Journal of Universal Computer Science, vol. 27, no. 11 (2021), 1174-1192
submitted: 11/2/2021, accepted: 9/8/2021, appeared: 28/11/2021 CC BY-ND 4.0

Temporal Accelerators: Unleashing the Potential of
Embedded FPGAs

Christopher Cichiwskyj
(University of Duisburg-Essen, Duisburg, Germany
https://orcid.org/0000-0001-6126-5895, christopher.cichiwskyj@uni-due.de)

Gregor Schiele
(University of Duisburg-Essen, Duisburg, Germany
https://orcid.org/0000-0003-4266-4828, gregor.schiele@uni-due.de)

Abstract: When the complexity of a problem rises, its solution requires more hardware resources.
A usual way to solve this is to use larger processors and add more memory. When using Field
Programmable Gate-Arrays (FPGAs), which can instantiate arbitrary circuit designs, a larger, more
costly and power hungry chip is used. In this paper we propose a different approach, namely to
split the problem into a graph of interdependent smaller tasks and to reconfigure a small FPGA
during runtime to execute each of these tasks efficiently sequentially. This can result in cheaper
and more energy efficient systems that can execute very complex problems locally. We present a
basic analytical model, evaluate its accuracy and discuss initial insight from it.

Keywords: IoT, Embedded, FPGA, Reconfigurable Hardware
Categories: B.6.0,C.3,C.53,C54
DOI: 10.3897/jucs.77247

1 Introduction

The Internet of Things (IoT) consists of billions of cheap, low power devices that are
embedded in everyday objects. They have very limited processing power and can execute
only basic tasks. More complex tasks are usually offloaded to cloud services. This can
lead to high latency as well as privacy and reliability risks. To mitigate this, researchers
are looking into ways to make embedded IoT devices more powerful, allowing them to
execute complex tasks locally.

To this end, recent years have seen a trend to augment IoT devices with embedded
Field Programmable Gate Arrays (FPGA) [Intel 2019, Soliman et al. 2019], that allow
to instantiate arbitrary hardware circuits at runtime. FPGAs can be used to execute tailor-
made accelerators to efficiently perform complex calculations “in hardware”, while
having the capability to change the circuit when required. FPGA-based accelerators
have been shown to increase the overall performance and efficiency significantly of
applications in fields such as artificial intelligence (Al) and deep learning [Biswas et al.
2018, Han et al. 2015, Roth et al. 2020], networking [Varga et al. 2015, Zazo et al.
2015, Ruiz et al. 2019], cryptography [Chelton et al. 2008, Aysu et al. 2013, Koziel
et al. 2016, Babaei et al. 2019], database systems [Ziener et al. 2016] or control systems
[Monmasson et al. 2007, Montealegre et al. 2015].

These improvements can also be applied to applications on embedded system. An
embedded FPGA, however, contains a comparatively small amount of resources for

https://orcid.org/0000-0001-6126-5895
https://orcid.org/0000-0001-6126-5895
https://orcid.org/0000-0003-4266-4828
https://orcid.org/0000-0003-4266-4828

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1175

circuit instantiation. This limits the size of accelerators and thus restricts the kind of
application that can be supported. If a more complex accelerator is needed, the obvious
solution is to use a larger FPGA with more resources, which increases the system cost as
well as the power consumption.

In this paper, we propose to continue using a small FPGA and to take advantage
of the reconfiguration capabilities of the FPGA. Instead of designing an accelerator as
a single, monolithic entity, we propose to divide the accelerator into smaller, modular
parts. The FPGA then executes the parts sequentially by reconfiguring itself for each
part, passing intermediate results between the parts. We call this concept a Temporal
Accelerator.

The paper is structured as follows. First, we discuss the idea of Temporal Accelerators
in more detail, including what functional parts are needed to realise them. Then, we
present an analytical model for the energy consumption of FPGA reconfigurations for
different FPGAs. We briefly evaluate this model before we use it to derive interesting
insights into the relationship between reconfigurations, number of reconfigurations and
the amount of resulting resources for an application, showing the potential of this new
approach. We wrap up the paper with a short conclusion and future work.

2 Temporal Accelerators

As discussed before, the basic idea of a Temporal Accelerator is to split an accelerator into
a set of smaller, modular accelerators that are instantiated on an FPGA sequentially over
time. Several aspects have to be considered to create and execute Temporal Accelerators.
We will discuss these in the following section.

2.1 Design

The first step is to design a Temporal Accelerator. This can be done by a developer or
by a task splitting algorithm based on an existing monolithic accelerator. A Temporal
Accelerator consists of a set of interdependent subtasks (STs) that are arranged in a
directed acyclic graph, often referred to as a Task Graph (TG) [Cordone et al. 2009,
Knocke et al. 2014]. Each ST realises a function without side effects that consumes input
data and produces output data. STs can be calculated independently and are implemented
as self-contained bit files that can be instantiated on an FPGA individually. Edges in the
TG represent data dependencies between STs such that if a ST produces output data that
is consumed by another ST, both STs are connected with an edge in the TG.

While a Temporal Accelerator’s TG can have a variety of shapes, for the remainder
of the paper we focus the requirements for executing the simplest TG shape, i.e. a single,
linear sequence of STs. An example can be seen in Figure 1.

We limit the following later evaluation to this simple TG structure to better understand
the applicability of Temporal Accelerators in its simplest form. More complex TG
containing branches are possible, but require a more sophisticated data management
between reconfigurations and scheduling. We discuss the impact of more complex TGs
further in Section 2.3 and 2.4.

Splitting circuit designs automatically is an open research question in itself and
outside of the scope of this paper. For our purposes, we assume a VHDL developer is
part of the development team to perform the necessary Temporal Accelerator designs
manually. Creating a set of STs in a hardware description language such as VHDL is done
using available development tools such as Xilinx’ Vivado development suite [Xilinx
2021a].

1176 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

Task Graph

- - -
- -

Figure 1: Example of a fully sequential Task Graph with n Subtasks (ST)

2.2 Execution model

To execute a Temporal Accelerator we first need to consider the underlying hardware
platform In the following we give a brief overview of how we model the execution of a
accelerators on a multi-core system containing an FPGA and how that can be extended
to implement Temporal Accelerators.

Accelerators on heterogeneous multi-core system

While the general idea of using a Temporal Accelerator can be implemented using only
an FPGA, the FPGA’s power consumption is quite high compared to an embedded MCU.
For most embedded applications not all parts require high performance hardware and as
such those parts can be implemented more efficiently on a conventional MCU. Using
a heterogeneous multi-core system that combines an MCU with a low-power FPGA
can therefore lead to much more efficient applications [Burger et al. 2017, Burger et al.
2018, Schiele et al. 2019]. For this reason we developed our own board called the Elastic
Node [Burger et al. 2017, Schiele et al. 2019], specifically designed for low-power
embedded IoT applications.

An application on a system such as the Elastic Node consists of software components
deployed on the MCU handling the application control flow, and several FPGA accelerator
circuit designs that can be instantiated on demand. The structure can be seen in Figure
2. Because of the complex interactions required to manage the control flow and data
management, we use a system software called the Elastic Node Middleware [Burger
et al. 2017, Schiele et al. 2019].

(Elastic Node \

FPGA mcu
[

Software Component
Hardware Component

Elastic Node Middleware = Elastic Node Middleware

\)),

Figure 2: A Temporal Accelerator application on the Elastic Node

Applications are written in a bare-metal approach, i.e. without operating system

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1177

Listing 1: Example stub implementation to access an Al accelerator on the FPGA

1 #define LOC_AI 0x0

> #define INPUT ADDR 0x100

; #define RESULT ADDR 0x101

4 uintl6_t cnn_execute(uint8 t input){
5 elasticnode_fpgaPowerOn () ;

6 elasticnode reconfigure (LOC Al);
7 elasticnode writeData (INPUT ADDR,
8 input, sizeof(input));

9 elasticnode execute ();

10 while (! elasticnode isDone ()) {}
1 uint8 t result;

12 elasticnode read (RESULT ADDR,
13 &result , sizeof(result));
14 elasticnode fpgaPowerOff();

15 return result;

support, in embedded C and using our middleware components as libraries. Code listing
1 shows a simple example of using the Elastic Node Middleware to execute a single
Al accelerator. This Middleware is aimed to be platform independent but was mainly
developed for the Microchip AVR MCU family, compiled and tested using the AVR-GCC
toolchain [Free Software Foundation 2021].

Temporal Accelerators on the Elastic Node

The Temporal Accelerator can be modeled as a set of multiple sequential calls to the
middleware instantiating and then executing an accelerator one after another. The different
STs are then interconnected solely by passing the result of one ST as input to the next
ST. The application flow for such an execution can be seen in Figure 3.

<
e 3 BRI 1~ >
=
=
E -- >
& S & S & <©
T &3\@ \Q & \'\Yv &3\% b\& @°6\<\Q
Y S N SO S E N
E e Fe ¥ e F ®

Figure 3: Execution of a Temporal Accelerator on the Elastic Node

As the FPGA does not retain any internal state during a reconfiguration, the interme-
diate results of a ST cannot be stored internally on the FPGA but have to be offloaded
before a reconfiguration, and loaded back onto the FPGA afterwards.

1178 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

2.3 Scheduling

In a first step towards using Temporal Accelerators, we currently assume that the com-
position of a TG is chosen at design time. Finding a corresponding schedule to deploy
each ST of a TG is therefore possible at design time. Executing a TG means loading the
corresponding bit file and reconfigure the FPGA accordingly, one ST at a time. Finding
a schedule for our sequential TG from Figure 1 is simple as it is exactly the same order
as in the TG.

In contrast, for a more complex TG containing branches, a single linear execution
sequence still has to be found as only one ST can be executed at a time. This means
linearising the complex TG back into a single sequential schedule that adheres to the
data dependencies, often allowing for multiple valid sequences. While possible to find
and execute the very first sequence, depending on the TG structure and composition,
sequences may exist that have the potential to avoid unnecessary reconfigurations. By
scheduling STs requiring the same bit file right after each other the necessary circuit
design is already instantiated, eliminating the need for a reconfiguration. This, however,
is active research.

Using the Elastic Node in a networked setting and communicating with other devices,
such as in [Burger et al. 2020], introduces the possibility for the Elastic Node to receive
offloading tasks from other devices. In such a scenario, we will not be able to efficient
reconfiguration aware schedules at design time, but will need a dynamic runtime scheduler.
This, however, is a still ongoing active research topic.

2.4 Data Management

As mentioned in Section 2.2 to execute a TG any intermediate results of a ST have to be
offloaded to the MCU before a reconfiguration and loaded back onto the FPGA after it
as the next input.

For a sequential TG this means that at any point in time, there is only one intermediate
result that has to be stored on the MCU. Any data that is buffered will be directly used
by the next scheduled ST and can freed or overwritten directly after loading it back onto
the FPGA. While the amount of intermediate results is in this case exactly one, we need
to allocate an appropriate amount of memory. We currently assume that the result size
can be known at design time or at least an upper bound can be estimated depending on
the input size of a ST.

In the case of more complex TGs containing branches this problem becomes more
complex. In contrast to a sequential TG, in any case where a branching data dependency
is present the intermediate result of the first ST may not directly be consumed as input
by the next ST, but instead has to be buffered. This requires the MCU to handle a more
complex mapping of input data to specific ST instances to ensure the correct input is
sent back to the FPGA.

Due to this, we require a more sophisticated data management strategy that can
handle intermediate results of complex TGs efficiently. This is another topic of active
research.

2.5 Chip Cost

One of the major benefits we see in Temporal Accelerators is the ability to choose smaller
chips that cost less, leading to a reduced production cost and device price for embedded
applications. To illustrate this we conducted a short price comparison of the different

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1179

FPGAs from the Xilinx Spartan 7 chip family in Table 1. These values are the result of a
web search [Mouser Electronics 2021] and as such may vary.

Table 1: Pricing comparison for FPGAs of the Spartan 7 chip family

| XC786| XC7S15 | XC7S25 | XC7850 | XC7S75 | XC7S100
Price (€)| 12.45 | 1826 | 24.49 | 49.09 | 79.03 | 105.83

It shows, that the larger an FPGA is, i.e. the more resources it contains, the more
expensive it becomes, increasing between 1.34-2 times for each next larger chip. When
switching from a design on the XC7S25 to a Temporal Accelerator on a XC7S15 we can
already reduce the FPGA cost by ~25%.

If we can replace e.g. the XC7S100 with the XC7S50 we can reduce the cost by
46%. Temporal Accelerators can therefore significantly improve the economic viability
of FPGA-based accelerator systems.

3 An Analytical Model for Reconfiguration

To be able to understand the viability of Temporal Accelerators we are currently develop-
ing an analytical model. This model allows us to gain more insights into if and when a
Temporal Accelerator is a viable solution compared to using a larger chip.

In this paper we focus on analysing the reconfiguration overhead in terms of its
energy consumption. Intuition dictates that, more reconfigurations during an accelerator
execution should lead to more overhead, specifically due to the additional time and
energy overhead for reconfigurations. This could lead to a Temporal Accelerators being
so slow and energy-consuming that it becomes infeasible.

However, we have to take into account two important aspects. First, many battery-
operated embedded device use a periodic sleep schedule. They will wake up e.g. once
per minute, perform some actions like processing some sensor data with the accelerator,
and go back to sleep. Since modern SRAM-based FPGAs cannot maintain their state
during sleep, the device has to perform at least one reconfiguration each time it wakes up.
This is true independently of the FPGA’s size, i.e. it is necessary regardless of whether
we use a classical monolithic accelerator or a Temporal Accelerator.

Second, when using a Temporal Accelerator, we are replacing a big FPGA with a
smaller one. Because of its fewer resources, the corresponding bit file used to store an
FPGA circuit design on the smaller FPGA is shorter as well. This in turn leads to faster
reconfiguration times, which, in combination with a lower static power consumption
makes reconfiguring a smaller FPGA more efficient. If an FPGA with 50% of the
resources of a larger one requires less than 50% of the energy for reconfiguring than the
larger FPGA, then using the smaller FPGA and reconfiguring it twice instead of once
(which is the lower minimum as discussed before) actually may lead to a lower total
energy consumption.

To explore this potential effect, our analytical model calculates as a first step, how
high the overhead of reconfigurations are across different chips of the Xilinx Spartan 7
chip family. Based on the information provided by Xilinx’ official device documentation
[Xilinx 2018a, Xilinx 2018b, Xilinx 2018c¢, Xilinx 2019a] and the Xilinx Power Estimator
[Xilinx 2020], we determined what elements influence the reconfiguration overhead. The

1180 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

energy consumption for a single reconfiguration of a chip (for the Spartan 7 chip family)
is dependent on three parameters: (i) the FPGA chip in question with the determined
amount of resources it contains, (ii) the clock speed of the reconfiguration interface
and (iii) the bus width of the reconfiguration interface. This leads to a straight-forward
analytical model that we show in Equations 1 to 3.

RE(chip, clk, buswidth) = PR(chip, clk, buswidth)-

1
it fite (chip, clk, buswidth) (1
Equation 1 describes the reconfiguration energy overhead RFE as the simple product
of the FPGA chip’s power consumption PR during reconfiguration times the required
time p;¢ 1410 for the FPGA to read in the corresponding bit file.

PR(chip, clk, buswidth) = PS(chip, clk) + PIO(chip, buswidth) 2)

Equation 2 shows how we can model PR, i.e. the power consumption during the
reconfiguration process. It consists of the chip’s static power consumption PSS and the
power consumption of the I/O interface P10 used for the reconfiguration interface. We
derived these two values from estimations provided by [Xilinx 2020]. It shows that while
the interface power consumption is near identical, the static power consumption for a
chip is higher, the more resources it contains.

bit fileSize(chip) 3)
buswidth - clk

The more interesting and influential component, however, is the time ¢y, fi1e it takes
to reconfigure an FPGA to a given bitfile. Our model for this is shown in Equation 3. We
define tp;; rize as the time required to read each bit of a bit file of size bit fileSize(chip)
at a clock speed clk through a hardware interface with a certain buswidth.

While the supported clock speeds clk and buswidth are all identical for the Spartan
7 chips, the size of the bit files are directly related to how large the chip is, i.e. how many
resources the FPGA contains to instantiate circuitry. That means, the more resources a
chip has, the longer it takes to reconfigure it compared to a smaller counter part, with the
implication that the same reconfiguration interface is used to read in the bit file.

Due to the embedded nature of the Spartan 7 chips and the prototype device we
used to evaluate these numbers, we limited the reconfiguration interface to the serial
SPI interface, which — for the Spartan 7 chips — supports 1-SPI, 2-SPI and 4-SPI. This
means that the reconfiguration interface consists of one data line, two lines or four lines,
respectively, over which the bit file itself is read through. Additionally various interface
clock speeds are supported ranging from 12 MHz to 150 MHz.

The analytical model may be extended in the future with chips from other Xilinx
chip families, assuming that their power supply is similarly structured to that of the
Spartan chip family. However, for more performant chips it will be necessary to extend
the configuration interface model to include e.g. PCle [Xilinx 2019b] to model PC- and
server-grade systems appropriately.

FPGAs from other manufacturers could potentially be included as well, if they follow
a similar structure for their chips’ power supply. However, more research and likely
additional work would be required to appropriately represent them in this model.

it fite (chip, clk, buswidth) =

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1181

3.1 Model vs. Hardware Experiment

To confirm whether our analytical model can provide appropriate predictions we ran
a number of experiments on our experimental hardware platform, the Elastic Node v4
[Burger et al. 2017, Schiele et al. 2019]. We used a Spartan 7 XC7S6, a Spartan 7 XC7S15
and a Spartan 7 XC7S25 and measured the energy consumption per reconfiguration
through built-in sensing circuitry. Due to the lower sampling rate of the current sensors
on the Elastic Node and the comparatively fast reconfiguration times we instructed the
FPGA to reconfigure itself 100 times consecutively and measured the power during
that time frame. Based on the average power consumption of 100 reconfigurations we
compared the energy consumption per reconfiguration against the predictions provided
by our analytical model using the same reconfiguration interface settings: a Double SPI
interface running at 50 MHz. The results can be seen in Figure 4.

0.01877

model
. 0.01769
0.0175 B experiment
0.0150
c
5 ‘S 0.0125
o0~
>39
.03 0.0100
S O
25
0.00764
g 0.0075 0.00708
4 0.00633 0.00633

0.0050

0.0025

0.0000-
XC756 XC7S15 XC7S25

Figure 4: Model prediction vs. preliminary hardware experiment results

As the energy consumption is the product of the average power, we examined the
variance on the collected power samples to ensure that the reconfigurations behave alike.
The average power and variance for the three FPGAs can be found in Table 2. Differences
in the variance are the result of the manual assembly process of our prototypes leading
to minimal differences in the measurement accuracy, however these can be considered
negligible.

Table 2: Average power consumption and Variance based on 100 reconfigurations

| xc7s6 | Xc7S15 | XC7825
Average Power (W) 0.1345 0.1497 0.1487
Variance 2.76-107° | 4.04-107° | 2.07-107°

1182 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

While not perfectly accurate we see that our model can provide us already with
general insights about the trend of the reconfiguration overhead. In all cases the model
does not exactly match the measured results. It is 10.5% and 17.2% lower for the XC7S6
and XC7S15 respectively, and 5.7% higher for the XC7S25. We are still analysing
the causes of these differences in our predictions. One possibility is that the switching
activity of the 1O pins of the reconfiguration interface is only providing an average power
consumption value.

We are further investigating how to improve our model to represent the power
consumption during the bit file reading process more accurately.

While this model still differs from the experimental results, we believe that the
model is still able to provide the general trends of an FPGA’s energy consumption, or
more interestingly the trend regarding the gap in energy consumption between different
FPGA:s.

The predicted increase in energy consumption from an XC7S15 to an XC7S25 is
2.9 times while the experimental results are 2.3 times. This allows us to narrow down
potential FPGA pairs for experimental evaluations of Temporal Accelerator applications.

4 Energy efficiency of a Temporal Accelerator

To see whether our assumptions about the equal or better energy efficiency of a Tem-
poral Accelerator has the potential to hold up, we now use our analytical model to
calculate the energy consumption for all reconfiguration interface settings supported
by the Spartan 7 chip family. After that we compare how many resources can be made
available cumulatively when using Temporal Accelerators on a smaller chip, compared
to a single reconfiguration on a larger chip. Finally, we discuss the implications of these
considerations and how these resources can be used.

4.1 Analytical results

As mentioned in Section 3, intuition would dictate that the introduced overhead for
additional reconfigurations makes Temporal Accelerators unviable. To disprove this,
we use our analytical model to compare the energy consumption per reconfiguration
for different chips of the Xilinx Spartan 7 FPGA family. For each FPGA we vary the
reconfiguration interface used for reading the bit file: We compare the three available
bus width settings 1-SPI, 2-SPI and 4-SPI, together with the different interface clock
speeds, that are supported, ranging from 12 MHz to 150 MHz. The results can be seen in
Figure 5. Although we only evaluated the model for a 2-SPI reconfiguration interface at
50MHz in Section 3.1 we wanted to investigate the potential impact of other interface
settings on the energy consumption to get a better understanding of the combinations.
Even if we take into consideration the inaccuracies of the model, this analysis can still
provide an insight into the relationship of the different components influencing the energy
consumption here.

Unsurprisingly, we can see that a reconfiguration takes less energy, if it uses more
data lines for loading the bit file at a higher clock speed. More interestingly, however, if
we compare identical interface settings across the different FPGA chips, in all cases the
smaller chip requires less energy than the bigger ones. This effect is especially significant
for fast interface settings. In these cases, the energy consumption for the smaller chip
drops enough to make it viable for multiple reconfigurations. If we e.g. compare the
XC7S15 to its next larger chip XC7S25 running a 4-SPI interface at 100MHz, the XC7S15

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1183

1-SPI, 12.0 Mhz 1-SPI, 80.0 Mhz s 2-SPI, 12.0 Mhz = 2-SPI, 80.0 Mhz mm 4-SPI, 12.0 Mhz mmm 4-SPI, 80.0 Mhz
1-SPI, 20.0 Mhz 1-SPI, 100.0 Mhz s 2-SPl, 20.0 Mhz s 2-SPI, 100.0 Mhz I 4-SPl, 20.0 Mhz Emm 4-SPI, 100.0 Mhz
1-SPI, 50.0 Mhz mm 1-SPI, 150.0 Mhz s 2-SPI, 50.0 Mhz s 2-SPI, 150.0 Mhz mmm 4-SPI, 50.0 Mhz mmm 4-SPI, 150.0 Mhz

Reconfiguration Cost for Spartan

H
<

Energy per
Reconfiguration
(Joule)

-
S

1073

Figure 5: Cost per reconfiguration for chips of the Xilinx Series 7 Spartan family

requires 66.25% less energy for a single reconfiguration. This would allow a developer to
perform up to three reconfigurations with a XCS15 before it is as costly as reconfiguring
once on the XC7S25. We analyse this in more detail in Section 4.2. We can see that the
faster the reconfiguration interface is, the less the overall chip’s power consumption
comes into play and the more the cost becomes dependent on the bit file length of a chip.
As these tend to increase with a factor of approx. 2, as do the amount of resources, for
larger chip this presents huge opportunities to replace those with a smaller FPGA.

It is also interesting to note that the energy consumption for reconfiguration of the
XC786 and XC7S75 are identical to that of their direct next larger chip, the XC7S15
and the XC7S100 respectively. While both chips contain less resources than their larger
counterparts [Xilinx 2018a] in both cases they use an identically long bit file [Xilinx
2018b], which results in identical bit file loading times, when using the same available
interface configuration. This means that in both cases they can only provide a lower
number of resources for each reconfiguration. The implications with regards to their
potential feasibility to run Temporal Accelerators will be discussed in Section 4.2.

4.2 Available resources for Temporal Accelerators

With the higher energy efficiency for a single reconfiguration, we have established that
smaller chips have the potential to provide a cheaper alternative to larger chips, if they
can provide similar amounts of resources. Resources in this case means the registers,
Lookup-Tables (LUT), Blockram blocks (BRAM) and Digital Signal Processor slices
(DSP) contained in an FPGA to instantiate a given circuit design. The more are available,
the more complex a single design can be.

For this reason we extended our analytical model to calculate, how many resources
can be offered cumulatively with a Temporal Accelerator using multiple reconfigurations
compared to all larger chips, before its energy consumption becomes as high as a single
reconfiguration of the larger chip.

We show the results in Table 3. In it we compare how many resources a Temporal
Accelerator deployed on a specific base FPGA can perform before it consumes as much
energy as a larger FPGA and how many cumulative resources it then offers in % of the
amount of resources that the larger FPGA contains. We excluded the XC7S100 as base

1184 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

chip due to it being the largest chip in the Spartan 7 family and no other chip could be
replaced in this group by the XC7S100.

Table 3: A base chip’s available resources as Temporal Accelerator vs. larger FGPAs

Base Larger Reconfs | %Registers | %LUTs %?;(l:M %DSPs
XC7S6 | XC7S15 1 46.88 46.88 50.00 50.00
XC7S6 | XC7S25 3 77.05 77.05 3333 37.50
XC7S6 | XC7S50 6 69.02 69.02 40.00 50.00
XC7S6 | XC7S75 10 78.12 78.12 55.56 71.43
XC7S6 | XC7S100 10 58.59 58.59 41.67 62.50
XC7S15 | XC7825 3 164.38 164.38 66.67 75.00
XC7S15 | XC7S50 6 147.24 147.24 80.00 100.00
XC7S15 | XC7S75 10 166.67 166.67 111.11 142.86
XC7S15 | XC7S100 10 125.00 125.00 83.33 125.00
XC7S25 | XC7S50 2 89.57 89.57 120.00 133.33
XC7S25 | XC7S75 4 121.67 121.67 200.00 228.57
XC7S25 | XC7S100 4 91.25 91.25 150.00 200.00
XC7S50 | XC7S75 2 135.83 135.83 166.67 171.43
XC7S50 | XC7S100 2 101.88 101.88 125.00 150.00
XC7875 | XC7S100 1 75.00 75.00 75.00 87.50

We see from these results that there are several pairs of Temporal Accelerator enabled
small FPGAs that can provide a similar, or more interestingly, an even greater amount
of resources for the same reconfiguration energy overhead. However, it also shows that
this depends on both the original target FPGA and the type and amount of resources that
a circuit design needs to be able to decide whether to replace that target FPGA with a
smaller FPGA running a Temporal Accelerator.

If we e.g. look at an XC7S15 running a Temporal Accelerator, see second group in
Table 3, it can offer more registers and LUTs compared to an XC7S25, but less BRAM
and DSPs for the same reconfiguration energy cost. For applications that require more
BRAM and DSPs, the XC7S25 with a classical circuit design deployment may therefore
be more efficient and preferable. Only when replacing an XC7S75 or XC7S100 the
XC7815 can offer more resources for the same energy cost. If the original target FPGA is
an XC7S50 and the circuit design requires more BRAM and DSPs, it can be more energy
efficient to instead replace it with a Temporal Accelerator on an XC7S25. Additionally,
as it can provide even more of those resources, it can in theory deploy an even more
complex design using the now newly available resources to improve its performance.

The XC7S50 poses an especially interesting case. Using a Temporal Accelerator,
it would provide more resources of any type than both larger FPGAs in the Spartan
7 family. Thus, it could replace both of them and provide more resources for a more
complex solution or higher energy efficiency. At the same time, it would be cheaper.

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1185

Another very interesting effect can be seen for the XC7S6 and XC7S75, seen in
the first and last group of Table 3. Since they consume the same amount of energy
per reconfiguration than their next larger counterparts (see Section 4.1), they represent
potentially undesirable candidates for the Temporal Accelerator deployment and should
most likely be replaced with the XC7S15 and XC7S100 respectively. Note that these
observations do not take into account the lower static and dynamic power consumption as
well as price. In the case of long running tasks the smaller FPGAs could still outperform
their larger counterparts due to their lower dynamic power consumption during normal
operation. Our numbers however indicate that these will most likely be fringe cases.

4.2.1 Sensitivity Analysis

Due to the analytical model’s current differences in prediction compared to our experi-
mental results, we performed a sensitivity analysis with regards to the amount of available
resources based on varying the energy consumption per reconfiguration.

We assume for this analysis that the model may be off by 20%. Because we compare
pairs of FPGAs, adjusting the energy consumption has an impact on the number of
reconfigurations depending on the difference between both FPGAs. To see if Temporal
Accelerators may still be viable in the “worst case” we compared the resources for chip
pairs, where reconfiguration energy consumption for the smaller base FPGA is 20%
higher, while for the larger comparison FPGA it is 20% lower. This results in a smaller
difference, which generally leads to fewer possible reconfigurations. The results can be
seen in Table 4.

Table 4: Sensitivity analysis of resource consumption vs. original results (see Tab. 3)

Reconfs
Base Larger (vs. %Registers | %LUTs %]i)’;:;M %DSPs
Original)
XC7S6 | XC7S15 1(1) 46.88 46.88 50.00 50.00
XC7S6 | XC7S25 2(3) 51.37 51.37 22.22 25.00
XC786 | XC7S50 4 (6) 46.01 46.01 26.67 33.33
XC7S6 | XC7S75 7 (10) 54.69 54.69 38.89 50.00
XC7S6 | XC7S100 7 (10) 41.02 41.02 29.17 43.75
XC7S15 | XC7S25 2(3) 109.59 109.59 44.44 50.00
XC7S15 | XC7S50 4 (6) 98.16 98.16 53.33 66.67
XC7S15 | XC7S75 7 (10) 116.67 116.67 77.78 100.00
XC7S15 | XC7S100 7 (10) 87.50 87.50 58.33 87.50
XC7S825 | XC7S50 1(2) 44.79 44.79 60.00 66.67
XC7S25 | XC7S75 2(4) 60.83 60.83 100.00 114.29
XC7S25 | XC7S100 2(4) 45.62 45.62 75.00 100.00
XC7S50 | XC7S75 1(2) 67.92 67.92 83.33 85.71
XC7S50 | XC7S100 1(2) 50.94 50.94 62.50 75.00
XC7875 | XC7S100 1(1) 75.00 75.00 75.00 87.50

1186 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

In the general case we can see a reduced amount of available reconfigurations, which
in return means that less resources can be made available by a Temporal Accelerator for
the same energy cost.

However, even with the reduced amount of resources certain pairs of chips exist
where a Temporal Accelerator on the smaller FPGA can provide a viable alternative to
the larger FPGA, such as the XC7S15. Here however it is more viable for circuit designs
that require more on registers and LUTs than BRAM blocks and DSPs. In the case of the
XC7825 it may not be efficient enough to fully replace larger chips, however, depending
on the application scenario it may still be a viable alternative. Imagine a design that may
exceed the DSP resources of an XC7S25, but only requires about 50% of the registers
and LUTs of an XC7S75. Using a Temporal Accelerator would enable device designers
and developers to be more flexible in reducing the overall device cost (see Section 2.5).

Even in a worst case scenario, where the Temporal Accelerator is less applicable
as a full fledged replacement, it can still offer developers more flexibility in designing
cheaper, tailor-made systems by extending the range of scenarios a smaller FPGA can
remain useful.

4.3 Impact on the execution performance

The potential benefits presented in Section 4 come with a certain implication about how
a circuit design can or cannot be structured to be converted into a Temporal Accelerator.
As mentioned before, with Temporal Accelerators we can offer a cumulative amount
of resources that can be equal or higher than that of larger chips. However, being a
cumulative amount means that only a certain portion of the resources are available at
the same time. Depending on the structure of a given circuit design, this may result in
a design being impossible to convert into a Temporal Accelerator. Alternatively it may
provide reduced performance, be it execution speed or data throughput of the resulting
Temporal Accelerator.

Imagine an application where an image, taken by a camera, is processed by several
independent components in parallel on the FPGA to provide a unified computer vision
analysis of the image contents, with the implication that the components have similar
execution times. While the different components can operate independently on the same
image, it would be possible to split the components into two halves for a smaller FPGA
and reconfigure after processing the first half. Having to do so, however, doubles the
execution time and may halve the throughput of images. This may be unacceptable for
low latency applications, that require a minimum amount of new information per second.

On the other hand in circuit designs with sequentially aligned components such as
layers in a neural network an additional reconfiguration in between layer executions
may overall not impact the latency of the execution itself and the overall execution time
including reconfigurations may even be lower, depending on the circuit size.

The impact of parallelisability of components in the original circuit design on a Tem-
poral Accelerator’s performance is an open question and is currently being investigated
in more detail.

4.4 Future experiments

While these initial results already show the potential of Temporal Accelerators we still
need to further investigate what possibilities this technique can offer for current FPGA
based applications.

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1187

We want to explore under which conditions it is more energy efficient, faster, or
cheaper, respectively, to use Temporal Accelerators rather than just deploy accelerators
on larger FPGAs. Here we will focus on using and extending our analytical model to
explore the range of parameters and confirm these with practical experiments using our
Elastic Node platform. Additional aspects that we see relevant to this are presented in
the following:

Communication overhead

We described in Section 2.4 that Temporal Accelerators require an offloading off the
FPGA of any intermediate results between reconfigurations. While we have shown in
previous work, that the communication overhead for conventional accelerator executions
is negligible compared to the performance gains, Temporal Accelerators require much
more data exchanges. Here we want to investigate just how many reconfigurations, and
with it intermediate results can still be offloaded before it outweighs the performance
gains from the shorter reconfiguration times.

Additionally we are investigating a dual-port SRAM design that would allow the
FPGA to buffer the data at higher speeds on it instead of sending it all to the MCU at it’s,
lower, clock speed.

Dynamic Scheduling

Making Elastic Nodes and Temporal Accelerators accessible to a larger system is one of
the major goals we pursuing at our department. Allowing other devices to offload tasks
in the form of TG onto an Elastic Node however will require a more dynamic scheduler.
To reduce the reconfiguration overhead, due to the similarity of the problem space, we
are looking into incorporating DNA sequencing techniques to align the TG sequences to
group STs that use the same bit file.

Here we are interested in what cases we can reduce the amount of reconfigurations,
which includes an analysis of TG compositions and the degree of similarity between
TGs, i.e. how many STs share the bit file they require.

Memory Management

To support more complex TGs we are exploring the requirements necessary to handle
the intermediate results of STs that could be “in parallel” and that have to be stored and
managed across multiple STs executions before they are used.

5 Related Work

FPGA systems have a successful track record, not only in their original application area
to simplify hardware design prototyping [Gschwind et al. 2001, Ray et al. 2003], but
acting as a reconfigurable hardware accelerator. They have been deployed in application
areas such as web based services [Brzoza-Woch et al. 2016], databases [Dennl et al.
2012, Becher et al. 2014], space applications [Montealegre et al. 2015], sensor systems
[Le et al. 2004], cryptography [Chelton et al. 2008, Aysu et al. 2013, Koziel et al.
2016, Babaei et al. 2019], medical applications [Schmid 2015]. With the rise of Al and
deep learning, FPGAs are also used here to improve the execution times with tailor-
made designs [Han et al. 2015, Rastegari et al. 2016, McDanel et al. 2017, Biswas et al.
2018, Molanes et al. 2018, Wang et al. 2019, Roth et al. 2020].

1188 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

To support more performant applications more complex circuit designs are used
which need more FPGA resources to be instantiated. A common approach is to use an
FPGA that can provide this amount of resources.

The reconfiguration capabilities, while often cited as a major advantage of FPGAs,
are rarely used, often only in a firmware update like manner or e.g. to introduce fault
tolerance [Montealegre et al. 2015]. In many cases it is not seen as a mean to expand the
amount of resources.

Splitting an accelerator into multiple configurations has been done in fpgaConvNet
[Venieris et al. 2016, Venieris et al. 2017, Venieris et al. 2019]. By using multiple bit
files, they can recreate parts of their applications with more resources, resulting in a
more performant overall execution, compared to a single bit file design with reduced
complexity. However, because the split design is run on the same FPGA as the single bit
file design, the reconfiguration overhead is significantly high and only amortised when
performing a batch-processing of a large enough data set. They do not compare what
effects using a smaller FPGA with less resources could have.

Modelling the execution components of a task into a directed graph has been known
to help and schedule these tasks both on a single processing unit as well as across
multi-processor systems [Hwang et al. 1993].

In various application domains partial reconfiguration has improved performance
[Becher et al. 2014, Dennl et al. 2012, Koch et al. 2011, Vipin et al 2014]. By using
partial reconfiguration the URUK tool chain [Aklah 2017] allows developers to compose
accelerators at run-time using pre-defined and pre-synthesised building blocks and creat-
ing a Just-In-Time Assembly approach, conceptually similar to a Temporal Accelerator.
However their bit streams are not for entire circuit designs but only small portions of
partially reconfigurable areas. While partial reconfiguration can be quite beneficial, it
does not explore applications that would require switching to a completely different
circuit design, or directly analyse very resource constrained devices. Additionally, many,
especially embedded, FPGAs do not support partial reconfiguration yet.

6 Conclusion and Future Work

Temporal Accelerators provide an opportunity to design high performing yet cheap
embedded IoT devices. Contrary to the intuition the multiple reconfigurations used in
Temporal Accelerators do not introduce an additional time or energy overhead for the
concept, as smaller FPGAs require much less time to load their shorter bit files. This can
reduce the cost of devices, since a smaller, cheaper FPGA can be used to create the same
or even more complex applications.

This is more than a theoretical possibility. We already successfully applied our
Temporal Accelerator approach to deploy a Convolutional Neural Network (CNN) that
detects anomalies in ECG-data [Cichiwskyj et al. 2020]. We were able to split and execute
the CNN as a Temporal Accelerator using two reconfigurations on an XC7S15 at a lower
overall energy consumption compared to a “classical” deployment on a XC7S25. In this
scenario our approach was not only more energy efficient but also faster in its overall
execution, including reconfiguration, loading data and the execution itself. This confirms
that it is possible to apply our approach efficiently in a real application scenario.

For future work, we plan to examine further application cases, such as a voice-
recognition based person tracking. Additionally, we are developing new scheduling
algorithms to reduce the number of reconfigurations based on DNA sequence alignment

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1189

techniques as well as a new memory management algorithms for a more efficient for-
warding of intermediate data to support complex TGs. We also want to explore whether
a dual-port SRAM chip, managed by the MCU could act as an intermediate buffer to
further reduce the communication overhead. Finally, we want to further investigate the
impact of the forced sequential split in circuit designs and how the execution pattern of
the circuit design, i.e. its degree of parallelism can influence the execution performance
of Temporal Accelerators.

References

[Aklah 2017] Aklah, Z.T.: “A hybrid partially reconfigurable overlay supporting just-in-time
assembly of custom accelerators on FPGAs”; University of Arkansas, 2017.

[Aysu et al. 2013] Aysu, A., Patterson, C., Schaumont, P.: “Low-cost and area-efficient FPGA
implementations of lattice-based cryptography”; 2013 IEEE int. symposium on hardware-oriented
security and trust (HOST), 2013, 81-86.

[Babaei et al. 2019] Babaei, A., Schiele, G.: “Physical unclonable functions in the internet of
things: State of the art and open challenges”; Sensors, 19(14), 2019, 3208

[Becher et al. 2014] Becher, A., Bauer, F., Ziener, D., Teich, J.: “Energy-aware SQL query ac-
celeration through FPGA-based dynamic partial reconfiguration”; 24th Int. Conf. on Field Pro-
grammable Logic and Applications (FPL), 2014, 1-8.

[Biswas et al. 2018] Biswas, A., Chandrakasan, A.P.: “CONV-SRAM: An energy-efficient SRAM
with in-memory dot-product computation for low-power convolutional neural networks”; IEEE
Journal of Solid-State Circuits, 54 (1), 2018, 217-230.

[Brzoza-Woch et al. 2016] Brzoza-Woch, R., Nawrocki, P.: “FPGA-Based Web Services—Infinite
Potential or a Road to Nowhere?” IEEE Internet Computing, 20 (1), 2016, 44-51.

[Burger et al. 2017] Burger, A., Cichiwskyj, C., Schiele, G.: “Elastic nodes for the internet of
things: a middleware-based approach”. 2017 IEEE Int. Conf. on Autonomic Computing (ICAC),
2017 (Jul), 73-74.

[Burger et al. 2018] Burger, A., Schiele, G.: “Demo abstract: deep learning on an elastic node
for the Internet of Things”; 2018 IEEE Int. Conf. on Pervasive Computing and Communications
Workshops (PerCom Workshops), 2018 (Mar), 424-426.

[Burger et al. 2020] Burger, A., Cichiwskyj, C., Schmeif3er, S., Schiele, G.: “The Elastic Internet
of Things-A platform for self-integrating and self-adaptive loT-systems with support for embedded
adaptive hardware”; Future Generation Computer Systems, 113, 2020, 607-619.

[Chelton et al. 2008] Chelton, W.N., Benaissa, M.: “Fast elliptic curve cryptography on FPGA”;
IEEE Trans. on very large scale integration (VLSI) systems, 16 (2), 2008, 198-205.

[Cichiwskyj et al. 2020] Cichiwskyj, C., Qian, C., Schiele, G.: “Time to Learn: Temporal Accel-
erators as an Embedded Deep Neural Network Platform”; IoT Streams for Data-Driven Predictive
Maintenance and [oT, Edge, and Mobile for Embedded Machine Learning, Springer Cham., 2020,
256-267.

[Cordone et al. 2009] Cordone, R., Redaelli, F., Redaelli, M.A., Santambrogio, M.D., Sciuto, D.:
“Partitioning and scheduling of task graphs on partially dynamically reconfigurable FPGAs”; IEEE
Trans. on computer-aided design of integrated circuits and systems, 28 (5), 2009, 662-675.

[Dennl et al. 2012] Dennl, C., Ziener, D., Teich, J.: “On-the-fly composition of FPGA-based
SQL query accelerators using a partially reconfigurable module library”; IEEE 20th International
Symposium on Field-Programmable Custom Computing Machines, 2012 (Apr), 45-52.

[Free Software Foundation 2021] Free Software Foundation, Inc.: “AVR-GCC - GCC Wiki”;
https://gcc.gnu.org/wiki/avr-gec, 16 March 2021.

https://gcc.gnu.org/wiki/avr-gcc

1190 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

[Gschwind et al. 2001] Gschwind, M., Salapura, V., Maurer, D.: “FPGA prototyping of a RISC
processor core for embedded applications”; IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 9 (2), 2001, 241-250.

[Han et al. 2015] Han, S., Mao, H., Dally, W.J.: “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding”; arXiv preprint arXiv:1510.00149,
2015.

[Hwang et al. 1993] Hwang, D.J., Cho, S.H., Kim, Y.D., Han, S.Y.: “Exploiting spatial and tem-
poral parallelism in the multithreaded node architecture implemented on superscalar RISC proces-
sors”; 1993 Int. Conf. on Parallel Processing (ICPP’93), 1, 1993 (Aug), 51-54.

[Intel 2019] Intel Corporation: “Internet of Things - Accelerating the IoT with Intel FPGAs
and SoCs”; https://www.intel.de/content/www/de/de/internet- of-things/products/programmable/
overview.html, 21 October 2019.

[Knocke et al. 2014] Knocke, P., Gorgen, R., Walter, J., Helms, D., Nebel, W.: “Using early power
and timing estimations of massively heterogeneous computation platforms to create optimized
HPC applications”; 12th IEEE Int. Conf. on Embedded and Ubiquitous Computing, 2014 (Aug),
162-169.

[Koch et al. 2011] Koch, D., Torresen, J.: “FPGASort: A high performance sorting architecture
exploiting run-time reconfiguration on FPGAs for large problem sorting”; Proc. of the 19th
ACM/SIGDA Int. Symp. on Field programmable gate arrays, 2011 (Feb), 45-54.

[Koziel et al. 2016] Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: “Post-quantum cryp-
tography on FPGA based on isogenies on elliptic curves”; IEEE Trans. on Circuits and Systems I:
Regular Papers, 64 (1), 2016, 86-99.

[Le et al. 2004] Le, C., Chan, S., Cheng, F., Fang, W., Fischman, M., Hensley, S., Johnson, R.,
Jourdan, M., Marina, M., Parham, B., Rogez, F.: “Onboard FPGA-based SAR processing for future
spaceborne systems”; Proc. of the 2004 IEEE Radar Conference, 2004 (Apr), 15-20.

[McDanel et al. 2017] McDanel, B., Teerapittayanon, S., Kung, H.T.: “Embedded binarized neural
networks”; arXiv preprint arXiv:1709.02260, 2017

[Molanes et al. 2018] Molanes, R.F., Amarasinghe, K., Rodriguez-Andina, J., Manic, M.: “Deep
learning and reconfigurable platforms in the internet of things: Challenges and opportunities in
algorithms and hardware”; IEEE Industrial Electronics Magazine, 12 (2), 2018, 36-49.

[Monmasson et al. 2007] Monmasson, E., Cirstea, M.N.: “FPGA design methodology for indus-
trial control systems-A review”; IEEE Trans. on industrial electronics, 54 (4), 2007, 1824-1842.

[Montealegre et al. 2015] Montealegre, N., Merodio, D., Fernandez, A., Armbruster, P.: “In-flight
reconfigurable FPGA-based space systems™; 2015 NASA/ESA Conf. on Adaptive Hardware and
Systems (AHS), 2015, 1-8.

[Mouser Electronics 2021] Mouser Electronics: “Electronic Components Distributor - Mouser
Electronics Germany”; https://www.mouser.de/, 15 June 2021.

[Rastegari et al. 2016] Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: “Xnor-net: Imagenet
classification using binary convolutional neural networks”; European Conf. on computer vision,
2016 (Oct), 525-542, Springer, Cham.

[Ray et al. 2003] Ray, J., Hoe, J.C.: “High-level modeling and FPGA prototyping of micropro-
cessors”; Proc. of the 2003 ACM/SIGDA eleventh Int. Symp. on Field programmable gate arrays,
2003 (Feb), 100-107.

[Roth et al. 2020] Roth, W., Schindler, G., Zohrer, M., Pfeifenberger, L., Peharz, R., Tschiatschek,
S., Froning, H., Pernkopf, F., Ghahramani, Z.: “Resource-efficient neural networks for embedded
systems”, arXiv preprint arXiv:2001.03048, 2020.

[Ruiz et al. 2019] Ruiz, M., Sidler, D., Sutter, G., Alonso, G., Loépez-Buedo, S.: “Limago: An
fpga-based open-source 100 gbe tcp/ip stack™; 2019 29th Int. Conf. on Field Programmable Logic
and Applications (FPL), 2019 (Sept), 286-292.

https://www.intel.de/content/www/de/de/internet-of-things/products/programmable/overview.html
https://www.intel.de/content/www/de/de/internet-of-things/products/programmable/overview.html
https://www.mouser.de/

Cichiwskyj C., Schiele G.: Temporal Accelerators ... 1191

[Schiele et al. 2019] Schiele, G., Burger, A., Cichiwskyj, C.: “The elastic node: an experimentation
platform for hardware accelerator research in the internet of things”; 2019 IEEE Int. Conf. on
Autonomic Computing (ICAC) , 2019, (Jun), 84-94.

[Schmid 2015] Schmid, M.: “Rapid Prototyping for Hardware Accelerators in the Medical Imaging
Domain”; https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docld/6573, 2015, 26. March
2020.

[Soliman et al. 2019] Soliman, S., Jaela, M.A., Abotaleb, A.M., Hassan, Y., Abdelghany, M.A.,
Abdel-Hamid, A.T., Salama, K.N., Mostafa, H.: “FPGA implementation of dynamically reconfig-
urable [oT security module using algorithm hopping”; Integration - the VLSI Journal, 68, 2019
(Sept), 108-121.

[Varga et al. 2015] Varga, P., Kovacs, L., Tothfalusi, T., Orosz, P.: “C-GEP: 100 Gbit/s capable,
FPGA-based, reconfigurable networking equipment”; IEEE 16th Int. Conf. on High Performance
Switching and Routing (HPSR), 2015, 1-6.

[Venieris et al. 2016] Venieris, S.1., Bouganis, C.S.: “fpgaConvNet: A framework for mapping
convolutional neural networks on FPGAs”; IEEE 24th Annual Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2016 (May), 40-47.

[Venieris et al. 2017] Venieris, S.I., Bouganis, C.S.: “fpgaConvNet: A toolflow for mapping di-
verse convolutional neural networks on embedded FPGAs”; arXiv preprint arXiv:1711.08740,
2017.

[Venieris et al. 2019] Venieris, S.1., Bouganis, C.S.: “fpgaconvnet: Mapping regular and irregular
convolutional neural networks on fpgas”; IEEE Trans. on neural networks and learning systems,
30(2), 2018, 326-342.

[Vipin et al 2014] Vipin, K., Fahmy, S.A.: “DyRACT: A partial reconfiguration enabled accelera-
tor and test platform”; 24th Int. Conf. on field programmable logic and applications (FPL), 2014
(Sept), 1-7.

[Wang et al. 2019] Wang, E., Davis, J.J., Cheung, P.Y., Constantinides, G.A.: “LUTNet: Rethink-
ing inference in FPGA soft logic”; IEEE 27th Annual Int. Symp. on Field-Programmable Custom
Computing Machines (FCCM), 2019 (Apr), 26-34.

[Xilinx 2018a] Xilinx, Inc.: “7 Series FPGAs Data Sheet: Overview”; https://www xilinx.com/
support/documentation/data_sheets/ds180_7Series Overview.pdf, 2018, 07. April 2020.

[Xilinx 2018b] Xilinx, Inc.: “7 Series FPGAs Configuration User Guide - UG470”; https://www.
xilinx.com/support/documentation/user_guides/ugd70 7Series_Config.pdf, 2018, 07. April 2020.

[Xilinx 2018¢] Xilinx, Inc.: “Power Methodology Guide - UG786 (v14.5)”; https://www.xilinx.
com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf, 2018, 07.
April 2020.

[Xilinx 2019a] Xilinx, Inc.: “Spartan-7 FPGAs Data Sheet: DC and AC Switching Characteris-
tics”; https://www .xilinx.com/support/documentation/data_sheets/ds189-spartan-7-data-sheet.pdf,
2019, 07. April 2020.

[Xilinx 2019b] Xilinx, Inc.: “7 Series FPGAs Integrated Block for PCI Express v3.0 LogiCORE
IP Product Guide”; https://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/
v3_0/pg054-Tseries-pcie.pdf, 2019, 10. June 2021.

[Xilinx 2020] Xilinx, Inc.: “Xilinx Power Estimator (XPE)”; https://www.xilinx.com/products/
technology/power/xpe.html, 2020, 26. March 2020.

[Xilinx 2021a] Xilinx, Inc.: “Vivado Design Suite”; https://www.xilinx.com/products/
design-tools/vivado.html, 16 March 2021.

[Zazo et al. 2015] Zazo, J.F., Lopez-Buedo, S., Audzevich, Y., Moore, A.W.: “A PCle DMA
engine to support the virtualization of 40 Gbps FPGA-accelerated network appliances”; 2015 Int.
Conf. on ReConFigurable Computing and FPGAs (ReConFig), 2015 (Dez), 1-6.

https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/6573
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug786_PowerMethodology.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds189-spartan-7-data-sheet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_0/pg054-7series-pcie.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_0/pg054-7series-pcie.pdf
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

1192 Cichiwskyj C., Schiele G.: Temporal Accelerators ...

[Ziener et al. 2016] Ziener, D., Bauer, F., Becher, A., Dennl, C., Meyer-Wegener, K., Schiirfeld,
U., Teich, J., Vogt, J.S., Weber, H.: “Fpga-based dynamically reconfigurable sql query processing”;
ACM Trans. on Reconfigurable Technology and Systems (TRETS), 9 (4), 2016, 1-24.

	Introduction
	Temporal Accelerators
	Design
	Execution model
	Scheduling
	Data Management
	Chip Cost

	An Analytical Model for Reconfiguration
	Model vs. Hardware Experiment

	Energy efficiency of a Temporal Accelerator
	Analytical results
	Available resources for Temporal Accelerators
	Sensitivity Analysis

	Impact on the execution performance
	Future experiments

	Related Work
	Conclusion and Future Work

