table 2, a comparison of different disease constellations of BC and OC both in
personal and FH is given for Frank tables and FHAT. An interval score is computed
for each criterion from [Frank et al. 1998] in Column 3 based on intervals for FHAT
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reported in [Auer and Luther 2020]. The comparison7 shows a strong correlation between
BRCA1/2 probabilities and FHAT scores. We can arrive at the approximately the FHAT
score interval from the corresponding probabilities mpBRCA1, mpBRCA2 by evaluating the
formula [−2, 2] + 0.25 · [1, 2] · (mpBRCA1+mpBRCA2) using IA.

Diagnosis – The proband (Pr) has the role of a Mutation p. (%) FHAT

child in FH (risk factors from Frank tables) BRCA1 BRCA2 score (f)

Any relative with BC < 50y 10.1 14.5 [4,10]

Any relative with OC 22.9 12.5 [5,13]

(BC<50y)&(Pr with BC (PrBC) < 40y) 28.2 11.6 [11,19]

(BC<50y)&(OC)&(PrBC<40y) 50.9 7.9 [16,32]

(BC<50y)&(OC)&(Pr Bilateral BC or OC) 65.0 5.7 [15,35]

(BC<50y)&(OC)&(PrBilBC or OC)&(PrBC<40y) 86.7 2.2 [22,44]

Table 2: From probabilities to FHAT scores

3.3 Manchester Scoring System (MSS)

Another well-known questionnaire-type BC or OC genetics referral tool is MSS [Evans
et al. 2004]. Its goal is to predict BRCA1/2 mp in families suspected of having hereditary
BC and OC. The underlying survey considered 422 patients from non-Jewish families
who were tested for BRCA1 mutation, with 318 of them tested subsequently w.r.t BRCA2.
In this approach, 1 to 8 points are assigned to the factors of BRCA1 or 2 mutation, degree
of kinship, age and type of disease. The scores can be summed up for a person undergoing
the test either individually for BRCA1, BRCA2 or combined, with the limit for a referral
being 10 points again in the individual case or 15 in the combined one. It corresponds to
a 10% probability of a pathogenic mutation in BRCA1 or BRCA2 [Owens et al. 2019].
The similarities and differences of MSS and FHAT are highlighted in Table 3. Where
necessary, interval scores are provided.

3.4 Referral Screening Tool (RST)

Similarly, the goal of the third tool RST [Bellcross et al. 2009] we consider in this
paper is rapid identification of individuals at potential hereditary risk of BC/OC. The
underlying survey covered 2464 women (without preselection) undergoing a screening
mammography. This questionnaire consists of a single page used to record patient’s
yes/no responses to FH questions concerning Ashkenazi Jewish ancestry; occurrence of
male BC at any age and in any relative; occurrence of two or more cases of BC after age
50 on the same side of the family; and occurrence of BC at or before age 50 or OC at any
age (in the first and second degree relatives, that is, overall in the patient, her mother,
sister, daughter, grandmother, or aunt at father’s and mother’s side). The assessment
“scored positive” is given if there are two or more checks on the page and corresponds to
a high risk of cancer. In comparison with the FH analyses using BRCAPRO, Myriad II8,
BOADICEA, FHAT and their high risk definition, RST proved an overall sensitivity of
81.2%, specificity of 91.9%, and discriminatory accuracy of 0.87 [Bellcross et al. 2009],
which is good performance for such a simple, binary test.

7 Female cancer only
8 https://myriad.com/products-services/hereditary-cancers/bracanalysis/

https://myriad.com/products-services/hereditary-cancers/bracanalysis/ 
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Risk factor FHAT MSS

BRCA1 / BRCA2

BC and OC Mother/Sibling/2nd-3rd dr 10 / 7 / 5 0/0

BC relatives Parent/Sibling/2nd-3rd dr 4 / 3 / 2 0/0
Male +2 [5,8]

20-29 6 6 / 5
BC 30-39 4 4 / 4
onset age 40-49 2 3 / 3

50-59 0 2 / 2
≥60 0 1 / 1

Bilateral/multifocal +3 ×2
OC relatives Mother/Sibling/2nd-3rd dr 7 / 4 / 3 0

OC onset age <40 6
8 / 5

40-60(FHAT), 40-59(MSS) 4
>60(FHAT), ≥60(MSS) 2 5 / 5

Prostate C
Onset age <50 1

0 / 2
Onset age <60 0
Onset age ≥60 0 0 / 1

Panrc.C Any age 0 0 / 1

Colon C Onset age <50 1 0

Table 3: Risk factors and scores of FHAT and MSS in comparison (dr=“degree
relative”)

3.5 ARemark on Validation

In Subsection 4.2, we provide mp based on tables from [Frank et al. 2002] (cf. Table 1)
for our extended RST approach. This in itself conclusive information is not always easy
to use for validation of RA tools such as RST, FHAT and MSS we consider in this paper.
In general, differences (or inconsistencies) in risk factors pose an information fusion
problem. For example, the risk factor of age is not very finely grained in Frank tables
(mostly just binary: over or below 50 years). Moreover, there is no information on the
influence of multifocal or bilateral BC (which gives additional points in FHAT or MSS,
cg. Table 3). Using MSS, it is not clear how to take into account male BC (e.g., diagnosed
in a father). Moreover, there is an ambiguity while considering repeated cases of the
same cancer category: it is not possible to say if they refer to the same person at different
ages or several individuals (MSS, FHAT or Frank tables). A particular difficulty arises
from the fact that the number of BC diseases after age 50 does not play a role in RST and
is listed in Frank tables only for the proband’s personal, but not for the family history.

4 Dealing with Uncertainty in Genetic BC Risk Assessment and
Counseling

Whereas V&V assessment for GT in general and uncertainty handling in particular is
covered fairly well (cf. [Mattocks et al. 2010, Panchal et al. 2008]), this is not quite so
in the area of RA and GC. Having described in short the available RA tools in Section 3,
we make a first step in this direction by addressing uncertainty in the data. First, we
define unified, consistent risk factors (criteria) across the three RA tools we consider in
this paper (RST, FHAT, MSS) and Frank tables. Data fusion for mutation probabilities
is carried out using DST, see Subsection 4.1. We work with intervals for representing
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epistemic uncertainty if the criteria does not map to each other in full. Moreover, we
propagate this uncertainty using the extended RST method proposed in Subsection 4.2.
Finally, patients can be assigned a more accurate risk category (cf. [Bellcross et al. 2015])
characterizing the likelihood of a BRCA1/2 mutation as suggested by the decision tree in
Subsection 4.3.

4.1 Data Fusion with DST

Based on [Tao et al. 2019, El-Mahassni and White 2015], we use Dempster’s rule to
combine data on mutation probabilities in BRCA1 and BRCA2 correlated with personal
and family history of cancer. Let Ω = {f1, f2, . . . , fn} be the frame of discernment
containing n distinct elements fi, i = 1, . . . , n. In the example of data fusion considered
in this subsection, we assume that BPAm1 is inspired by proband’s mutation probabilities
(personal risk) and BPAm2 by those of her family members (family risk). Let the number
n of elements in Ω equal 9. We define the elements corresponding to relevant risk factors
which seem to be the major ones after a literature review (cf. Section 3) as follows:
f1 = b1 (BC≥50), f2 = b2 (BC<50), f3 = o1 (OC at any age), f4 = o2 (OC≤50),
f5 = ba (premature BC (≤40)), f6 = oa (premature OC (≤40)), f7 = nr (cancer in
a near relative), f8 = bil (bilateral BC), and f9 = bm (male BC). Note that although
the probabilities for o1 and o2 are very similar as given by Frank tables, both FHAT and
MSS differentiate more finely w.r.t. to age on OC onset. Therefore, there is a necessity
to have (at least 2) different OC types. Further important risk factors can be discerned as
combinations of the basic fi: two BC cases {b1, b2}, two OC cases {o1, o2}, and other
combinations mentioned in Column 1 of Table 4. The corresponding probabilities for
these risk factors in case ofm1 andm2 are shown in Columns 2-3. They are inspired by
the first column and the first row of Table 1 form1 andm2, respectively. The mass of
the subsets of Ω not mentioned in Table 4 is supposed to be zero. Using Dempster’s rule
from Eq. (3), the combined BPA form1 andm2 can be computed (cf. Column 4). After
that, applying the definition in Eq. (2) provides the corresponding values for the belief
function of the combined BPAmD (Column 6). It is possible to use intervals inside
the resulting massmD (cf. Column 5). For example, we can capture a greater age span
by using the intervalmID({ba}) = [0.036, 0.076]. Then, the mass of the last element
Ω should be adjusted to mID(Ω) := [0.121, 0.161]. For reference, the corresponding
combined probabilities from the same Frank table are given in the last column where
available.

To show how these results can be used, we consider the following examples. Suppose
the patient’s father was diagnosed with BC at less than 50 and the patient has BC at
over 50, then the belief function corresponding to the modeled mp in the patient (the
best case) can be computed from the combined BPA as BelmD

({bm, nr, b1, b2}) =
mD({b1, b2})+mD({b1})+mD({b2})+mD({bm})+mD({nr}) = 0.257 (cf. mp=
17%-23% given by the Penn II model for family risk in the same case). In the next
example, we assume that the patient is diagnosed OC and BC at age 22 and her mother
had bilateral BC at over 50. In this case, the corresponding mp can be computed as
BelmID

({b2, o1, b1, nr, oa, ba, bil}) = mID({o1}) +mID({b2}) +mID({b1})+
mID({nr}) +mID({bil}) +mID({b2, o1}) +mID({b1, b2})+
mID({oa}) +mID({ba}) = 0.096 + 0.116 + 0.039 + 0.026 + 0.053 + 0.098+
0.023 + 0.020 + [0.036, 0.76] = [0.507, 0.547]

compared to mp of 54% provided by Penn II (family risk).
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Factor m1 m2 mD mID BelmD
[Frank et al. 2002]

{b1} 0.02 0.04 0.039 0.039 0.039

{b2} 0.1 0.04 0.116 0.116 0.116

{o1} 0.07 0.04 0.096 0.096 0.096

{o2} 0.07 0.04 0.096 0.096 0.096

{ba} 0.06 0.04 0.056 [0.036,0.076] 0.056

{oa} 0.02 0.02 0.02 0.02 0.02

{nr} 0.02 0.04 0.026 0.026 0.026

{bil} 0.05 0.05 0.053 0.053 0.053

{bm} 0.05 0.05 0.053 0.053 0.053

{b1, b2} 0.02 0.03 0.023 0.023 0.178 0.11

{b1, o2} 0.08 0.05 0.076 0.076 0.211

{b2, o1} 0.1 0.06 0.098 0.098 0.312 0.341

{o1, o2} 0.12 0.01 0.090 0.090 0.2834 0.277

{b2, o1, o2} 0.02 0.01 0.017 0.017 0.515 0.535

Ω 0.20 0.48 0.142 [0.121, 0.161] 1

Table 4: DST based data fusion for nine risk factors

4.2 Merging RST Decision Rules with Multi-Criteria Binary Trees

In this subsection, we consider multi-criteria tests with binary and n-ary risk factor
output and augment RST based on binary responses with it to arrive at an extended
interval-based categorical counseling test. For this purpose, we rely on a binary decision
tree (BDT) proposed in [Zhang and Varshney 1999], cf. Figure 4. There, X denotes an
input (sensor) data vector; U = (u0, . . . , ua, . . . ) a decision/referral vector issued at the
lowest BDT level in terminal nodes as a sequence of 0/1 decisions from root to leaf;
and AF(·, ·) an (accumulated) individual risk function. Each ua is in the format (interval
risk score(s) rs1,rs2,…, mp%) and each index a represents the binary decision path as a
decimal number, read left to right. At node t, Φ(t) denotes the set of (interval valued)
features/conditions used by the BDT, Γ(t) represents the decision rule as a function of
the features/conditions with values 0, 1, and the (interval) function AF (t, ·) provides
scores rs and mutation probabilities mp%. In this way, it is possible to replace complex
one-stage decision procedures, for example, medical diagnoses or results of surveillance
systems, by simpler yes/no decisions. We can exchange rules at the inner node level
by modifying Φ(t) or Γ(t) (alternative/new rules). At the leaves level, the entries of
the decision vector can be combined to a final decision [Zhang and Varshney 1999] if
required.

The developed extended referral screening tool ERST is shown in Figure 5. We
combine the binary decision structure of RST with the features of FHAT, MSS and Frank
tables in an accumulated interval risk function. The resulting vector U contains the eight
components u0, u1, u2, u3, u6, u8, u9 and u12 (with and without the alternative rules in
orange).

Since the RST documentation acknowledges that the tool does not differentiate in its
risk factor BC between cancers on the maternal and paternal side in the manual scoring
system, we understand the criterion on the third level of the tree in Figure 5 in such a
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Input data vector X

Root

...
...

...

...Node t: Φ(t), Γ(t)New rule Node ·: Φ(·), Γ(·)

...

Output u0...0 uar...1...

...

...

...

Output u1...1

Node t + k: Φ(t + k), Γ(t + k)

Output ua Output ub

0

AF(root,0)

1

AF(root,1)

0 1
fusion

0 1

0 1

...

1

0

AF(t + k,0)

1

AF(t + k,1)

Figure 4: A multi-criteria binary decision tree

way that two and not more BC diseases happen after age 50. This is also the assumption
used in our bound on the risk function.

The FHAT and MSS scores are validated using results given in Frank tables (cf.
Section 3). The percentages of positively tested individuals in eight paths and five
referral categories represent lower limits for the assigned risk, which would increase if
further information on lower age time spans for the diseases were available.

To understand how the method works, let us consider the computation for the path
0001 from the ERST tree. The decision path corresponds to the following patient’s
responses: no Jewish ancestry, no male BC at any age in any relative, no cases of BC
at age over 50, and either two cases of BC under 50 or two cases of OC or a case of
BC under 50 combined with a case of OC. The corresponding mp from [Frank et al.
2002] are 46/419; 89/484; 5/25; 58/354; 12/118; 19/87; 34/194; 14/41; 1/9; 10/117; 1/18;
23/83; 1/6, so that the total amounts to 313/1955 or 16%. (From Table 1, the individual
combinations of risk factors contributing to this total can be read.) It is also possible to
consider the corresponding interval between the smallest (1/18) and the largest (19/87)
percentage: in this case, it amounts to [5.5, 34.2]% using outwards rounding to the first
place after the decimal point. The intervals [6,16] for MSS and [8,26] for FHAT are
obtained by using interval operations at each node.

In principle, it is possible to compare the predictions derived from the FH of different
families using Claus, Frank tables, and the Penn II model. Here, the Frank tables could
be seen as corresponding to ground truth since they contain frequencies of observed
mutations. Penn II is a mathematical model giving predictions on those frequencies.
However, the entries for it (available online) are more detailed. That is, it is preferable to
use all the available material for validation. As a rule, the corresponding percentages in
the ERST tree nodes obtained using Frank tables are lower than those given by the Penn
II model. Consider, for example, the decision path 0011, for which we can obtain that 90
out of 949 persons are positively tested according to the same principle as in the first
example, that is, the mean percentage of 9.5% is recorded in [Frank et al. 2002]. However,
if the OC in the last criterion is interpreted as “OC in the proband”, the probability is
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18.5%.
Penn II provides higher probabilities for individual and family risk of BRCA1/2

mutation: 21%/4%. Based on Mendelian genetics as realized in Penn II, the individual
risk of a genetic defect for the proband without cancer diagnosis is reduced by half
in comparison to the risk of a first degree relative (with a cancer diagnosis). The risk
diminishes exponentially in comparison to that of more distant relatives.

4.3 Risk Category Assignment

In this section, we provide risk perception metrics which allow us to assign patients a
suitable risk category based on FHAT scores using [Bellcross et al. 2015]. There, the
authors randomly selected 3307 subjects from a group of 16720 eligible women within
the Henry Ford Health System and interviewed 2524 of them for the purpose of discerning
risk categories and subsequent genetics related healthcare activities. The participants
were categorized into average, elevated/moderate, and high risk groups based on a series
of personal and FH risk factors, US Preventive Services Task Force specifications and
expert opinions. The test had again a fairly binary structure and used risk factors similar
to those which we relied on in this paper (cf. Figure 6).

Figure 6: Decision tree to assign participants to low (lr, [0, 6]), moderate (mr, [5, 13])
and high risk ([7, 16], [9, 18], [10, 23], [14, 28]) categories based on FHAT scores

(dr=“degree relative”, m=“maternal”, p=“paternal”)

The risk categories proposed in [Bellcross et al. 2015] exhibit inconsistencies pointed
out in [Owens et al. 2019]. Since there is no binding standard for determining the risk
classes, the study in [Bellcross et al. 2015] cannot be expected to provide generally valid
statements about them. However, it would be beneficial to replace the reference to a list
of disease cases (criteria) by a comprehensible risk classification based on one or more
validated RA tools and using actual probability intervals for BRCA1/2 mutations. In
Figure 6, we attempt to systematize the findings from [Bellcross et al. 2015] according
to these principles and compute the corresponding FHAT scores using IA at the terminal
leaves of the decision tree similarly to Section 4.2. (Where available, we also cite the
corresponding mp% from Frank tables.) It can be seen from the computed FHAT intervals
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that the three high risk categories H1/H2/H3 from the study are essentially the same as
the elevated moderate risk categories M4/M5/M6 employed there. Moreover, several
categories can be merged, for example, the lowest moderate risk category M1 and the
low risk LR. Since there is no standard at the moment, we propose to take the classes
[0, 6] for low, [5, 13] for moderate and the classes [7, 16], [9, 18], [10, 23], [14, 28] for
high risk. A person belongs to a given risk class if the interval FHAT score computed for
her according to Figure 6 is inside the interval assigned to this class.

4.4 Summary

In Section 4, we augmented known RA and GC methods by taking into account uncer-
tainty, validated them using patient data and mathematical risk models, and identified
accurate risk classes. Combining RST decision rules with multi-criteria binary trees
allowed us to merge different RA proposals into a simple decision logic and to com-
pare/validate the resulting risk classes. The application of the DST balanced the epistemic
uncertainty in the Frank tables.

In particular, we demonstrated first how to combine data on probands’ mutation
probabilities (personal risks) and those of their family members (family risks) to obtain
the joint mutation probability associated with each of the considered major risk factors
with the help of the DST in Section 4.1. The uncertainty in mutation probabilities could
be taken into account by using intervals. Based on that, a belief function (a lower bound)
on the probability of any combination of this risk factors could be constructed for each
individual patient’s situation, which could augment the data from literature. Where
possible, the corresponding probabilities from Frank tables were supplied as validation.
Second, we combined the information from the three popular tools for risk assessment
used in genetic counseling FHAT, MSS and RST based on intervals in order to ensure
that the epistemic uncertainty present in the methods was understood by the patient (cf.
Section 4.2). The provided intervals were supplemented by the data on the mp from Frank
tables, if possible, also in this case. Finally, we made a suggestion for an improvement
of the risk classification categories that took into account the underlying uncertainty in
Section 4.3. The impact of epistemic uncertainty was found to be rather dramatic which
necessitated using large overlapping intervals for the risk classes.

As can be seen from Figure 5, not all mp can be derived directly from the available
data (e.g., Frank tables). One possibility to improve the situation is to use the Dempster-
Shafer theory to augment the available information, which is feasible only if the basic
mass probability can be obtained from somewhere. Additionally, the manual derivation
of the intervals in the ERST can be error-prone. Therefore, a very important direction
for the future work is to automate the procedure from the points of view of both data
acquisition (are there any freely accessible data bases? are the data properly cleaned up
and standardized?) and data synthesis (can we automate the data propagation through
the rules given data on risk factors?).

5 Conclusions and Future Work

In this paper, we extended well-established tools from the field of genetic risk assessment
and counseling by an additional (epistemic) uncertainty handling. To model uncertainty
in data ranges and its propagation, we used IA in combination with DST and multi-
criteria decision trees and paid attention to ways of merging information across different
available RA tools and probability tables. This simplifies qualified genetic counseling and
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handling of results from genetic testing since complex one-stage decision procedures can
be replaced by several simpler yes/no stages in this way. In addition, the extended referral
screening tool ERST proposed here takes into account scores from several current RA
tools and supplements them by data on mutation probabilities from Frank tables which
can heighten a patient’s confidence in the outcome of a genetic counseling session. Finally,
we demonstrated how missing or conflicting information on mutation probabilities could
be completed through the application of DST.

While working on this paper, we came to the conviction that requirements for genetic
risk evaluation in the counseling and testing process for individuals and families affected
by breast and ovarian cancer caused by pathogenic mutations should address the following
key points.

1. Each involved discipline should recognize the need for standardized evaluation
and V&V of processes and their models as well as for fusion of conclusions from
their outcome. For this, appropriate quality criteria and their metrics as well as
standardized procedures need to be used.

2. Validation of numerical results according to robust and comparable criteria is im-
peded by the fact that existing methods usually account only for aleatory uncertainty
and tend to disregard other kinds (e.g., epistemic or mixed uncertainty).

3. Gathering of data is not standardized at the moment, for example, participants might
have different ethnicities or data might be incomplete w.r.t. patient’s origin, age, type
of cancer and geneticmutation, first/repeated occurrence, count (bilateral, multifocal),
and family history. Moreover, different studies rely on mismatched numbers of
participants or take place at different times. That is, calibration is necessary.

4. FHAT and MSS are difficult to assess with data from the Frank tables (e.g., because
there are very small numbers of subjects for certain disease constellations in the
tables). We observe that breast cancer for age over 50 (e.g., in the family history) is
often not considered explicitly although used somehow inside the studies.

From this point of view, our paper reveals the great impact of epistemic uncertainty
reflected through very large overlapping intervals for the risk classes. This uncertainty
can only be reduced by employing finer scales for the parameters, their completeness,
and appropriate standardized data collection.

The goal of further work should be to clarify whether such standardized data already
exist and how to access it. Moreover, it is interesting to investigate existing data w.r.t.
whether and how it can be cleaned up automatically, so that the entries can again be
subdivided by genetic defects and age groups, and to make it available to the public
research. After that, better models can be built, calibrated, and validated using ground
truth; results can be properly assessed according to standardized criteria and metrics;
and the recommendations of the experts can be feasibly merged into proposals for
risk management strategies that are understandable and not harmful for the patients as
suggested in [Peshkin and Isaacs 2020].
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