
 Journal of Universal Computer Science, vol. 28, no. 8 (2022), 854-876 
submitted: 20/11/2021, accepted:10/6/2022, appeared: 28/8/2022 CC BY-ND 4.0 

Assessing Repetitive Trials in Serious Games  
 
 

Wim Westera 
(Open University of the Netherlands, Heerlen, The Netherlands 
https://orcid.org/0000-0003-2389-3107, wim.westera@ou.nl) 

 
 
 

Abstract: Players in serious games may often need multiple trials for correctly completing a 
game task. Therefore, the number of attempts should be reflected in the score. This article 
presents three computational score models that take into account the number of attempts that a 
player makes to be successful. The models, which are extensions of test theory, quantify the 
random contributions to the scores that need to be removed. They also describe the influence of 
prior knowledge used for elimination of incorrect options, and take into account that the decision 
options in a node may not be equally plausible. In a series of simulation studies the score 
outcomes of the models are compared under various conditions. Results show that the number of 
trials cannot be ignored as they have a strong impact on the performance scores to be assigned. 
Neglecting the number of trials leads to inaccurate scores that significantly overrate the observed 
performances, occasionally up to 100% or even more. The effects depend on the number of 
decision options, the presence of obvious, correct or incorrect options given the player´s 
knowledge level and, to a lesser extent, different plausibility levels of the options to decide upon. 
The practical feasibility is high, because a simple score formula largely solves the problem. 
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1 Introduction  

Digital games are increasingly deployed in education and training. Such “serious 
games” [Abt, 70] are valued for their potential to engage and motivate and to provide a 
challenging, meaningful learning context, while they benefit from the latest multimedia 
technologies. A critical element of serious games is the monitoring of learning 
achievements (e.g. [Chin, 09], [Bellotti, 13], [Connolly, 2012], [Shute, 2009], [Westera, 
2019]). Digital games offer the opportunity to track the player´s successes and failures 
during the game and base the player´s performance assessment on those data traces. 
Accordingly, most games include progress measures, which are used for score 
assignment, level transitions, feedback or adaptation of the game play [Boston, 2002] 
[Shute et al., 2013] [Westera, 2015]. This on-the-fly assessment fits well in the trend 
toward formative assessment [Redeker et al., 2012]. It marks a shift from post-practice 
assessment based on a single moment of observation toward an individualised approach 
with a large number of observations over time. The need for timely in-game 
performance tracking and associated feedback is further indicated by the unfavourable 
fact that games tend to favour trial-and-error learning strategies and free exploration 
[Vargas, 1986]. As many game interactions are driven by direct manipulation of 
graphical objects, which inherently put little cognitive load on the users, they tend to 
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reinforce an shallow, impulsive, trial and error learning mode [Guttormsen Schär et al., 
2000]. The same holds for popular game design elements that induce stress, such as a 
time lock or time-dependent scores, which are likely to promote hurried, shallow or 
incomplete information processing. As such, failure during the process of learning 
needs not be a problem, because failure is a crucial factor for any learning to occur. 
Still, it calls for timely feedback on performance. To this end, the question arises how 
to describe the performance of players that frequently redo parts of the game before 
finally succeeding: if two players both succeed at successfully completing a game, but 
one player needed more tries than the other, how should this be reflected by the 
respective performance scores? In many cases, games use ad hoc metrics, as simple as 
playing time spent or the number of trials that were needed, but these are neither 
theoretically grounded nor empirically validated. Classical test theory [Spearman, 
1904] and Item Response Theory [Lord, 1980] do provide formalised solutions for the 
case of repetitive failures, but these only describe the effects of random guessing by 
ignorant subjects (e.g. monkeys) devoid of thoughtful considerations, which does not 
hold for human individuals. Dynamic approaches such as Computerised Adaptive 
Testing [Weiss et al, 1987] and personalisation approaches [Maseleno et al., 2018] do 
allow to adjust task difficulty to observed player skills, but do not explain how 
performance should be calculated when multiple efforts are needed to succeed. 

Our research question reads: how do repetitive efforts during game play translate 
into the indicators of performance? This paper will present three formalised score 
models that take into account the revisiting op decision nodes after failure. The first 
model extends the common test-theoretical approach by accounting for the number of 
trials. Model 2 offers a further extension by including the possibility that the player 
simply knows the right decision or knows that one or more options are incorrect and 
can be removed beforehand. In addition Model 3 also includes the possibility that the 
various options aren’t equally plausible. The models are implemented in a computer 
program that simulate game play, which allows to evaluate and compare the models 
under various conditions, such as different numbers of options, and the effects of early 
eliminations. 

2 Model development  
2.1 Player-led decision taking in serous games 

By principle, all games involve active decision taking by the players, who are 
challenged to achieve favourable outcomes and maximise their performances. A game 
can thus be represented as a network of decision nodes. These decision nodes represent 
challenges or activities that have multiple potential outcomes. Rather than micro-level 
decisions (single mouse clicks) the nodes represent meso-level problems, challenges or 
activities possibly requiring a set of connected considerations by the player, viz. 
meaningful pursuits directly originating from the game scenario. Examples would be 
fighting a monster, writing a note, talking to a character, tracking a hidden object, 
moving objects, buying supplies, navigating, etcetera, all requiring active consideration 
and decision making by the player. The edges of the network represent the pathways 
between the game activities. During gameplay, the player moves from node to node, 
while performance is based on the achievements in each node, related to the successes 
and failures experienced. Different player decisions in a node may lead to different 
outcomes that open up different pathways in the network. Accessibility of the nodes 
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may change over time: not all nodes need to be accessible from the start, but they may 
gradually open up when precedence conditions are met. Such conditions may be related 
to the logic of storytelling, the causal order of events, time spent, the interdependence 
of content, and the player’s achievements so far. Likewise, some pathways may get 
blocked during the game. Game play is thus described by a pathfinding process through 
the dynamic network of decision nodes. Given this network structure and the principle 
of player-led decision taking, playing a game is conceptually equivalent with taking a 
multiple choice test, where the nodes correspond with the test items. This equivalence 
is manifest in games that are structured as branching stories or quizzes [Aldrich, 2009], 
but it also holds for many other cases where the game style and context may conceal 
the player-led decision structure. 

2.2 The process of decision taking 

A serious game can be represented as a network of N decision nodes, each of which 
offer a number of decision options [Westera, 2018]. For reasons of simplicity we 
assume that the decision nodes are dichotomous and single select, which means that 
only one of the options in the node is correct, while the remaining options are incorrect. 
Consider a node with m options to decide upon. How does this decision process look 
like? In some cases the players may immediately spot the correct decision, simply 
because they possess sufficient knowledge and skills to decide rightly. If they cannot, 
they will check if they can cross out some of the options (q) as being incorrect, again 
relying on their knowledge and skills. Thereby they reduce the pool of options to choose 
from to (m-q). Because the players are uncertain about the remaining options, they have 
to take a chance and may need multiple trials to get it right. After each failure, the pool 
of options is reduced further, which is enforced by the assumption that the player 
doesn’t make the same mistake again. The decision tree of such process is depicted in 
[Fig. 1]. 

Figure 1: The decision tree of a dichotomous and single select node with m options 
and q prior eliminations. 
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Given this process, the next sections present three score models that do take into 

account the effects of the player needing multiple trials to pass a node. 

2.3 Model 1: The extended test-theoretical model 

2.3.1 Single visit 

Test theory introduces the Random Guess Score (RGS), which is the score level that is 
obtained by simply taking decisions randomly. The Random Guess Score sets a lower 
bound to the performance that can reasonably be attributed to the candidate’s 
capabilities [Gronchi et al., 2021]. In principle, the Random Guess Score of a test item, 
which is denoted as RGS, equals the sum of the probability for each option of the item 
multiplied by the assigned score of the associated outcome [Draaijer et al., 2018]. In 
the case of dichotomous and single select decision nodes the Random Guess Score in a 
node with m options reduces to: 
 

𝑅𝐺𝑆 = !
"

     (1) 
 
Since the Random Guess Score is not the result of the player’s performance, the 
player’s score S needs to be corrected by removing this random contribution.  
 

𝑆 = 1 − !
"

     (2) 

2.3.2 Revisits 

A slight extension of the test-theoretical model allows to cover the effects of repetitive 
trials. After a failure in a node, the player may revisit the node, while taking up a 
different approach to avoid making the same mistake again. Consequently, in the 
second trial there are only (m-1) options left. With a slight adjustment of equation (3) 
the RGS after t tries in a node can be written as: 
 

𝑅𝐺𝑆(𝑡) = !
("$%&!)

    (3) 
 
This formula holds for all t≤m. Accordingly, the score S from equation (4) can be 
adjusted to include the number of trials t in the node.  
 

𝑆(𝑡) = 1 − !
("$%&!)

    (4) 
 

2.3.3 Issues with the basic test-theoretical model 

Although the test-theoretical approach is well-established, it suffers from two 
fundamental weaknesses. First, it does not consider the full decision tree displayed in 
[Fig. 1]. In particular, it corrects the score for a random contribution even though 
players may simply know the correct decision without any guesses made. Second, it is 
assumed that the m decision options in a node are equally plausible. But if that were 
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really the case, the recorded decision in the node would not be informative for 
distinguishing between weak and strong performances: a node with equally plausible 
options could best be removed from the performance metric (the item’s discrimination 
index is said to be equal to zero). In practice, however, the diverse options in a node 
have, and actually they should have, different degrees of plausibility to be of any value 
for performance assessment: some options being more plausible than other options.  

The next model, which is Model 2, extends the basic test-theoretical model by 
including the possibility that the player simply knows the right decision or knows that 
one or more options are incorrect and can be removed beforehand. In addition Model 3 
includes the possibility that the various options aren’t equally plausible. 

2.4 Model 2: The knowledge-based decision model 

2.4.1 Single visit 

This model extends Model 1 by incorporating the possibility that the player may simply 
know the right answer, so that no guessing is involved at all. Second, there is a 
possibility that the player can tell in advance that one or more of the options are 
incorrect and can be crossed out, thus changing the odds. These starting points call for 
a probability analysis of the decision process [see Fig. 1], which is presented below. 

We define the following four disjunctive events, in accordance with the decision 
tree of [Fig. 1]: 

1. K = the player simply knows the correct decision.  
2. Rj1, ….,jq = the player doesn’t know the correct decision, but knows that q 

specific options (j1,…,jq) are incorrect so that they can be removed from the 
pool of options to decide upon.  

3. G = the player does not know the correct answer and cannot identify options 
to be eliminated. So, the player has to make an educated guess from the pool 
of m options.   

4. C = the player selects the correct decision. 
 

The probability P(C), which is the chance that the player makes the correct decision 
can now be decomposed by accumulating the conditional probabilities of its 
constituents: 
 

𝑃(𝐶) = 𝑃(𝐶|𝐾). 𝑃(𝐾) + ∑ 𝑃 1𝐶2𝑅(!,….,("3 . 𝑃,(𝑞)-..	01203%0	
!456("$!)

+ 𝑃(𝐶|𝐺). 𝑃(𝐺) (5) 

 
P(C) accumulates the probabilities of the full set of eventualities associated with taking 
the right decision C. All components from the right hand side of equation (5) can now 
be elaborated.  
 

P(K) 

The probability P(K) that players know and recognise the correct decision is directly 
related to their personal knowledge, skills and experiences. But these are hard to 
specify. However, in well-tuned serious games the players’ knowledge level is 
cautiously reflected in the difficulty of the game challenges. Decision taking should be 
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doable [Gee, 2003], that is, it should be neither too straightforward nor too difficult 
[Nyamsuren et al., 2017], otherwise players will either get bored or frustrated 
[Csikszentmihalyi, 1991]. According [Eggen et al., 2006] and [Klinkenberg et al., 
2011] an average success rate of typically P(C)=0.75 provides a good balance winning 
and losing as to keep a player motivated. Successes, however, are mainly the result of 
learning new things, an educated guess, or just pure chance, and for the remainder on 
knowing. The probability that the player knows the correct decision is likely to be small, 
typically in the range of 0.25 or below, to prevent the game play from being degraded 
to a blanks exercise.  
 

P(C|K) 

The probability of taking the right decision, when one knows the right decision can be 
simply set to 1: 

𝑃(𝐶|𝐾) = 1     (6) 
 

because if one knows the right decision then one will take the right decision.  
 

PE(q) and P(Rj1, ….,jq)  

PE(q) denotes the probability that the player is able to identify and eliminate q options 
from the (m-1) options that are incorrect. The probability that the player is able to 
identify exactly one incorrect option is thus be written as PE(1). As in the case of 
knowing the correct decision, this probability is likely to be small, typically in the lower 
range smaller than 0.25. In fact, the ability to spot one incorrect decision should not be 
very different from spotting one correct decision. As it uses essentially the same 
knowledge base of the player we may assume  
 

𝑃,(1) ≈ 𝑃(𝐾)     (7) 
 

If we assume equal probabilities of the (m-1) incorrect options, the probability P(Rj) 
that the player identifies not just one of the options but exactly option j as an incorrect 
option can be written as 
 

𝑃(𝑅() = 𝑃,(1) ∙
!

("$!)
≈ 𝑃(𝐾) ∙ !

("$!)
   (8) 

 
Consequently, the probability P(Rj1,j2) that both option j1 and option j2 are recognised 
as the only two incorrect options can now be written as   
 

𝑃(𝑅(!,(7	) = 2! ∙ 𝑃(𝐾)7 ∙ !
("$!)

∙ !
("$7)

   (9) 
 

The generalised expression of the probability P(Rj1,j2,…,jq) that exactly the options 
j1,j2,….,jq are eliminated can be written as  
 

𝑃(𝑅(!,(7,…,(5	) = 𝑞! ∙ 𝑃(𝐾)5 ∙ !
("$!)	∙("$7)	∙…..∙("$5)

  (10) 
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P(C|Rj1,j2,…,jq) 

Once that the options j1,j2,….,jq have been eliminated from the pool, the player has to 
guess from the remaining (m-q) ones, labelled jq+1, …,jm. The probability P(C|Rj1,j2,….,jq), 
which is the chance to select the correct option from the remaining (m-q) candidates is 
given by 
 

𝑃(𝐶|𝑅(!,(7,…,(5	) =
!

("$5)
	    (11) 

P(G) 

The probability P(G) for the occasion that the player neither knows the correct decision 
nor finds options to be eliminated can be easily resolved from the sum of probabilities 
being one: 
 

𝑃(𝐺) = 1 − 𝑃(𝐾) − ∑ 𝑃 1𝐶2𝑅(!,….,("3 . 𝑃,(𝑞)-..	01203%0	
!456("$!)

 (12) 

P(C|G) 

Finally, the probability P(C|G), which is the chance to select the correct option from 
the full set of m candidates is given by 
 

𝑃(𝐶|𝐺) = !
"
	     (13) 

 
Herewith all components of equation (5) are covered and the probability P(C) of 

taking the correct decision can now be fully evaluated.  
Once the player has successfully passed the node, given the probabilities explained 

above, the score can be expressed as an extension of equation (2) by incorporating the 
effects of knowing the solution and the capability to remove one or more incorrect 
options from the pool. By extending the score expression of Model 1, the score of 
Model 2 for a single trial can be written as 

 
𝑆 = 1 − 9

("$5)
     (14) 

 
with γ=0 when the player knows the correct decision (no guessing involved) and γ=1 
otherwise (correction for guessing needed).  
 

𝑃(𝛾 = 0) = 𝑃(𝐾)    (15) 
 

2.4.2 Multiple trials 

As in the previous model, the player may revisit the node after an incorrect decision to 
give it another try. When the player failed to immediately recognise the correct decision 
in the first trial, the player will neither be able to do so in the next try, given the same 
knowledge base. The eliminations identified in the first trial would still hold, leaving 
the smaller pool of remaining options. Each time when a wrong is decision taken, it is 
removed from the pool. In the second and subsequent trials the player just makes an 
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educated guess from the remaining options. The score formula for a success in the t-th 
trial thus reads: 
 

𝑆(𝑡) = 1 − 9
("$5$%&!)

    (16) 
 

2.5 Model 3: The knowledge and plausibility model 

2.5.1 Single visit 

This model extends Model 2 by also taking into account that the m decision options in 
a node may not be equally plausible. By design, each option j in a node should have a 
plausibility value assigned that is given by wj, a number between 0 and 1 that indicates 
to what extent the player may accept the option as a credible solution. The plausibility 
concept reflects the deceptive appearance of competing options: to offer sufficient 
challenge in a serious game, the correct option should never be too obvious, but should 
be flanked by competing options that may seem quite okay, but include subtle error or 
obscured pitfalls. The plausibility values act as non-uniform weight factors for the 
respective options, assigning plausible options a higher value than less plausible ones. 
Consequently, generic score formulas that assume even probabilities of the options are 
no longer valid. Instead, various ingredients of P(C) in equation (5) should be further 
detailed. 
 

P(Rj1, ….,jq) 

The probability P(Rj) that the player identifies option j as an incorrect option is 
proportional to its implausibility value, which is (1-wj). Let for reasons of convenience, 
the correct option, which is not among the candidates to be eliminated, be located at 
j=1. Then we can write  
 

𝑃(𝑅() = 𝑃(𝐾) ∙ (!$:#)
∑ (!$:$)%
$&'

   (17) 

 
The probability P(Rj1,j2) that both option j1 and option j2 are recognised as the only two 
incorrect options can now be written as   
 

𝑃(𝑅(!,(7	) = 2! ∙ 𝑃(𝐾)7 ∙ (!$:#!)
∑ (!$:$!)
%
$!&'

∙ (!$:#')
∑ (!$:$')
%
$'&'
$'(#!

  (18) 

 
The generalised expression of the probability P(Rj1,j2,…,jq) that exactly the options 
j1,j2,….,jq are eliminated can be written as  
 

𝑃(𝑅(!,(7,…,(5	) = 𝑞! ∙ 𝑃(𝐾)5 ∙
∏ (!$:#))
#"
#)&#!

∑ (!$:$!)
%
$!&' 	∙	∑ (!$:$')

%
$'&'
$'(#!

	∙…..∙		∑ (!$:$")
%

$"&'
$"(#!,….,,#"-!

     (19) 
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This may seem a complex formula, but it is fully denumerable and thus it can be easily 
evaluated by a computer.  

P(C|Rj1,j2,…,jq) 

Once that the options j1,j2,….,jq have been eliminated from the pool, the player has to 
guess from the remaining (m-q) ones, labelled jq+1, …,jm. Although the player has 
demonstrated not to be able to tell for sure whether an option is right or wrong, some 
options are more likely than other options because of different plausibility values. 
Consequently, the player’s decision will be an educated guess guided by the respective 
probabilities wj. As defined before, the correct option is located at jk=1 with plausibility 
w1. Then the probability P(C|R j1,j2,….,jq), which is the chance to select the correct option 
from the remaining (m-q) candidates jq+1, …,jm is simply given by 
 

𝑃(𝐶|𝑅(!,(7,…,(5	) =
:!

∑ :#$
#%
#$&#".!

	   (20) 

 

P(G) 

The probability P(G) for the occasion that the player neither knows the correct decision 
nor finds options to be eliminated can be easily resolved from the sum of probabilities 
being one: 
 

𝑃(𝐺) = 1 − 𝑃(𝐾) − ∑ 𝑃 1𝐶2𝑅(!,….,("3 . 𝑃,(𝑞)-..	01203%0	
!454("$!)

 (21) 

 

P(C|G) 

Finally, the probability P(C|G), which is the chance to select the correct option from 
the full set of m candidates, while taking into account their respective plausibility values 
wj, is given by 
 

𝑃(𝐶|𝐺) = :!
∑ :#%
#&!

	   (22) 

 
Herewith all components of equation (5) are covered and P(C), the probability of 

taking the correct decision, can now be fully evaluated. In accordance with item-
response theory the score needs to be adjusted for constituents that cannot reasonably 
be attributed to the player. For this case, we cannot apply the generic random accounts 
of 1/(m-q) (see equation (14)), but we should apply a weighted adjustment of the score, 
based on plausibility values. Successes will be easy when w1 is relatively large: a w1 
close to one is like a give-away. Successes will be difficult when w1 is relatively small. 
The score formula can now be specified as follows: 
 

𝑆 = 1 − 9∙:!
∑ :#$/00	#$
	)2	345	
6770

	   (23) 
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with γ=0 when the player knows the correct decision (no guessing involved) and γ=1 
otherwise (correction for guessing needed). 
 

2.5.2 Revisits 

Equation (23) also holds for multiple trials. The eliminations possibly identified in the 
first trial would still hold, leaving a smaller pool of remaining options. In the second 
and subsequent trials the player makes an educated guess from the remaining options 
and while taking the plausibility values into account. Each time when a wrong decision 
is taken, it is removed from the pool.  

3 Model investigations  
To investigate the score models presented above, we have implemented the models in 
a SCILAB computer program (http://www.scilab.org) and carried out a number of 
simulation runs. To represent the game, a network of N evenly rated game nodes was 
generated. Baseline parameters of the simulation model are explained and summarised 
in [Tab. 1].  
 

Description Parameter Value 
 

Number of game nodes N 40 
Number of options in the nodes:    
A Randomised by sampling 

from a normal distribution 
Mean m 6 
Standard deviation sd 2 
Removal below cut off <3 

B  Fixed M 10 
Plausibility:    
C Random draw from a 

uniform distribution 
wij from U(0,1) 0≤wij≤1 

D Equidistant linear 
distribution 

wij=0.9-0.8*(j-1)/(m-1) 0.1≤wij≤0.9 
wmax 0.9 
wmin 0.1 

Number of players n 1, 100 
Probability of knowing the correct 
decision 

P(K) 0.25 

Probability of knowing 1 option that 
can be removed 

PR1 0.25 

Table 1: Baseline simulation parameters 

The parameter settings in the right-side column were defined by taking into practical 
significance and representativeness, and limitations with respect to simulation 
processing time. The number of options in node i, given by j=1, …., mi, was either 
randomly generated (A) or predefined as a constant (B). For case A the random number 
of options in each node was drawn from a normal distribution with mean 6 and standard 
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deviation (sd=2). By rejecting and redoing values of mi smaller than 3, the number of 
options typically ranged from 3 to 12.  

Likewise, plausibility values of Model 3 are either randomly generated (C) or 
predefined (D). The random versions of plausibility (C) were drawn from a uniform 
distribution. The predefined values (D) are at an equidistant interval between a 
minimum value (wmin=0.1) and a maximum value (wmax=0.9). The correct decision 
option in each node was assigned a score of 1 point, while wrong decisions prompted 
the players to retry until the node is successfully passed. To simplify comparison, all 
players move through the network of nodes in a fixed order. In each node, the player’s 
score is then updated in accordance with the score models and the respective node is 
removed from the set of accessible nodes. In Model 2 and Model 3 the statistics are 
produced by integrating over q, the number of incorrect cases identified, with q running 
from q=1 to q=(m-1), cf. equation (12) and equation (21), respectively. The average 
value of q is largely determined by the preset probability P(PR1) (see equation (7) and 
equation (9)) and the number of options m. 

3.1 Study 1: How scores of the models differ 

[Fig. 2] shows the progression of the normalised cumulative scores of the three models 
in a single run with random options and random plausibility (A,C in [Tab. 1]) . Also 
the ideal score (all decisions are right in their first go) is indicated. 

 
Figure 2: Score progression of models 1, 2 and 3 as well as the perfect score for a 

single player as a function of progressions along the game nodes. 
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The variability of the three scores in this single run is caused by the randomly 
generated number of options in each game node, the probabilistic process of decision 
taking and the randomly generated plausibility values (Model 3), respectively. [Fig. 3] 
shows the mean cumulative scores for a run with 100 players.  

 
Figure 3: Score progression of models 1, 2 and 3 as well as the perfect score for a 

100 players. 

The variability almost fades with this large number of players, but even so a slight 
ripple remains, which can be attributed to the random distribution of options in the 
game. From [Fig. 3] it can be seen that the models produce different score levels and 
that all scores are substantially lower than the perfect score.  

In order to accommodate easy replication, all simulations in the remainder are 
based on a fixed number of options (m=10) (case B) [ see Tab 1] and a predefined set 
of plausibility values in accordance with an equidistant linear distribution (case D) [see 
Tab 1]. The overall relative scores of the three models and the mean number of trails 
for this fixed and linear distribution approach (case B,D) are presented in [Tab. 2]. 

 Normalised 
score 

Standard 
error of the 
score 

Mean trials 
per node 

Standard 
error of trials 
per node 

Perfect score 1.00 0 1.00 0 
Model 1 0.709 0.001 5.50 0.05 
Model 2 0.780 0.001 4.18 0.05 
Model 3 0.749 0.001 3.01 0.03 

Table 2: Scores and number of trials of the three models and standard errors. 
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All scores in [Tab. 2] are represented as values relative to the perfect score. The 
score of Model 1 displays the largest gap with the ideal perfect score: as much as almost 
29 % of the score is lost both as a result of random processes that cannot be attributed 
to the player and reductions applied because multiple trials were needed. Since no 
knowledge-based selections or eliminations are taken into account in Model 1, retrials 
are more often needed than in Models 2 and 3, respectively. The extra information from 
the plausibility values in Model 3 help to substantially reduce the number of efforts. 
However, differences in plausibility make it easier to discriminate and to decide 
between the options, which in the end is compensated for by extra reductions in the 
scores.  

3.2 Study 2: How scores decrease with the number of efforts 

A baseline simulation was run with the equidistant linear distribution of plausibility 
values. [Fig. 4] shows the assigned scores in each model as a function of the number of 
trials needed to pass the nodes. 

 
Figure 4: Dependence of the normalised score on the average number of trials that 

the players needed. 

Given the substantially decreasing scores in [Fig. 4] it can be concluded that the 
number of trials cannot be ignored in the score. Neglect of the number of trials would 
unjustly assign a score of 1 point or, at best, a score of 0.9 when a correction for the 
static Random Guess Score is applied (1/m = 0.1). The curve of Model 1 starts at the 
0.9 level (standard Random Guess Score applied). At subsequent trials, the score 
gradually drops since ever less options remain while the random contribution increases 
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(cf. equation (4)). The curves of Model 2 and Model 3 have starting scores well above 
0.9, because in both models it is assumed that players sometimes may know the correct 
decision without guessing and thus obtain the full score of 1 point. However, overall 
the scores of Model 2 and Model 3 are well below also those of Model 1. This is the 
result of eliminations in the first trial, which reduces the pool of options and thus 
increases the random component that needs to be corrected for. For Model 3 the more 
diverse range of plausibility values makes it easier to eliminate options, which reduces 
the part of the score that can be directly attributed to the player. This is further explained 
by the data in [Tab. 3] and [Fig. 5]. 
 

 First hits 
per node 

Knowledge-
based first 
hits per 
node 

Random 
first hits 
per node 

Eliminations 
per node 

Trials 
per node 

Perfect 
score 

1.00 0.00 1.00 0 1.00 

Model 1 0.10 0.00 0.10 0 5.50 
Model 2 0.33 0.25 0.08 0.33 4.18 
Model 3 0.39 0.25 0.14 0.63 3.01 

 
Table 3: First hits, elimination and number of trials for the various  models. 

[Tab. 3] shows the overall fractions (per node) of the first hits, eliminations and the 
number of trials required. The data confirm that Model 2 and Model 3 account for more 
early successes and allow for eliminations. In those respects, Model 3 outperforms 
Model 2, which is ascribed to the larger discrimination index associated with the non-
uniform distribution of plausibility values in Model 3, which increases the probability 
of eliminations (cf. equation (19)).  Consequently, the pool of remaining options in 
model 3 is commonly smaller, so that less trials are needed to be successful, as is 
displayed in [Tab. 3].  

[Fig. 5] shows how often q eliminations are made (q=1,..,m-1) for each node. 
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Figure 5: Relative frequencies of eliminations q for Model 2 and Model 3. 

Both models display that the frequencies of eliminations rapidly decrease with q. 
Model 3 allows for about twice as many eliminations as Model 2, which is in agreement 
with the data in [Tab. 3].  
 

3.3 Study 3: Dependence of scores on the number of options 

To investigate how the scores of the models depend on the number of options (m) in 
the nodes, the latter was varied step by step from m=3 to m=20 in the linear baseline 
set-up (B,D), while each time the score was reiterated. [Fig. 6] shows the mean scores 
of the three models in the baseline set-up. 
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Figure 6: Mean scores as a function of the number of options in the decision nodes 
(m). 

The three lower curves incorporate the effects of retrials and need to be compared 
with the static score level of 1.0 or at best with the upper curve, which takes into account 
random effects of a single trial (cf. equation (2)) and is commonly used in practice. By 
neglecting the influence of retrials the assigned scores are easily overrated, up to 70% 
at small values of m. Although the three Model curves display similar patterns, the 
scores of Model 2 and Model 3 are structurally higher than those of Model 1. 
Apparently, the positive effects of knowing the correct decision compensate the 
negative effects of reducing the pool by eliminations.  

[Fig. 7] shows how the number of trials changes for each model. Standard errors 
are all well below 0.1 %. 
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Figure 7: Mean number of efforts needed for a pass in Models 1, 2 and 3 as a 
function of the number of options in the nodes. 

For all models the mean number of trials increases more or less proportionally with the 
number of options in the nodes. This is in accordance with the reduced chance of a 
lucky guess at increasing numbers of options. Model 3 requires the lowest number of 
trials, which can be explained by the favourable effects of non-uniform plausibility 
values. Model 1 requires the most trials as it does not account for knowledge-based 
decisions. 

3.4 Study 4: The influence of prior knowledge on the score 

So far, we have assumed that the probability to know the correct decision P(K)=0.25. 
The same value was used to eliminate an option (P(R1) cf. equation (7)). In this study 
we have varied P(K) (and P(R1) accordingly) from 0.0 to 0.5 with 0.05 increments, 
while every time running the linear baseline set-up to determine the mean scores. [Fig. 
8] shows how the scores vary with P(K). 
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Figure 8: Scores as a function of the knowledge factor P(K) for the three models. 

Differences between the three models gradually increase with larger P(K). Eventually, 
the effects are substantial, showing higher scores in Model 2 and Model 3. This can be 
largely attributed to the many first hits that yield the full score of 1 point in these 
models.  

3.5 Study 5: The influence of plausibility values on the score 

So far, the plausibility values in the equidistant baseline model (B, D) have been kept 
unchanged. In this final study we used the linear baseline set-up while applying eight 
different linear distributions of the plausibility covering different ranges, as indicated 
in [Fig. 9], using the lower bound wmin of the plausibility as a parameter, while keeping 
the upper bound wmax fixed at 0.9. 
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Figure 9: Eight distributions of plausibility over the nodes’ options. 

[Fig. 10] shows the scores for these eight plausibility distributions against the 
minimum plausibility bounds on the horizontal axis. The light curves correspond with 
knowledge probability P(K)=0.25. As a result, Models 2 and 3 show higher scores, in 
accordance with the findings in Study 1 and Study 2. To isolate the effects of 
plausibility differences from the effects of knowing the correct answer and knowing 
which alternatives to eliminate (Models 2 and 3), the dark lines in [Fig. 10] represent 
the scores for P(K)=0. It can be concluded that the resulting scores in [Fig. 10] for 
P(K)=0 show only minor differences given the sets of plausibility values of [Fig. 9]. 
This means that the effects of plausibility differences are small compared to random 
contributions from P(K) and the trial-based score reductions that hold for all models. 
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Figure 10: Scores as a function of eight different plausibility distributions from [Fig. 
9]. 

4 Discussion and Conclusion 
The studies presented above have demonstrated that the number of trials has a strong 
impact on the performance scores to be assigned: scores should be corrected for the 
random effects that increase by every trial. Neglecting the number of trials, which is 
quite common in serious games, leads to inaccurate scores that significantly overrate 
the observed performances, occasionally up to 100% or even more. The effects depend 
on the number of decision options, the presence of obvious, correct or incorrect options 
given the player´s knowledge level and, to a lesser extent, different plausibility levels 
of the options to decide upon. Biggest corrections are required for Model 1. Model 2 
and Model 3 account for a reduction of the random component, but they make big 
demands to the game design, in particular with respect to estimating the odds on first 
hits and eliminations, and the need the assign plausibility values. From a practical 
perspective, Model 1 is the most favourable approach as it can be easily implemented 
by including the options in a node and the number of trials (see equation (4)).  

Some shortcomings of the models should be considered. First, the models assume 
that decision taking is a dichotomous and single select process. However, in many 
training environments multiple solutions are allowed, often rewarded with non-binary, 
partial-credit scores. In such polytomous scoring cases, the calculation of the Random 
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Guess Scores becomes more complex [Draaijer et al., 2018]. Second, the models 
neglect the possibility that the player may never succeed at passing each node. If so, a 
decent serious game would provide guidance, hints or feedback, which in the end 
should be incorporated in the scores. Third, it was assumed that players, never make 
the same mistake again. This is a simplification that may not be applicable in all 
situations. Fourth, gaming the system is a common style of playing, where players try 
to circumvent the obstacles and challenges in the game or deliberately make mistakes 
to explore their effects in the game [Baker et al., 2004]. Such players do not act as 
regular players that want to address the game challenges seriously and learn from these, 
but rather aim to discover the bypasses in the game. Consequently, their assessments 
and learning fail. Fifth, although each serious game design should be tuned to the 
knowledge level of its target group, it will be hard to accurately estimate the probability 
P(K) for each player separately. Even though it may be wise to include some easy 
challenges (exposing obviously correct and/or incorrect alternatives) for motivational 
purposes, they should best be excluded from the performance measurement. Finally, 
defining the plausibility values may be a difficult task, because the plausibility of 
options as perceived by players may be dependent on the preceding events and their 
individual trajectories in the game. Still, in most cases the effects of plausibility 
differences has shown to be small. 

Altogether, this study has shown that incorporating the number of trials in the score 
assignment is essential, and that a formula as simple as equation (4) from Model 1 
offers an efficient solution that compares with more complex solutions from Model 2 
and Model 3. A final comment is that the considerations, although they focussed on 
serious games, have significance in the wider field of multiple choice testing and 
assessment.  
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