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Abstract: The level of air pollution in smart cities plays a critical role in the community’s health 
and quality of life. Thus, air pollution forecasting would be beneficial and would guide citizens 
in avoiding exposure to dangerous emissions. The air health of a place can be diagnosed by close 
observation of the AQI (Air Quality Index) of that place. Moreover, the AQI of a place may have 
some influence on the pollutant concentration of the neighboring places. To address this issue, 
this work introduces a hybrid deep learning framework that is able to predict the values of a 
corresponding metric: AQI of smart cities. As a part of this work, two algorithms are proposed. 
The first one replaces the missing values in the dataset and the second one formulates the 
influence of the nearby places’ pollutant concentrations on the air quality of a particular place. A 
deep learning-based forecasting model is also proposed by combining 1D-CNN and Bi-GRU. To 
test the applicability of the framework, a large-scale experiment is carried out with the real-world 
dataset collected from New South Wales, Australia. Experimental results validate that the 
proposed framework provides a stable forecasting result, it confirms that the AQI of a place gets 
affected by the pollutant concentration of the nearby places and the comparison of forecasting 
result with the existing state of the art models shows that the proposed model outperforms the 
other models. 
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1 Introduction  

Modern urbanization and the smart city concept resulted in major dependency on 
advanced technologies to guarantee the quality of life to the citizens [Rouse, 2019]. 
There are several challenges that are to be faced every moment by the residents of smart 
cities. Some of them are like water pollution, lowering in water levels, polluted 
environment, noise pollution, security issues, and many more. Smart cities are the worst 
sufferers of air pollution which are caused by unrestricted industrialization as well as 
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the increase in the means of transportation means. To get rid of this worsening 
environmental condition, one may prefer to avoid the severely polluted zones in the 
cities and plan their way out. The policymakers may also prefer to have a hint of 
pollution beforehand so that they can take necessary steps that will guide the citizens 
to avoid the polluted areas in the cities. Predicting air pollution is thus a very important 
task. AQI is a standard indicator for assessing the air health of a place at a specific time. 
Many researchers are proposing many ways to forecast air pollution from a smart city 
perspective.  

With the advancement of technologies, two efficient approaches came in. Those 
are machine learning and deep learning approaches. Some of the popular ML 
approaches like SVR (Support Vector Regressor), ARIMA (Auto-Regressive 
Integrated Moving Average) have delivered their remarkable contributions to air 
pollution forecasting. For the successful deployment of deep learning architectures a 
large volume of the historical dataset is necessary. Recent up-gradation of technology 
has allowed having these kinds of datasets with the help of IoT and Big data, especially 
in smart cities where much-developed technologies and networks are deployed for 
different purposes for the betterment of smart cities. Deep learning caters to more 
accurate prediction results than machine learning [Gamboa, 2017]. Among all deep 
learning constructs, RNN (Recurrent Neural Network) had gained popularity as it had 
excellent time-series data handling capabilities and has a better ability in temporal 
feature extraction. Besides many interesting features, RNN suffers from vanishing 
gradient problems and exploding gradient problems. RNN cannot address the long-term 
dependencies, which is very important in prediction-related works. To subside the 
problems of RNN, two variations of RNN were deployed. They are GRU (Gated 
Recurrent Unit) and LSTM (Long Short Term Memory). These two constructs have 
memory units and they are experts in handling long-term dependencies. GRU also 
exhibits better prediction results [Gao et al., 2019]. In recent days another deep learning 
architecture came into practice, named CNN (Convolution Neural Network). CNN has 
remarkable success in image classification [Wei et al., 2015]. CNN has automatic 
feature extraction as well as parameter sharing capacity. One of the variations of CNN 
is 1D-CNN (1 Dimensional Convolution Neural Network). 1D-CNN has shown 
satisfying results in time-series analysis [Du et al., 2021]. In the last three years, hybrid 
models have been used where several deep learning architectures have been deployed. 
The resultant model enjoys the benefits of its basic building blocks. The hybrid 
architectures exhibit better prediction accuracy [Du et al., 2021, Tao et al., 2019, Zhu 
et al., 2017]. Reviewing the related works, it is observed that several challenges lie in 
these fields which have not yet been considered. Most of the works concentrate on the 
pollutant concentration and/or meteorological factors of a given place to forecast the 
AQI of that place. The neighboring places’ pollutant concentration and meteorological 
factors’ influences are not addressed yet, though it is possible that these are related. The 
dataset bearing several missing values is to be properly managed to get a more perfect 
prediction result, which is another area to be considered a challenge. In this regard, this 
paper focuses on the prediction of the air pollution of a place in a smart city, based on 
the above factors. More specifically, it aims to provide answers to the following 
research questions: 
1. RQ1: Is the air quality of a place affected by the pollutant concentration and 
meteorological factors of the nearby places? 
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2. RQ2: How can deep learning methods are utilized in predicting corresponding Air 
Quality Index values? 

Both these questions need to be answered because community health is affected by 
air quality factors [Che et al., 2020, Leng et al., 2020]. In [Rehena and Janssen, 2019] 
the promises of the smart city infrastructures are listed. While in [Schürholz et al., 
2020], similar problems related to smart cities are elaborated upon. For searching the 
answer of RQ1, an algorithm is designed (in Section 3.5) and it is tested through proper 
experimentation with a positive outcome (Section 5.3). Concerning RQ2, an advanced 
hybrid deep learning-based air pollution forecasting framework is proposed. The 
framework is called “Deep Learning-based Air Quality Prediction Framework 
(DLAQPF)”. Initially, DLAQPF constructs a combined dataset from a local station and 
its neighboring stations. This combined dataset is then fed into the hybrid prediction 
model which comprises a stack of 1D-CNN and a stack of Bi-directional Gated 
Recurrent Unit (Bi-GRU). There are several facts responsible for the decision to choose 
GRU and CNN as the primary constructs. GRU requires less training time because it 
has fewer gates. Bi-GRU consists of two ordinary GRUs. This unit can address both 
way dependencies in time-series data. 1D-CNN performs better in automatic feature 
extraction without human interference. It avoids pre-training which speeds up the whole 
training process. 1-D CNN is also capable of parameter sharing. 1D-CNN has an 
outstanding dimension reduction capability.  

In the proposed work, the following key contributions are done: 
1. Air quality prediction framework is proposed for a smart city. 
2. An imputation algorithm is designed to deal with the missing values. 
3. Dataset dimension is reduced through correlation analysis and an algorithm to 
determine the influence of pollutant concentration of neighboring places for predicting 
the AQI of a place is framed. 
4. As a part of the air quality prediction framework, a hybrid deep learning model is 
developed by combining two deep learning architectures, such as stacked 1D-CNN and 
stacked Bi-GRU.  

The rest of this paper is organized as follows: Section 2 contains some background 
surveys carried out to formulate the task altogether. Section 3 contains the research 
methodology of the proposed work that concludes with the definition of the framework. 
Section 4 demonstrates an experiment to validate the applicability of the framework. In 
Section 5, the results which are yielded after experimentation are explained and briefly 
discussed. Finally, Section 6 contains conclusions and some future thoughts. 

2  Literature Review 

Predicting air pollution in smart ensures the good health of its citizens. It helps in 
policymaking and individual decision-making. Several researchers are working in this 
field. Broadly, the methods can be categorized into two approaches namely: non-
machine learning approaches which include a statistical or numerical method, and 
machine learning approaches. The statistical-numerical method is a good old method 
as used in [Lee et al., 2015, Vardoulakis et al., 2003, Zhang et al., 2012]. With the 
advancement of computational power and emerging IoT technology in smart cities, a 
large volume of sensor data is easily available. It motivates the researchers to deploy 
deep learning approaches in time-series forecasting problems. In recent times numerous 
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machine learning [Martínez-España et al., 2018] and deep learning-based research 
works are done for predicting air pollution [Bekkar et al., 2021]. Many researchers have 
proposed some forecasting techniques using trending technology like IoT [Minoli et 
al., 2017]. [Wu and Lin, 2019] have framed an AQI forecasting technique by deploying 
LSTM in it. In [Liu et al., 2021b, Wang et al., 2019], the historical smog data are used 
to forecast the smoke probability using an algorithm based on LSTM and GRU. In, 
[Yang et al., 2016] the researchers used the wavelet analysis method to forecast air 
pollution concentration in [Liu et al., 2021a]. Wavelet analysis method is also used in 
[Yang et al., 2016] to decompose SO2, finally using the Fourier curve, a better 
prediction result is accomplished. In [Qianrao, 2016] and [Donnelly et al., 2015] the 
authors preferred regression techniques for efficient forecasting of haze and air 
pollution respectively. With the advancement in technology, the deep learning concept 
has already proved its efficiency in many research works. A weather prediction model 
was proposed by [Ren et al., 2021] using deep learning constructs. A comparative study 
among the performances of various deep learning approaches to predict air pollution in 
smart cities is formulated in [Ameer et al., 2019]. In [Ghose and Rehena, 2021], a Deep 
Long Short Term Memory Model (DLSTM) is proposed to predict the air quality where 
the authors considered the pollutant concentrations of a place to predict the AQI of that 
place. A hybrid deep learning model is suggested in  [Du et al., 2021] and to predict air 
pollution Deep Air Quality Forecasting Framework (DAQFF) model is proposed. In 
this paper, the air quality data is highly dynamic and its non-linear nature is focused 
upon. In this paper, the authors considered the spatial-temporal behaviour of air quality 
data. CO2 is one of the major pollutants. CO2 concentration is predicted using a machine 
learning approach in [Deleawe et al., 2010]. In [Yi et al., 2018], the researchers 
proposed methods to forecast air pollution using big data concepts. In [Verma et al., 
2018] the air quality data in every 6th, 12th, and 24th hours are captured from the 
sensors and air pollution is predicted using another deep learning model named Bi-
directional LSTM. In [Kurt et al., 2008], the authors proposed a neural network-based 
solution to predict the concentration of three major air pollutants like SO2, PM10, and 
CO for the next three days. In [Tao et al., 2019], the Convolution-based Bi-directional 
Gated Recurrent Unit (CBGRU) model is proposed using a combination of 1D-CNN 
and Bi-GRU to predict the PM2.5 using the Beijing dataset. [Zhu et al., 2017] 
introduced a hybrid air pollution forecasting model, which is also deployed on the 
Beijing dataset. 

By reviewing the existing works, it has been observed that different researchers 
formulated their works using statistical or numerical techniques in earlier days, later, 
the researchers concentrated on machine learning, deep learning, and hybrid deep 
learning architectures to predict the air quality of a particular place more accurately. 
Whatever architectures they had used, they focused on predicting the air quality 
depending upon the most influencing pollutant agent or by considering the pollutant 
concentration and/or the meteorological factors of the place for which they wanted to 
predict the air health. But, none of them considered the effect of the concentration of 
pollutants in the nearby places to forecast the AQI of a specific place. In this paper, to 
predict air pollution in a locality, a unique framework named DLAQPF is proposed. 
The framework focuses on the dataset comprising meteorological data as well as 
pollutant concentrations of a particular place and its nearby places. At the same time, it 
formulates the influence of the pollutants of nearby places to predict the AQI of that 
place. As part of this framework, a hybrid forecasting model is proposed by combining 
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1D-CNN and Bi-GRU deep learning architectures. This model is influenced by the 
model CBGRU proposed in [Tao et al., 2019]. In comparison with CBGRU, in the CNN 
block of the proposed hybrid forecasting model, instead of one 1D-CNN layer, a series 
of three 1D-CNN layers are deployed to extract more complex local features and a drop 
out layer is introduced to deal with the overfitting problem. In the GRU block also three 
layers of Bi-GRU are used to learn both ways long-term temporal dependencies instead 
of two layers of Bi-GRU. 
 

3 Proposed Methodology 

In this section, the detailed methodology of the proposed work is described. First, the 
motivation and problem statement of the work is explained followed by other 
subsections. In the subsequent subsections the overview of the proposed work is 
discussed, later the missing value problem is resolved, next, as a part of the work the 
correlation analysis is carried out, the influence of the neighboring stations is evaluated 
and finally the hybrid prediction model is explained in details. 

3.1      Problem Statement & Motivation 

Predicting air pollution in a smart city is a challenge nowadays. Air pollution 
forecasting leads to ensuring good environmental ambiance and thus provides better 
health to the citizens. To forecast air pollution, a strong dataset is needed. The dataset 
consists of the observations related to pollutants and the meteorological factors in the 
air. The observation is recorded as per the data collected by the sensors installed in the 
environment. Usually, the data comprises hourly observations. The concentrations of 
pollutants like PM2.5, PM10, SO2, NO2, NO, CO2, O3, C6H6, NH3 are predominantly 
recorded. Temperature, humidity, wind speed, wind direction, solar radiation, snowfall, 
rainfall are also kept in the record. Thus, the pollution-related dataset is multivariate 
time-series data. The air quality of a place can be ascertained by taking these factors 
into consideration. The existing works have addressed the prediction-related problem 
efficiently, but some challenges are yet to be addressed. The previous works were 
centred on the AQI prediction by focusing on the pollutant concentration and 
meteorological factors of that place only. It is a challenge to address the influence of 
the surrounding places’ pollutant concentration in predicting the AQI of a place.  
Another challenge is to consider the temporal both-way dependencies of the time-series 
data. The main objective of this work is to develop a robust deep learning-based 
forecasting model that will be able to predict the air health of a place more accurately 
by considering the pollutant concentrations of the nearby places. 

3.2      Overview of the proposed work 

In this study, a deep learning-based air quality prediction framework (DLAQPF) has 
been proposed. The flowchart of the DLAQPF is represented in Figure 1. This 
framework consists of four phases, such as missing data imputation, neighboring 
places’ impact determination, correlation analysis, and deep learning model 
construction. In the missing data imputation phase, a seasonality-based imputation 
algorithm is proposed to impute the missing values more accurately. In the next phase, 
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the impact of nearby places’ PM2.5 concentration is determined to predict the AQI of 
a place. In the correlation analysis phase, the correlation between the pollutant 
concentrations and the meteorological factors is calculated to refine the dataset without 
losing its impact on AQI calculation. Lastly, a hybrid deep learning-based model is 
constructed by combining 1D-CNN and Bi-directional Gated Recurrent units (Bi-GRU) 
architectures to predict the AQI.  

 
Figure 1: Flowchart of the proposed deep leaning based air quality prediction frame 

work. 

In this work, the following dataset is used. The description of it is provided below.  
– Dataset Description: In this work, six places in New South Wales, 

Australia are considered depending on the availability of the dataset, as depicted in 
Figure 2. Among these six places, one is selected as the local station and denoted by 
S_L, and the five other stations are taken as neighboring stations of S_L and are 
denoted by S_Ns. Here, Rozelle is considered to be S_L. Richmond, St. Marrys, 
Bringelly, Liverpool, and Randwick are the neighboring stations considered as S_Ns. 
The dataset from these six places are collected individually and they consist of two 
types of parameters: 

– Pollutant concentrations. 
– Meteorological factors. 
The dataset is consisting of the concentration of PM10(pphm), PM2.5(pphm), 

CO(pphm), NO(pphm), NO2(pphm), SO2(pphm), and O3(pphm) and meteorological 
factors like wind speed(m/s), rainfall(mm/m2), wind direction(°), humidity(%),, and 
temperature(°C). The dataset bears data from 01/01/2018 01:00 pm to 31/12/2020 
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01:00 pm. The total number of data operated here is exactly 26,280. It consists of data 
on an hourly basis. The dataset is collected from [NSW, 2022]. 

 
Figure 2: Location of data capturing stations. [AustraliaNewSouthWales, 2022, 

Direction, 2022, Worldmap, 2022] 

 The time-series dataset consisting of the pollutant concentration and 
meteorological factors (from 20.02.2018 12:00 hours to 06.05.2018 11:00 a.m.) are 
plotted in Figure 3. By a close observation of each of the graphs, it is noted that the 
time-series data is repeating its pattern in a fixed time interval. From this, it can be 
ascertained that the time-series data has some kinds of seasonality, namely: 

– Daily seasonality 
– Weekly seasonality 

The air quality factors, if minutely observed in Figure 3, are repeating their pattern on 
a daily basis. It means every day the value of air health related factors remains almost 
the same at specific time stamps.  Moreover, it is also observed that the pattern on a 
particular day’s particular hour is being repeated the same day’s specific hours in every 
week. The autocorrelation coefficient of the air quality factors also confirms the 
seasonality factor of the time-series dataset. 

3.3      Missing Value Replacement 

While collecting and preparing the dataset, it is observed that some data values are 
missing. Missing values are those values, which are not present in the dataset. The 
missing value problem may be caused due to many reasons like inappropriate method 
of data collection or mistakes committed at the time of storing the data, or the 
inability/failure of one or more sensors to capture data. Whatever be the cause, the 
consequences have a severe impact on the expected output. Here, the dataset is also 
suffering from a missing value problem. After analyzing the dataset, it is seen that there 
are two types of problems. One, the data is absent for a particular hour, and second, the 
data values are absent for more than one consecutive hours. There are numerous 
methods for missing value replacement. Here, a seasonality-based imputation algorithm 
is proposed to replace the missing values within the dataset and as described in 
Algorithm 1. Here, from statistical analysis of the dataset, it is observed that there are 
weekly and daily seasonality in the dataset as shown in Figure 3. So the data of a 
particular time of a day is most likely to be the same as the data of the previous week’s 
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same day same hour, and also the next week’s same day and time. That means the data 
of a particular hour is in all probability to be the same as the data of 168th hour before 
and after. So, in this algorithm, the seasonality parameter θ is considered as 168 
(24 × 7 = 168).	Here for the proposed seasonality-based imputation algorithm, this 
concept of seasonality is applied. In this proposed algorithm, two types of missing 
values are handled viz. single hour missing value and consecutive hours’ missing value. 
If a value of a time-series Di at the timestamp j is missing, and the value for the 
timestamp (j - 1) and (j + 1) is present then the imputed value DMi,j is calculated by 
using the following formula: 

𝐷𝑀!,# =
$!,#$%%$!,#&%

&
      (1) 

 

 
Figure 3: Graphical representation of each of the pollutant and meteorological 

factors from 20.02.2018 12:00hours to 06.05.2018 11:00a.m. 
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On the other hand, if a value of the time-series Di is missing for the timestamp j and the 
value Di,j+η (η=1, 2, …, ν) is also missing, where ν ≥ 1, the imputed value DMi,j is 
determined by using the following formula: 
𝑀𝑒𝑎𝑛' =

'
(%
𝐷!,)   ; ∀	Di.p	≠	null,	(p=	(j-168),	(j-2⨉168),…	,	(j-s1⨉168))	 (2)	

𝑀𝑒𝑎𝑛& =
'
('
𝐷!,*  ; ∀	Di.q	≠	null,	(p=	(j+168),	(j+2⨉168),	…,	(j+s2⨉168))	 (3)	

𝐷𝑀!,# =
'
&
(𝑀𝑒𝑎𝑛' +𝑀𝑒𝑎𝑛&)      (4) 

Here δ1 is the total number of non-missing data (Di,p) and (j - s1 ⨉168) > 0.  δ2 represents 
the total number of non-missing data (Di,q ) and (j +s2 ⨉168) ≤ N. Table 1 shows the 
notations that are used in Algorithm 1. 
 

Symbol  Meaning 
Dij jth. Data of the Dith. time-series 
DMij jth. Data of the DMith time-series 
N Number of input time-series 
M Number of data points in each time-series 
θ  Seasonality parameter 

Table 1: Notation used in Algorithm 1. 

_____________________________________________________________________ 

Algorithm 1 Seasonality-based imputation algorithm 
Input: time-series D1,D2,…,…,DN 
Output: Modified time-series DM1, DM2, …, …, DMN 

1. i←1 
2. while i ≤ N do 
3.           for j←1 to M do 
4.                DM i,j ← Di,j 
5.                if ( j≠1 and j ≠ N ) and ( Di,j = NULL and Di,j-1 ≠ NULL and Di,j+1 ≠ 

NULL ) then 
6.                 DMi,j ← ( Di,j-1 + Di,j+1 ) / 2 
7.                else if Di,j = NULL and Di,j+1 = NULL then 
8.                           k ← j - θ 
9.                           count ←0 
10.                            sum ← 0 
11.                            while k > 0 do 
12.                                          sum ← sum + Di,k 
13.                                          count ←count + 1 
14.                                          k ← k – θ 
15.                                end while 
16.                                k ← j + θ 
17.                               while k ≤ N do 
18.                                      if Di,k ≠NULL then 
19.                                         sum ← sum + Di,k 
20.                                         count ← count +1 
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21.                                       end if 
22.                            k ← k + θ 
23.            end while 
24.          DMi,j = sum / count 
25.                        end if 
26.              end for 
27.         i ← i + 1 
28. end while  

3.4      Correlation Analysis 

To work with multivariate time-series data the complexity of the work becomes higher 
when the number of parameters is large. To reduce the complexity of the input and 
discard the undesirable overheads it is important to concentrate on the factors which 
are influencing the AQI of that place [Ghose and Rehena, 2020]. For reducing the 
dataset, a correlation among the pollutants is established. Later the same is done with 
the meteorological factors also. To calculate the correlation the following formulae is 
used: 

𝑹 = (𝑵∑𝑨𝑩0(∑𝑨∑𝑩))

23𝑵∑𝑨𝟐0(∑𝑨)𝟐4(𝑵∑𝑩𝟐0(∑𝑩)𝟐)
    (5) 

Where, N= Number of pairs, A and B are individual sample points. 
To get the refined dataset, the correlation among the pollutants is calculated as shown 
in Figure 4a. The highly correlated pairs are considered and one of the highly correlated 
pollutants is discarded. A close look at the correlation matrix in Figure 4a shows PM10 
is highly correlated with PM2.5 and CO. From this set, PM2.5 is chosen and PM10 and 
CO are discarded. Similarly, NO2 is highly correlated to NO, so from this pair, only 
NO2 is chosen. SO2 and O3 are pollutants that are not remarkably correlated to any other 
pollutants. So, both of them are taken into the effective dataset. Ultimately, the refined 
dataset consists of pollutants like PM2.5, NO2, SO2, and O3. In the same way, the set of 
meteorological factors are focused on to frame the concise dataset. For this, the 
correlation among the meteorological factors is calculated as shown in Figure 4b. As 
the matrix shows, TEMP and SOLAR are highly correlated, so discarding the SOLAR, 
only TEMP is taken in the refined dataset. There is a high-level correlation between 
SD1 and WSP, so leaving the SD1 behind, the WSP is considered. HUMID, RAIN, and 
WDR are not correlated with the other meteorological factors, so all of them are 
included in the dataset. Finally, the concise meteorological dataset comprises TEMP, 
HUMID, WDR, RAIN, and WSP. 
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               (a) 

 
                         (b) 

Figure 4: (a) Correlation among pollutants, (b) Correlation among meteorological 
factors. 

Both the pollutant concentration and meteorological factors are considered to predict 
the AQI of the S_L. The AQI of the S_L is calculated considering the following formula 
as mentioned in [USEPA, 2020] 

𝑆𝐼𝑝 = E (56)*056+,)(78)*078+,)
∗ (𝐶𝑂8 − 𝐵𝑃9:)L + 𝑆𝐼9: (6) 

Here, COp= the concentration of the pollutant p. 
SIp = the Sub-index of a specific pollutant concentration COp. 
BPHI = the Breakpoint concentration greater than or equal to the given concentration. 
BPLO = the Breakpoint concentration less than or equal to the given concentration. 
SIHI = the AQI value corresponding to BPHI. 
SILO = the AQI value corresponding to BPLO. 
Finally, 

𝐴𝑄𝐼 = 𝑀𝑎𝑥(𝑆𝐼8)    (7) 
Where, p=1, 2, 3,..., n; denoting n pollutants. 
Here, the sub-index of a specific pollutant concentration COp is calculated according to 
the formula mentioned in Equation 6. After calculating the sub-indices of all the 
concerned pollutant concentrations, the AQI of a particular place is determined by 
finding out the maximum sub-index calculated for a specific pollutant concentration; 
as mentioned in Equation 7. 

Here to find the impact of the historical AQI value on the current AQI value, the 
autocorrelation function (ACF) is evaluated on the AQI time-series. If the correlation 
is determined to measure the interrelationship between lagged values of a time-series 
itself, it is called autocorrelation. For a time-series Xi(i = 1, 2, …, N), the 
autocorrelation function for the lag period l is defined as follows: 

𝜆; =
<=>(?!,?!$-)

@ABC(?!)ABC(?!$-)
     (8) 

Where, l = a, 2, …, N,  



810    
 

Ghose B., Rehena Z., Anthopoulos L.: A Deep Based Air Quality ... 

Here, l and N represent the lag period and length of the time-series respectively. The 
cov(Xi,Xi-l) denotes the covariance of Xi and Xi-l. The var(Xi) and var(Xi-l) represent the 
variance of Xi and Xi-l respectively. 

The autocorrelation graph of the AQI time-series for the lag period of l (l = 1, 2, 
…, 30) hours is shown in Figure 5. From this figure, it can be seen that there is a 
constant decrease in ACF up to 19 hours lag, then after it starts increasing up to 24 
hours lag. From the 25th hour lag, it again starts decreasing up to 30 hours lag. For this, 
it can be concluded that there are a 24 hours seasonality pattern exists in the AQI time-
series. So, in this study, to predict the (i + 1)th hour AQI current 24 hours (Xi-23; Xi-22; 
…, Xi) data is considered. 

 
Figure 5: Autocorrelation function graph of the AQI time-series for 30 hours lag. 

3.5      Evaluating the Influence of Neighboring Areas 

In the recent research work [Liu et al., 2019], it has already established that AQI of a 
particular place  indicates the air health of a specific place. In this letter, whether there 
is an influence of the pollutant concentration and meteorological factors on the AQI of 
the neighboring places (S_Ns) has been investigated. To validate this fact, here a 
neighboring place’s impact (NPI) algorithm is proposed, which is presented in 
Algorithm 2. This algorithm will help in showing the influence of the air of S_Ns on 
predicting the AQI of S_L. Among the pollutants of S_Ns, here PM2.5 has been 
considered to calculate the AQI of S_L, as PM2.5 is the highest influencing factor to 
calculate AQI [Honarvar and Sami, 2019, Kim et al., 2015]. The notations which are 
used in the algorithm are shown in Table 2.  

This algorithm generates a multivariate time-series datasets Yi with two parameters 
such as a timestamp (T) and a PM2.5 concentration (P) for each of the neighboring 
places S_Ni (i = 1, 2, …, a), where a is the number of neighboring places. Let us consider 
that the direction of a neighboring place S_Ni with respect to S_L is ξ. If at the 



   811 
 

Ghose B., Rehena Z., Anthopoulos L.: A Deep Based Air Quality ... 

timestamp t the wind is flowing from S_Ni to S_L with the angle of (ξ±11:25)° and the 
wind speed WS(m/s) is greater than the threshold value ϕ, then the PM2.5 concentration 
of Y (Pi,t+tm) for the timestamp (t + tm) is calculated as follows: 

𝑡𝑚 =	 ⌊ '
DEFF

( 9
5_H!(I5.)

)⌋	 	 	 	 (9)	
𝑌(𝑃!,J%JK) = 𝑆_𝑁!(𝑃J)     (10) 

Here, tm is the time required to reach the PM2.5 concentration from S_Ni to S_L, L 
represents the distance between S_Ni and S_L. S_Ni(WSt) and S_Ni(Pt) represent the 
wind speed and PM2.5 concentration of S_Ni respectively. The threshold value of the 
wind speed ϕ is dependent on the distance (L) between the S_L and S_N, and the time 
required to reach the PM2.5 concentration from S_N to S_L. Here to get the final 
threshold value ϕ, the NPI algorithm is simulated with various threshold values ranging 
from WSlow to WShigh, where WSlow and WShigh are the lowest and the highest wind 
speed (m/s) of S_N respectively. The threshold value for which the DLAQPF produces 
the best prediction result is considered as the final threshold value ϕ of the proposed 
NPI algorithm.  

Now, all these newly generated time-series datasets Yi(i = 1, 2, … , a) from all the 
S_Ns are combined with the dataset of S_L based on the matched timestamp to form 
the input dataset. In the rest of the experiments, this newly generated input dataset is 
considered. 

 
Table 2: Notation used in Algorithm 2. 

 
Algorithm 2: Neighboring place’s impact (NPI) algorithm 
Input: Multivariate time-series S_N {T, P, WD, WS}, ξ and L 
Output: Multivariate time-series Y {T, P} 

1. for t =1 to M do 
2.      Yt,1 ← S_N ( Tt)  
3.      Yt,2 ← 0 
4. end for 
5. t ← 1 
6. while t < M do 
7.            if (S_N (WD) ≥ ξ – 11.25 and S_N (WD) ≤ ξ +11.25 then 
8.      if (S_N (WS) > ϕ ) then 
9.       tm ← INT (L/(S_N(WS)/3600)) 
10.         Y t+tm,2 ← S_N(Pt) 
11.      end if 

Symbol  Meaning 
ξ Direction of S_N with respect to S_L 
ϕ Threshold wind speed 
L  The distance between S_N and S_L 
T  Timestamp of each data item of S_N 
P  Concentration of PM2.5 
WD  Wind direction 
WS  Wind speed 
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12.            end if 
13.            t ← t + 1 
14. end while 
15.  

3.6      Hybrid Prediction Model 

The final input dataset of the model consists of meteorological data such as temperature 
(TEMP), humidity (HUMID), wind direction (WDR), rainfall (RAIN), and, wind speed 
(WSP), and the AQI of the local station S_L. It also includes the influence of S_Ns’ 
PM2.5 concentrations. The detailed architecture of the proposed hybrid prediction 
model is presented in Figure 6. The model consists of two major blocks, the first one is 
CNN (Convolution Neural Network) block and the second one is a GRU(Gated 
Recurrent Network) block. Finally, the output is generated from the GRU block. The 
two major blocks of the model are described below: 

3.6.1     CNN Block 

CNN architectures are excellent for their feature extraction capabilities from the input 
patches. For that reason, they have produced remarkable success in image processing 
[Lee and Kwon, 2017]. The CNN can also be enforced in time-series forecasting 
problems. The recent research [Yang et al., 2015] also proved that it exhibited good 
performance in analyzing the time-series data. One of the variants of the traditional 
CNN, one dimensional CNN (1D-CNN) is deployed for air quality time-series 
forecasting problems. 

In the proposed hybrid forecasting model, the CNN block consists of three 
consecutive layers of 1D-CNN layers, a dropout layer, and a flattened layer. Each 1D-
CNN layer comprises convolution sub-layer, activation sub-layer, and pooling sub-
layer. Each convolution sub-layer uses a convolution window to process the 
meteorological and pollutant time-series data to learn the sequence chunk within each 
input window. In this way, the convolution sub-layer extracts the local trend features 
from the input multivariate time-series dataset. Then, in the activation sub-layer, the 
ReLU activation function is applied to the features matrix to increase the nonlinearity 
of the output. After that, the pooling sub-layer is used. In this layer, the MaxPooling 
function is used to subsample the input features matrix by selecting the maximum 
values from the input features matrix. The functions performed by each CNN layer are 
expressed as follows:  

 
𝑭𝒋
𝒑 = ∑𝑿𝒋

𝒑0𝟏⨁𝑷𝒋,𝒌 + 𝒇𝑾𝒌
𝒑      (11) 

𝒀𝒋
𝒑 = 𝑹𝒆𝑳𝑼(𝑭𝒋

𝒑)      (12) 

𝑿𝒊
𝒑 = 𝑷𝒐𝒐𝒍(𝒀𝒋

𝒑) ,     (13) 

where X= the input, P=Filter, W=Bias, p=Number of layers, ⨁= Convolution 
operation. 
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Here three 1D-CNN layers are deployed to learn the local trend features. Each layer 
takes the output from the previous layer and learns the non-linear representation. Then 
it passes these learned features to the next layer. After the three consecutive 1D-CNN 
layers, there is a dropout layer. This dropout layer is introduced to remove some of the 
randomly selected parameters to overcome the overfitting problem. Then the fully 
connected layer is used to convert the higher-order feature matrix into a feature vector. 
That feature vector is fed as the input to the GRU block. So, the CNN block not only 
captures the trend features from the multivariate time-series dataset but also assimilates 
the spatial correlational features. 

Besides the spatial and local trends features extraction capabilities of 1D-CNN, its 
weight-sharing features reduce the number of learnable parameters for processing the 
multivariate time-series dataset. And that helps to improve the learning efficiency of 
the model. Thus, the CNN block can learn more rooted features from the air quality 
time-series dataset. 

 
Figure 6: Detailed description of the hybrid prediction model. 

3.6.2      GRU Block 

In this GRU block, three layers of bi-directional gated recurrent unit (Bi-GRU) 
followed by a dropout layer and a fully connected layer are used for the prediction of 
AQI. It is a known fact that the recurrent neural network (RNN) is specially developed 
to handle sequential data. But the RNN suffers from the vanishing gradient and 
exploding gradient problem, and due to these problems, it cannot learn the long-term 
dependencies that exist in the time-series dataset. To solve these problems, two variants 
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of RNN have been developed. These variants are LSTM and GRU. The LSTM can 
learn the long-term dependencies of the time-series data through its memory cell which 
comprises three gates (input gate, forget gate, and output gate) [Hochreiter and 
Schmidhuber, 1997]. The GRU can also learn the long-term dependencies [Bahdanau 
et al., 2014]. Unlike LSTM, it does not have any memory cell, instead, it has two gates 
(update gate and reset gate). Due to this simple structure, the GRU architecture has 
fewer trainable parameters, and its training process is faster compared to the LSTM 
architecture. Recent research work [Shewalkar, 2019]  also proved that the performance 
GRU is commensurate with LSTM. The operation performed by the GRU unit is 
expressed as follows: 

𝑔J = 𝜔(𝐾Q ∗ [𝛽(𝑡), 𝛼(𝑡 − 1)])    (14) 
𝑟𝑠J = 𝜔(𝐾CR ∗ [𝛽(𝑡), 𝛼(𝑡 − 1)])    (15) 
ά(𝑡) = 𝜔(𝐾S ∗ [𝛽(𝑡), 𝑟𝑠J ∗ 𝛼(𝑡 − 1)])   (16) 
𝛼(𝑡) = (1 − 𝑔J) ∗ 𝛼(𝑡 − 1) + 𝑔J ∗ ά(𝑡),   (17) 

where 𝑔J is representing the update gate, 
ω denotes the activation function,  
α(t) and α(t-1) are representing the input and the previous output respectively,  
rst  represents the reset gate, and 
𝐾Q, Krs, Kα are the denoting the weights of the update gate, reset gate and candidate 
output respectively. 

The air quality time-series data can have both forward and backward long-term 
dependencies. But the ordinary GRU can only learn the long-term forward 
dependencies. The Bi-GRU is a variant of standard GRU architecture. It can preserve 
both the long-term dependencies of the time-series data. This Bi-GRU consists of two 
ordinary GRUs, where the first GRU processes the time-series in the forward direction 
(t = 1 to T), and the other GRU processes the time-series in the backward direction (t = 
T to 1). In this way, the Bi-GRUs can extract more useful information that helps to 
improve the prediction performance of the model.  

Here in this GRU block, a series of three Bi-GRU layers are used. Pipelining of Bi-
GRU exhibits high efficiency [Li et al., 2018, Lynn et al., 2019]. One Bi-GRU in the 
GRU block receives the output of another Bi-GRU. In this way, three Bi-GRUs are 
connected. This kind of alignment helps in extracting higher-order features of the 
temporal dataset. The pipelining of Bi-GRU delivers the output to the next layer i.e. a 
dropout layer. The dropout layer randomly selects and discards some features that 
ultimately overcome the overfitting problem. The next layer in the GRU block is a fully 
connected layer, which produces the final output. The AQI of the S_L is the final output 
of this model. 

4 Experiment 

All the experiments related to this proposed framework are done on a PC with Intel(R) 
Core (TM) i3-8130U CPU 2.20 GHz, having a 64-bit operating system x64-based 
processor and memory of 4.00 GB. To perform all the experiments the Python 
programming language is used. Keras, the open-source deep learning library, has been 
to make the foundation of a hybrid prediction model. 
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4.1      Experimental Setup 

This work aims to forecast the AQI of S_L one hour ahead by using the meteorological 
factors and pollutant concentration of the S_Ns. To be specific, here, the previous 24- 
hours’ data are used to predict the AQI of the 25th hour. To carry out this experiment a 
total of 26,280 data are used. Within the dataset 80% (21,024 data samples) is used for 
training purposes and the remaining 20% of the data (5,256 data samples) is used for 
testing purposes. Data normalization is an important step to be followed for a successful 
and flawless experiment. Data normalization is important as it discards the unwanted 
repetition of data and to some extent it removes different types of anomalies from the 
data. The time-series data is highly dynamic and it varies within a wide range. Due to 
this, the overall learning process slows down. To speed up the learning process and to 
scale the data within 0 and 1, the data normalization process is carried out. Here, the 
Min-Max normalization method is used. This normalization technique linearly 
transforms the data. In this, the minimum and the maximum values from the dataset are 
picked up and are replaced by using the formula as stated:   

𝒏𝒏𝒐𝒓𝒎 = ((𝒉𝒊𝒈𝒉0𝒍𝒐𝒘)∗(𝒏0𝑴𝒊𝒏𝑵))
(𝑴𝒂𝒙𝑵0𝑴𝒊𝒏𝑵)

,    (18) 
where MinN and MaxN are the minimum and maximum values of the attribute N in the 
input dataset.  

By using Equation18, the input value n (an attribute of N) is converted to nnorm. 
In the hybrid prediction model, the model parameters are tuned to get the best result for 
the model. Table 3 represents the parameters used for the proposed hybrid forecasting 
model.  

CNN Block GRU Block  
Epoc

h 
Filter size  

Dropo
ut 

No. of  neurons  
Dropo

ut 
Layer

1 
Layer

2 
Layer

3 
Layer

1 
Layer

2 
Layer

3 
72 72 72 0.6 16 16 16 0.6 5-150 
72 72 72 0.6 32 32 32 0.6 5-150 
72 72 72 0.6 64 64 64 0.6 5-150 
72 72 72 0.6 80 80 80 0.6 5-150 
72 72 72 0.6 128 128 128 0.6 5-150 

  
Table 3: Parameter settings for the proposed hybrid prediction model. 

4.2      Evaluation 

In this section, both the imputation algorithm for replacing the missing values in the 
dataset and the proposed prediction model are assessed to explain their applicability. 

4.2.1 Evaluation of the proposed imputation algorithm for missing value 
replacement 

There are several imputation algorithms already existing. They are widely used in 
replacing the missing values in the datasets. Some of the well-known imputation 
algorithms are the Mean/Mode Imputation algorithm [Tsai et al., 2018], autoregressive 
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imputation algorithm [Bashir and Wei, 2018], maximum likelihood imputation 
algorithm [Enders, 2001], K-Nearest Neighbor imputation algorithm [Batista et al., 
2002] and bagging algorithm [Andiojaya and Demirhan, 2019]. To examine the 
applicability of the proposed imputation algorithm, it is compared with the existing 
imputation algorithms. The results are shown in Table 4. 

4.2.2  Evaluation of the prediction model 

After the construction of any model, it is very important to evaluate its performance. 
Any type of regression model must also go through the evaluation process through 
which the errors of the model can be filtered and a comparative study of the 
performance of the proposed model with the established models can be achieved. For 
evaluating the efficiency of the hybrid prediction model here three evaluation metrics 
are used. These are as follows: 

– MAE (Mean Absolute Error): This error evaluating technique is too 
popularly used to foretell the errors within a time-series analysis. During the 
training, the process to determine the loss function MAE is used. The MAE 
can better showcase the actual scenario of the errors committed during the 
training process of the prediction framework. MAE is calculated as, 
 

                    𝑀𝐴𝐸 = '
H
∑ |𝑋! − 𝑌!|H
!`' 	                (19) 

– RMSE (Root Mean Square Error): It helps in observing the difference 
between the predicted value and the perceived value. A good prediction model 
will always exhibit a smaller RMSE value. So, RSME is calculated as, 
 

𝑅𝑀𝑆𝐸 = u'
H
∑ (𝑋! − 𝑌!)&H
!`'     (20) 

– SMAPE (Symmetric Mean Absolute Percentage Error): This error 
evaluation method evaluates a model by considering percentage errors. So, 
SMAPE is defined using the following formula: 
 

𝑆𝑀𝐴𝑃𝐸 = 'FF%
H

∑ |?!0c!|
(|?!|%|c!|) &⁄

H
!`'  ,   (21) 

 
where Xi=the predicted value, Yi=the actual value, i= every point of observation, N= 
the total number of observations. To determine the effectiveness of our proposed work, 
the same framework is compared with some standard models like: 

– SVR (Support Vector Regressor)  
– Stacked LSTM: Three Bi-Directional LSTM layers are used to analyze both 

the forward and backward time-series data. 
– GRU: Three layers of Bi-GRU are used. 

State of the art models like 
– CBGRU [Tao et al., 2019] 
– DAQFF [Du et al., 2021] 
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5 Results & Discussion 

5.1   Simulation of DLAQPF 

To get the optimal result of the proposed DLAQPF framework, DLAQPF was 
simulated based on the parameter settings presented in Table 3. Figure 7 displays the 
performance graph of the proposed framework DLAQPF with the different number of 
neurons and a varied number of epochs. From there, it is clearly observed that DLAQPF 
is delivering more accurate prediction results with 32 numbers of neurons and if the 
number of the epoch is 16. Here to overcome the overfitting problem, a dropout rate of 
0.6 is used for both the dropout layers of CNN and GRU blocks. For the rest of the 
experiments, these parameter settings are used. 

To get the optimum threshold value of wind speed (ϕ) for each of the 
neighboring stations S_Ni (i = 1, 2, 3, …, a; where a is the number of neighboring 
stations) the DLAQPF is simulated with varying threshold values of wind speeds for 
the Neighboring Place’s Impact (NPI) algorithm. From the experiments the threshold 
value ϕ for the neighboring station Richmond is set to 1.74 m/s, for St. Marry it is set 
to 2.05 m/s, for Bringelly it is initialized to 1.77 m/s, for Liverpool it is finalized to  
1.93 m/s, and for Randwick it is assigned to  1.76 m/s. 

 

(a) RMSE.  

 

 

(b) MAE. 

Figure 7: Performance evaluation (a) RMSE (b) MAE. 
 

5.2      Effectiveness of proposed imputation algorithm for replacing missing values 

To ascertain the effectiveness of the proposed imputation algorithm, randomly 5%, 
10%, 15%, 20%, and 30% data are removed from the multivariate time-series dataset, 
and to replace those missing values, the well-established imputation algorithms are 
used. Depending on the results produced by the prediction model, the RMSE and MAE 
are calculated. Table 4, depicts the performance of various imputation algorithms on 
the removal of those aforesaid portions of data from the dataset. From this table, it can 
be observed that as the percentage of missing values increases, errors of all the 
imputation algorithms increase. Further, its increase in prediction error rates is much 
lower than that of the other imputation algorithms with an increasing percentage of 
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missing values. Whereas the Mean/Mode imputation algorithm produces the worst 
performance and its rate of increase in error rates is higher with the increasing 
percentage of missing values. It can be seen that the proposed Seasonality-based 
imputation algorithm produces the lowest errors (RMSE and MAE) for all the 
percentages of missing values compared to other algorithms except the Bagging 
algorithm. When the missing value percentage is greater than or equal to 15% then the 
Bagging algorithm is performing slightly better than the proposed Seasonality-based 
imputation algorithm. But it can further be observed that when the missing value is 
greater or equal to 15%, its RMSE and MAE are slightly more than that of only the 
Bagging algorithm. From this discussion it can be concluded that the Seasonality-based 
imputation algorithm proposed in this letter is also acceptable for missing values more 
than 10%. The dataset used in this proposed work is having lesse than 10% missing 
values. So the proposed seasonality based imputation algorithm is best suited and in the 
entire experiment the proposed Seasonality-based imputation algorithm is used. The 
reason behind the better performance of the proposed imputation algorithm is that it 
learns the seasonality and handles the missing values accordingly.  

Algorit
hm 

% of missing values 
5% 10% 15% 20% 30% 

RM
SE 

MA
E 

RM
SE 

MA
E 

RM
SE 

MA
E 

RM
SE 

MA
E 

RM
SE 

MA
E 

Mean/
Mode 

3.82
15  

3.08
51  

4.61
13  

4.95
02  

5.99
50  

6.28
39  

6.78
09  

7.24
08  

7.33
69  

8.33
21 

Auto 
regressi
ve 

2.81
12  

2.45
08  

3.36
19  

3.01
46  

3.80
41  

3.98
76  

4.91
12  

5.12
56  

5.74
45  

6.21
41 

Maxim
um 
likeliho
od 

3.14
71  

2.96
13  

3.42
06  

3.48
76  

4.00
19  

4.72
04  

5.48
11  

6.88
72  

6.25
53  

7.11
45 

K-NN 3.20
48  

2.84
40  

3.39
66  

3.50
16  

4.02
83  

4.92
14  

5.52
96  

6.78
21  

6.32
25  

7.52
58 

Bagging 
algorith
m 

2.80
58  

2.31
59  

3.19
67  

2.94
30  

3.69
14  

3.80
49  

4.82
04  

4.95
71  

5.31
59 

 
6.22
14 

Propose
d 
algorith
m 

2.70
61  

2.25
93  

2.84
93  

2.82
45  

3.76
28  

3.96
12  

4.96
14  

5.00
85  

5.42
13  

6.32
81 

Table 4 : Performance evaluation of proposed imputation algorithm. 
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5.3      Performance evaluation considering the air quality of the neighboring places 

Experiments are carried out in two different phases to examine whether there are 
influences of the air quality of the neighboring places in determining the air health of a 
particular place. The two phases are: 

– AQI of S_L is predicted by considering the pollutant concentration of S_Ns. 
– AQI of S_L is predicted without considering the pollutant concentration of 

S_Ns. 
Table 5 shows that when the pollutant concentrations of the S_Ns are considered, the 
experiment shows a better result in predicting the AQI of S_L. On the other hand, it is 
clear that the error rates are higher when the influence of the pollutant concentrations 
of S_Ns is ignored in the diagnosis of air health in S_L. 

Metric RMSE MAE SMAPE 
Considering the influence of the neighboring places 2.7013  2.2730  8.9340 
Ignoring the influence of the neighboring places 3.4621  2.8932  10.8762 

Table 5: Performance comparison with and without considering effects of 
neighboring places.  

5.4     Comparative study with other models 

To evaluate the accuracy of the results delivered by our proposed model DLAQPF, the 
RMSE, MAE, and SMAPE are calculated for all the existing models like SVR, Bi- 
LSTM, Bi-GRU, CBGRU, and DAQFF. Table 6 shows the performance evaluation of 
the proposed model and Bi-LSTM, SVR, Bi-GRU, CB-GRU, and DAQFF. In Table 6, 
it can be seen that the proposed model DLAQPF is committing the least error among 
all the models.  

To be more critical about the prediction models, a comparison with the same 
dataset of New South Wales, Australia is carried out and those performance graphs are 
exhibited in Figure 8. There, the predicted AQI versus actual AQI is plotted. The same 
dataset is applied to the shallow models like LSTM, SVR, and GRU and the two-state 
of the art models like CBGRU and DAQFF. Here, the result is zoomed in for the 1000 
data points. The data point is starting from 02/07/2019 01:00 hours to 12/08/2019 16:00 
hours is shown for each model. From the plotted graphs of the three traditional shallow 
forecasting models Figures 8a, 8b, and 8c it can be observed that shallow deep learning 
models LSTM and GRU are performing better than the traditional machine learning 
model SVR, as, from the three graphs, it is clear that in LSTM and GRU wave peaks 
and wave valleys are agreeing more often than in SVR. So, it can be concluded that the 
shallow deep learning models like LSTM and GRU are better than the shallow machine 
learning model SVR. 

Now, if Table 6 is consulted, it can be seen that GRU always has the lowest error 
in comparison with LSTM and SVR. Comparison among the shallow deep learning 
architecture and the combination of more than one deep learning architecture can be 
showcased in Figure 8. It is clear from Figure 8 that CBGRU (which is a combination 
of 1D-CNN and Bi-GRU), and DAQFF (which is a combination of LSTM and 1D-
CNN) show better prediction accuracy than the deep learning architecture GRU. If 
Figures 8a, 8b, 8c, 8d, 8e, and 8f are observed, then it can be clearly concluded that the 
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proposed model DLAQPF is outperforming the other models. For both the actual and 
predicted values the wave peaks and the wave valleys are agreeing better than any other 
model depicted. To display the performance of the various forecasting models, the 
boxplot deviation analysis is shown in Figure 9. The difference between the actual 
result and the predicted result is the measured deviation. The variation of the deviating 
data is represented by the height of the box. To represent more centralized data, fatter 
boxes and shorter whiskers are used. The plotting clearly shows the proposed model 
DLAQPF and CBGRU have notches near 0 which means their medians are nearby 0. 
If concentrated on the boxplot, it can easily be seen that among all the forecasting 
models plotted in Figure 9, the DLAQPF has the fattest box with the shortest whiskers. 
Thus, from this observation, it can be concluded that DLAQPF delivers the highest 
accuracy in forecasting the AQI of a place.  

The key factor which is responsible for the success of the proposed model is the 
combination of more than one DL architecture in predicting the AQI. DLAQPF is 
outperforming all other models for two basic reasons: 

– DLAQPF can address not only the pollution concentration and meteorological 
factors of S_L but it addresses the PM2.5 and other meteorological factors of 
the nearby S_Ns to predict the AQI of S_L. 

–  As a building block, the series of CNN layers allows the model to extract 
more important local complex features from the input window. Moreover, the 
GRU block is used in DLAQPF. The GRU block comprises a stack of three 
Bi- GRU, which is capable of abstracting the temporal feature as well as the 
forward and backward (both ways) dependencies of the time-series data.  

Model  RMSE  MAE  SMAPE 
LSTM  6.1163  5.2208  18.1288 
SVR  6.8594  5.6024  17.7777 
GRU  4.7207  3.8146  12.6980 
CBGRU  3.4459  2.8652  10.8251 
DAQFF  3.9193  3.2155  13.7465 
DLAQPF  2.7013  2.2730  08.9340 

Table 6 : Performance evaluation of different models. 

6 Conclusion & Future Scope 

In this work, the focus was to develop a forecasting model using meteorological data 
which would deliver accurate and stable prediction results. The work was to forecast 
the AQI of a particular place S_L by considering both the pollutant concentration  and 
meteorological factors of local and the pollutant concentration of the neighboring 
places denoted as S_Ns. The main contributions of this paper are: 
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(a) LSTM. (b) SVR. 

(c) GRU. (d) CBGRU. 

(e) DAQFF  (f) DLAQPF 

Figure 8: Performance graph (a) LSTM (b) SVR (c) GRU (d) CBGRU (e) DAQFF (f) 
DLAQPF. 
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Figure 9: The boxplot to depict the prediction deviation of different forecasting 
models. 

1. Firstly, in this work, a framework for building a forecasting model for a place 
with the ability to address not only the pollutant concentration but also the 
meteorological factors of itself and the nearby places was proposed. 

2. Secondly, a seasonality-based imputation algorithm is proposed in this letter 
to impute the missing values for generating a more convenient dataset. 

3. The proposed model DLAQPF was built in a hybrid fashion by deploying 
stacked 1D-CNN and stacked Bi-GRU. The model is exploring the advantages 
of both the building blocks. The 1D-CNN enables expert feature extraction 
and it’s good in dimensionality reduction, whereas, the Bi-GRU is an expert 
in abstracting temporal features and it addresses the both-way dependencies 
of the time-series data. 

4. After several experimentations and comparisons, it was proved that the 
proposed model has better prediction capability while showing the least error 
rates. Moreover, the work also confirms that the AQI of a particular place gets 
influenced by the pollutant concentration of the neighboring places. 

Thus this research work validates the two research questions (RQ1 and RQ2) raised in 
Section 1. 

As the prediction result exhibited by this proposed work is more accurate in 
comparison with other prediction models, the prediction result may be used by the 
citizens of the smart city to be cautious. According to the forecast, they may plan for 
some alternatives while going outdoors in such a way that they would not expose 
themselves to the polluted area. From the broader perspective, the prediction result may 
be used by the governing authorities like municipalities to take some precautionary 
steps to warn their fellow citizens so that the citizens may escape from the worst effects 
of pollution. The warnings may be in the form of some early-alert generation or in the 
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form of some actions like traffic diversion, new route plan proposals, and similar kinds 
of proposals. Thus, it can be expected that the outcome of this work will be helpful to 
the people residing in smart cities as well as to the policymakers. The proposed model 
is dependent on historical data. If this model is to be used for predicting the AQI of a 
place that lacks historical data, then it is impossible to forecast the AQI of that place. 
So, in future research, the transfer learning technology may be incorporated to build the 
historical dataset so that the model can perform as per expectation. 
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