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Abstract: Feature selection plays an important role as a preprocessing step for pattern recognition

and machine learning. The goal of feature selection is to determine an optimal subset of relevant

features out of a large number of features. The neighborhood discrimination index (NDI) is one

of the newest and the most efficient measures to determine distinguishing ability of a feature

subset. NDI is computed based on a neighborhood radius (ε). Due to the significant impact of
ε on NDI, selecting an appropriate value of ε for each data set might be challenging and very
time-consuming. This paper proposes a new approach based on targEt PointS To computE neIgh-

borhood relatioNs (EPSTEIN). At first, all the data points are sorted in the descending order of

their density. Then, the highest density data points are selected as many as the number of classes.

To determine the neighborhood relations, the circles centered on the target points are drawn and the

points inside or on the circles are considered to be neighbors. In the next step, the significance of

each feature is computed and a greedy algorithm selects appropriate features. The performance of

the proposed approach is compared to both the commonest and newest methods of feature selection.

The experimental results show that EPSTEIN could select more efficient subsets of features and

improve the prediction accuracy of classifiers in comparison to the other state-of-the-art methods

such as Correlation-based Feature Selection (CFS), Fast Correlation-Based Filter (FCBF), Heuris-

tic Algorithm Based on Neighborhood Discrimination Index (HANDI), Ranking Based Feature

Inclusion for Optimal Feature Subset (KNFI), Ranking Based Feature Elimination (KNFE) and

Principal Component Analysis and Information Gain (PCA-IG).
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1 Introduction

Data sets today are described by a large number of features, which might contain re-
dundant or irrelevant features [Liu et al., 2017, Armanfard et al., 2015, Wang et al.,
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2017, Amiri et al., 2020]. These unnecessary features might lead to the curse of di-
mensionality [Liu et al., 2017], increase in the classification error and training time
of algorithms and the problem of over-fitting [Liu et al., 2019]. Feature selection is a
preprocessing step to reduce the dimension of data [Fard et al., 2013]. Feature selection
is a technique to determine an optimal subset of features with strong classification ability
according to certain assessment criteria in a way that data analysis is simplified and
high-dimensional characteristics are acquired by analyzing low-dimensional data [Wang
et al., 2017].
In general, feature selection methods proposed until now could be divided into three
groups [Liu et al., 2017, Liu et al., 2019, Chen and Chen, 2015, Dong and Liu, 2018]: the
filter model, the wrapper model and the hybrid (embedded) model: 1) The filter model
ranks independently features using some score measures and selects the top-ranked
ones. The score is based on information theory and statistics and basically measures the
correlation between the feature and the decision attribute. Indeed, the filter approaches
work independently of the predictor. Although the computation cost and generalization
ability of these methods are low and high respectively, their main limitation is to ignore
feature redundancy and feature interdependencies [Kamalov and Thabtah, 2017, Yu and
Liu, 2004]. 2) In the wrapper model, the whole powerset of the feature set is considered
and for each candidate subset, the generalization error is computed. In fact, in the wrapper
model, the performance of feature selection depends on the classifier directly [Gaudel
and Sebag, 2010, Mafarja and Mirjalili, 2018, Yang and Ong, 2011]. 3) The hybrid
model performs feature selection in the training phase [Gaudel and Sebag, 2010]. So it
needs a specific learning algorithm before conducting feature selection in the process of
training [Liu et al., 2017, Fard et al., 2013].
Entropy and neighborhood relations have an important role in pattern recognition and
data mining. Hence many methods have been proposed based on them [Wang et al.,
2017, Dai et al., 2012, Battiti, 1994, Hu et al., 2011, Hu et al., 2008b, Zhu and Hu, 2013].
Entropy, one of the most prominent approaches in information theory [Cicioğlu, 2021],
is an uncertainty measure that characterizes the distinguishing information of an arbitrary
subset of features [Shannon, 2001]. As the conditional entropy of the decision attribute
on a subset of features decreases, the subset has more ability to distinguish samples
with different class labels. Given the samples characterized by numerical features, the
neighborhood can be used to distinguish them and extract similarity classes from them.
The neighborhood relations induced by a feature subset have an important impact on its
distinguishing information [Wang et al., 2017]. In [Wang et al., 2017], the neighborhood
relation is computed based on a neighborhood radius, called ε. Since the value of ε has a
significant effect on the neighborhood relation, selecting an appropriate value for it is
very challenging.
This paper proposes a new approach based on targEt PointS To computE neIghborhood
relatioNs (EPSTEIN). In EPSTEIN, the data points are ranked based on density-based
criteria to establish the neighborhood relationship. Then, according to the number of
classes in the data set, high-ranking data points are selected as target points, and neigh-
borhood relations are defined around these points. The proposed approach is based on a
parameter, called σ, which determines what percentage of the data points is considered
to be neighbors to compute the local density. Finally, based on a significance measure, a
greedy algorithm selects a subset of features. So, the contributions of this paper are as
follows:
– This paper presents a new approach based on target points for neighborhood relations
construction (Section 3.1).

– According to our experimental results, the parameter of EPSTEIN has a small
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impact on the neighborhood relation. In other words, EPSTEIN does not need to
compute the radius neighborhood, which has a significant impact on the quality of
the neighborhood relations (Section 4.1).

– As our experimental results show, EPSTEIN could select an appropriate subset of
features and improve the accuracy of classification algorithms (Section 4.2).

The rest of the paper is organized as follows: Section 2.1 reviews related works on feature
selection. In section 3, the proposed approach is described. We present the experimental
results in Section 4. Finally, the paper is concluded with our future work in Section 5.

2 Related Works

In general, feature selection methods could be divided into three groups [Liu et al.,
2017]: the wrapper model, the embedded model, and the filter model. In section 2.1,
we investigate these methods. In addition, since EPSTEIN selects features using neigh-
borhood based entropy, we review the works that focus on the entropy defined on the
neighborhood in section 2.2.

2.1 Feature Selection Approaches

Figure 1 shows the structure of the three models. As the figure shows, the filter model
ranks independently features using some score measures and selects the top-ranked ones.
The wrapper model explores the feature space and considers the candidate subsets of the
feature set and evaluates the performance of each subset based on the classification error.
The hybrid model is also a combination of the filter model and the wrapper model. In
the following subsections, the newest and the most prominent works of each group are
reviewed briefly.

Figure 1: The structure of the different models of feature selection
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2.1.1 Filter models

Hall in [Hall, 2000] proposes Correlation-based Feature Selection (CFS). At first, CFS
computes a matrix of feature-class and feature-feature correlations from the training data.
In the next step, it searches the feature subset space using a best-first search algorithm.
A subset of features, that are highly correlated with the class attribute and have little
correlation with each other, is selected.
Relief is proposed in [Kira and Rendell, 1992]. It randomly selects samples from a
data set and updates the significance of each feature based on the difference between
the selected instance and the two closest objects of the same class (near-hit) and the
opposite class. Relief considers the difference in the values of a feature for the two
nearest neighbors of the same class and the difference between the values of the feature
for the objects of different classes. Based on the difference values, the importance of
features adjusts. In [Kononenko, 1994], an improved version of Relief, called ReliefF, is
extended to handle multi-class data sets and noise. It updates the weights based on the
k-near hits and the k-near misses for each of the classes that are different from the class
of the random sample. The challenge of this method is to determine the threshold value
for selecting weighted features.
In [Yu and Liu, 2003], an approximation method for relevance and redundancy analysis,
called FCBF (Fast Correlation-Based Filter), is presented. Firstly it selects a subset of
relevant features, and then selects predominant features from relevant ones. FCBF ranks
features according to their relevance to the class. Although the method is faster and more
efficient than ReliefF and CFS, in some cases it has errors in recognizing redundant
features.
The minimal-redundancy-maximum-relevance (mRMR) method [Peng et al., 2005]
employs mutual information (MI) to evaluate feature relevance and feature redundancy.
The mRMR function uses the SFS search strategy [Pudil et al., 1994] to build the best
feature subset. The subset of selected features is initially empty. At each step, the best
feature based on the evaluation criteria is added to this subset. The principal disadvantages
of this algorithm are to determine the number of the features that should be selected and
the size of the optimal solution.
Thabtah et al. in [Pudil et al., 1994] propose a feature selection method called Least Loss
(L2) that significantly reduces the dimensionality of data. It disposes weakly correlated
variables without diminishing the predictive performance of classifiers. The greater the
value of L2 is, the more relevant a feature is to the target class. The main advantage of
the L2 measure is its simplicity, ease of understanding, and intuitiveness. The challenge
of this method is to determine the cut-off value.
A feature selection method based on a correlation measure between continuous and
discrete features (ECMBF) is proposed in [Jiang and Wang, 2016]. The method removes
weakly relevant and irrelevant features, as well as relevant but redundant features. The
performance of this approach might be influenced by the number of training samples.
Mariello et al. in [Mariello and Battiti, 2018] propose a new algorithm named NEFS for
filtering features that maximize MI between the selected subset and the class variable
and, at the same time, tries to minimize MI between the selected features. To overcome
the limitation of the traditional pairwise MI estimators, a new MI-related measure is
introduced, which can be applied to multiple features. The time complexity of the
algorithm is high.
In [Wang et al., 2017], a Heuristic Algorithm Based on Neighborhood Discrimination
Index (HANDI) is proposed for feature selection. The neighborhood discrimination
index (NDI) is proposed to characterize the distinguishing information of a neighborhood
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relation. It reflects the distinguishing ability of a feature subset. As the conditional
discrimination index of a feature subset gets smaller, the distinguishing ability of the
feature subset gets greater and hence, the feature subset would be more important. Based
on the discrimination measure, the significance measure of a candidate feature is defined
and a greedy forward algorithm is suggested for feature selection. Since the neighborhood
radius (ε) has a great effect on calculating the distinguishing ability of feature subsets
and depends on data sets, determining the value of ε is challenging.
Omuya et al. in [Omuya et al., 2021] develop a hybrid filter model for feature selection
based on Principal Component Analysis and Information Gain (PCA-IG). The model
applies PCA that employs feature correlation at the initial level and IG that uses entropy
evaluation at the second level.

2.1.2 Wrapper models

In [Aghdam et al., 2009], to improve the performance of text categorization, a feature
selection algorithm based on ant colony optimization [Bonabeau et al., 1999] is pro-
posed. The algorithm is easily implemented and since it uses a simple classifier, its
computational complexity is very low. The disadvantage of this algorithm is uncertain
convergence time.
Bouaguel in [Bouaguel, 2016] proposes a new wrapper feature selection method for big
data. It is based on the random search and the genetic algorithm. In the first step, fewer
redundant features are selected without sacrificing quality. In the next step, subsets are
generated by using the genetic algorithm (GA) [Goldberg, 1989]. The method requires
prior knowledge about data sets.
Sahebi et al. in [Sahebi et al., 2020] propose a generalized wrapper-based feature selec-
tion, called GeFeS, which is based on a parallel intelligent genetic algorithm. To validate
the learning model, the authors propose a new operator for weighting features, improve
the mutation and crossover operators, and integrate nested cross-validation into the GA
process. Although GeFeS works on different data sets, it requires prior knowledge about
them.

2.1.3 Hybrid models

In [Suresh and Narayanan, 2019], a hybrid feature selection approach is presented that
incorporates the benefits of both filter and wrapper methods. At first, the filter part ranks
features. In the next step, for subset selection, the first ranked feature is added to the
empty subset and classification accuracy is evaluated. Then, the next ranked features are
considered in order. A new feature will be inserted into the feature subset only when it
improves the classification accuracy compared to the previous result. Different methods
of feature ranking and subset selection are used in the algorithm. Selecting the best filter
and wrapper method is challenging.
Wei et al. in [Wei et al., 2020] suggest a feature selection algorithm, called Dynamic
Feature Importance-based Feature Selection (DFIFS). It dynamically selects features
according to their Dynamic Feature Importance (DFI) index in the selection process.
DFI is defined based on both feature redundancy and feature importance. By combining
DFIFS and mRMR, the authors propose a hybrid method called M-DFIFSis. mRMR is
used to filter out redundant or irrelevant features, while DFIFS is applied to adjust the
selected feature subset. The performance of this algorithm depends on the classifier.
Thejas et al. in [Thejas et al., 2019] propose a feature selection mechanism based on
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the combination of the filter and the wrapper techniques. They cluster the data using
mini-batch K-means clustering and rank them using normalized mutual information.
Then, a greedy search method by using Random Forest is applied to get the optimal set
of features. They propose two approaches for the selection of features:

– MiniBatch K-means Normalized Mutual Information Feature Inclusion (KNFI): the
ranked features from the first phase are added one by one into the subset. If the
addition of the features enhances the classification accuracy, the feature is added or
else it is discarded. This process loops for all the features.

– Mini-Batch K-means NormalizedMutual Information least ranked Feature Exclusion
(KNFE): this is a linear elimination approach where the least ranked features are
eliminated one by one from the entire set of the features. Initially, the list consists
of all the features and the classification accuracy is calculated for the entire list.
Then, in every loop, one least ranked feature is removed from the list. This process
is repeated until the list becomes empty. The highest performance among all the
iterations is considered as the outcome.

2.2 Neighborhood Entropy

Neighborhood entropy proposed in [Mariello and Battiti, 2018] overcomes the limitation
of traditional pairwise MI estimators and can be applied to multiple features. This score
does not involve the explicit estimation of probability distributions or the computation
of local and global affinity matrices of the graph-based methods, and can be used with
features of integer or real values. The conditional class entropy evaluated on the neigh-
borhoods of the points can be used as a relevance score for selecting the most informative
features. Even in the situation of nonuniform distributions, the previous observations
remain valid if one considers neighborhoods with a fixed number of neighbors instead
of a fixed radius.
The concept of neighborhood entropy is defined to measure the uncertainty of numerical
data. When the classification performance of the original data set is poor, the corre-
sponding evaluation functions have lower measured values; thus, monotonic attribute
reduction methods cannot obtain great reduction results [Li et al., 2013]. To address this
issue, in [Sun et al., 2019a] some concepts of neighborhood entropy-based uncertainty
measures are proposed to investigate the uncertainty of knowledge in neighborhood de-
cision systems. Since the Fisher score method occasionally selects redundant attributes,
which affects the classification result [Hasanloei et al., 2018], the Fisher score with
neighborhood rough sets is combined to reduce the initial dimensions and improve the
classification performance of high-dimensional gene expression data sets.
The gene selection method proposed in [Sun et al., 2019b] is based on the filter approach,
in which a heuristic search algorithm is used to find an optimal gene subset with neigh-
borhood rough sets for the gene expression data. Since the information entropy is not
suitable for measuring the neighborhood class in the numeric data sets, the concept of
neighborhood is combined with information theory measures. The neighborhood rough
sets and entropy measure-based gene selection with Fisher score for tumor classification
are proposed. Firstly, the Fisher score method is employed to eliminate irrelevant genes
to significantly reduce computation complexity. Next, some neighborhood entropy-based
uncertainty measures are investigated for handling the uncertainty and noisy of gene
expression data. Finally, a joint neighborhood entropy-based gene selection algorithm
with the Fisher score is presented to improve the classification performance of gene
expression data.
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Figure 2: The steps of neighborhood relations construction in EPSTEIN

3 Foundation of EPSTEIN

In EPSTEIN, the neighborhood relation is defined around the target points. A target point
is a point whose local density is high, the distance from points with higher densities is
large and the distance from ones with lower densities is small [Du et al., 2016, Li and
Tang 2018, Pourbahrami et al., 2019]. All the data points are sorted in the descending
order of their density. Then, the target points are selected as many as the number of
classes. Figure 2 shows the steps of neighborhood relations construction. Finally, based
on a significance measure, a greedy algorithm selects a subset of features. The selected
subset of features is empty firstly. In each iteration, the most significant feature is added
to the subset. The algorithm terminates when the significance of any remaining feature
is less than a threshold.
In the following subsections, EPSTEIN is described in detail: In section 3.1, the back-
ground concepts such as target point, local density and score are defined and a new
neighborhood relation is introduced. Then, section 3.2 investigates the measure which is
employed to rank features. Finally, in section 3.3, the algorithm used to select features is
explained. Table 1 shows the sample data set used to introduce concepts in the following
examples. The sample data set contains 7 instances, each described by two features a
and b. The instances are also classified into two classes Class 1 and Class 2.

Table 1: The sample data set

PPPPNo

Feature
a b Class

1 8.2 16.3 1

2 7.7 15.56 1

3 8.1 114.8 1

4 8.82 15.1 1

5 10.9 18 2

6 11.3 18.8 2

7 12 19.1 2

Table 2: The description of the

parameters/variables of Algorithm 1

Variable/Parameter Description

S Data Set

A Feature Set

D Decision Attribute

B Unselected Features

SelectedFeatures Selected Features

σ The percentage of the data points to compute density

α The threshold to identify the significant features

3.1 Neighborhood relations

The concept of neighborhood plays an important role in numerical spaces. The subset
of the samples which have the similar feature values can be identified by using the
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neighborhood relations computed based on distance [Hu et al., 2011, Hu et al., 2008a].
In this paper, a new neighborhood relation is constructed based on local density and
the circles centered on the target points. For this purpose, the target points should be
determined firstly. The target points are identified by density based measures. The density
of a data point implies how many data points congregate around it. In a similar way
to [Du et al., 2016, Li and Tang 2018, Pourbahrami et al., 2019], the local density of each
data point is defined as follows. Note that the sign |.| is used to denote the cardinality of
a set or relation [Wang et al., 2017].

Definition 1. Given the data set S and the data point x ∈ S, the number of the nearest
neighbors of x is r = dσ × |S|e where σ is the percentage of the data points that should
be considered to be neighbors and d.e is the ceiling function.

Definition 2. Given the data set S and the data pointMi = {M1i,M2i, ...,Mmi} ∈ S
where m is the number of the features, the local density of the data point Mi, ρi, is
defined as Eq. 3.1:

ρi = exp (−1

r

∑
Mj∈N(Mi)

d(Mi,Mj)
2) (3.1)

Where r is the number of the neighbors ofMi, N(Mi) is r nearest neighbors of the data
pointMi and d(Mi,Mj) is the Euclidean distance between the data pointsMi andMj .

ρ has an important role in identifying the target points. When the local density of a
point is high, it means that more points concentrate around it. Then, it is more probable
that a neighborhood circle is centered on that point.

Example 1. Consider the sample data set in Table 1. Assume σ = 0.01 (or 1%). To
compute the local density of each data point, firstly, the matrix DistMatrix, which
contains the Euclidean distance between each pair of the data points, is computed as
follows:

DistMatrix =


0 0.207694 0.349612 0.314117 0.742003 0.926154 1.097714

0.207694 0 0.199729 0.281578 0.935844 1.126350 1.295280
0.349612 0.199729 0 0.181395 0.988851 1.191279 1.350040
0.314117 0.281578 0.181395 0 0.829956 1.035874 1.188379
0.742003 0.935844 0.988851 0.829956 0 0.208006 0.361776
0.926154 1.126350 1.191279 1.035874 0.208006 0 0.177111
1.097714 1.295280 1.350040 1.188379 0.361776 0.177111 0


Since σ = 0.01, we have r = d0.01× 7e = 1. Then, based on Eq. (3.1), the density of
each data point is computed:

ρ1 = e−(0.207694)2 = 0.95778033 ρ2 = e−(0.199729)2 = 0.96089337

ρ3 = e−(0.181695)2 = 0.96763118 ρ4 = e−(0.181395)2 = 0.96763118

ρ5 = e−(0.208006)2 = 0.95765602 ρ6 = e−(0.177111)2 = 0.96911857

ρ7 = e−(0.177111)2 = 0.96911857

Definition 3. Given the data pointMi, δi is the distance fromMi to the nearest neighbor
whose local density is greater than ρi [Du et al., 2016, Li and Tang 2018, Pourbahrami
et al., 2019]:

δi =

{
minj:ρi<ρj{d(Mi,Mj)}, if ∃Mj ∈ S, ρi < ρj
maxj{d(Mi,Mj)}, otherwise

(3.2)



Farnaghi-Zadeh F., Rahmani M., Amiri M.: Feature Selection ... 1177

As Eq. 3.2 shows, if the local density ofMi (ρi) is greater than or equal to all the
data points’, δi is the maximum distance betweenMi and the other data points.

Definition 4. Given the data pointMi, τi is the distance fromMi to the nearest neighbor
whose local density is less than ρi [Li and Tang 2018]:

τi =

{
δi, if ∀Mj ∈ S, ρi ≤ ρj
minj:ρi>ρj{d(Mi,Mj)}, otherwise

(3.3)

According to Eq. 3.3, if ρi is less than or equal to all the data points’, τi is set to δi.

Definition 5. Given the data pointMi, the score ofMi is computed as follows [Li and
Tang 2018]:

score(Mi) = ρi × (δi − τi) (3.4)

To identify the target points, the data points are ranked based on the score. The data
points with the highest score are the target points. Therefore, as Eq. 3.4 shows, the target
points have three key attributes: 1) they have large density (ρi), 2) their distance from
points whose density is greater than themselves (δi) is large and 3) their distance from
points whose density is less than themselves (τi) is small.

Definition 6. Let C be the number of classes. The C data points with the highest scores
are target points.

Example 2. Consider Example 1 again. Firstly, for each data point, δ and τ are computed.

δ1 = min(d(1, 2), d(1, 3), d(1, 4), d(1, 6), d(1, 7)) = 0.2077

δ2 = min(d(2, 3), d(2, 4), d(2, 6), d(2, 7)) = 0.1997

δ3 = min(d(3, 6), d(3, 7)) = 1.1913

δ4 = min(d(4, 6), d(4, 7)) = 1.0359

δ5 = min(d(5, 1), d(5, 2), d(5, 3), d(5, 4), d(5, 6), d(5, 7)) = 0.2080

δ6 = max(d(6, 1), d(6, 2), d(6, 3), d(6, 4), d(6, 5), d(6, 7)) = 1.1913

δ7 = max(d(7, 1), d(7, 2), d(7, 3), d(7, 4), d(7, 5), d(7, 6)) = 1.35

τ1 = min(d(1, 5)) = 0.742 τ2 = min(d(2, 1), d(2, 5)) = 0.2077

τ3 = min(d(3, 1), d(3, 2), d(3, 5)) = 0.1997 τ4 = min(d(4, 1), d(4, 2), d(4, 5)) = 0.2816

τ5 = δ5 = 0.2080 τ6 = min(d(6, 1), d(6, 2), d(6, 3), d(6, 4), d(6, 5)) = 0.2080

τ7 = min(d(7, 1), d(7, 2), d(7, 3), d(7, 4), d(7, 5)) = 0.3618

Based on Eq. 3.4, score is computed as follows:

score1 = ρ1 × (δ1 − τ1) = −0.5117 score2 = ρ2 × (δ2 − τ2) = −0.0076
score3 = ρ3 × (δ3 − τ3) = 0.9594 score4 = ρ4 × (δ4 − τ4) = 0.7299

score5 = ρ5 × (δ5 − τ5) = 0 score6 = ρ6 × (δ6 − τ6) = 0.9529

score7 = ρ7 × (δ7 − τ7) = 0.9577

Since C = 2, the two data pointsM3 andM7. are the target points.

After the target points are determined, the circles centered on them are drawn for
forming the neighborhood relations.
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Definition 7. Given the data set S, the set of the target points T = {T1, T2, ..., TC}
where C is the number of classes andM = S − T , the radius of the circles centered at
each Tt, 1 ≤ t ≤ C, is:

RTt = max{d(Tt,Mi)|Mi ∈M,d(Tt,Mi) < minC
l=1d(Tl,Mi), t 6= l} (3.5)

Definition 8. Given the data set S, the set of the target points T = {T1, T2, ..., TC}
where C is the number of classes and M = S − T , the furthest points from each Tt,
1 ≤ t ≤ C is:

FPTt = {Mi|Mi ∈M,d(Tt,Mi) = RTt} (3.6)

According to Eqs. 3.5 and 3.6, the furthest points from the target point Tt are the
points whose distance from the other target points is greater than Tt’s. The points whose
distance from the target point is greater thanRTt

, are not in the neighborhood of Tt. After
drawing the circles centered at the target points, the neighborhood relation is determined.
The neighborhood relation is represented by a neighborhood matrix.

Definition 9. Given |S| = n and 1 ≤ i, j ≤ n, the density based neighborhood matrix
Rρ = (rij)n×n is defined as follows:

rij =

{
1, if i = j or Mi and Mj are in the same circle or on the same circle
0, otherwise

(3.7)

Based on Eq. 3.7, the points inside or on the circles are considered to be neighbors of
each other. The points falling inside the overlap area of the circles or out of their radius
are considered to be the neighbor of their nearest target points.

Example 3. Consider Example 2 again. Since the pointsM3 andM7 are the target point,
we have T = {3, 7}. Based on Eqs. 3.5 and 3.6, we have:

RT3 = max(d(3, 1), d(3, 2), d(3, 4)) = d(3, 1) = 0.3496 FPT3 = 1

RT7 = max(d(7, 6), d(7, 5)) = d(7, 5) = 0.3618 FPT7 = 5

In the next step, as Fig. 3 shows, the circles centered at the target points are drawn and
Rρ is constructed.

Figure 3: The neighborhood matrix Rρ and the circles centered at the target points
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3.2 Feature importance

In [Wang et al., 2017], the conditional discrimination index and NDI are computed by
using the neighborhood relations. The neighborhood relations are based on the neighbor-
hood radius ε. In this paper, inspired by [Wang et al., 2017], the two indexes are defined
based on EPSTEIN.

Definition 10. Let B1 and B2 be two subsets of features, |S| = n, Rρ
B1
, Rρ

B2
be

two neighborhood relations induced by B1, B2 based on EPSTEIN, respectively. The
neighborhood discrimination index B1 and the conditional discrimination index of B1
on B2 are defined as Eqs. 3.8 and 3.9 respectively:

Hρ(B1) = log
n2

|Rρ
B1
| (3.8)

Hρ(B1|B2) = log
|Rρ

B2
|

|Rρ
B1
∩Rρ

B2
| (3.9)

In Eq. 3.8, as |Rρ
B1

| increases, NDI decreases, which implies that the distinguishing
ability of B1 is low. In Eq. 3.9, if a is a feature and B2 = B1 ∪ {a}, then Hρ(B1|B2)
shows how much the feature a can change the distinguishing ability of B1. If B is a
subset of features and D is the decision attribute, H(D|B) indicates the ability of B to
distinguish samples with different class labels. The smaller the H(D|B), the greater the
distinguishing ability of B. Adding a feature to B can increase or decrease the distin-
guishing ability of samples with different class labels. If a decreases the distinguishing
ability, it is called redundant. In a similar way to [Pudil et al., 1994], the significant
degree of features is defined as follows.

Definition 11. Let A be the feature set, B ⊆ A, a ∈ A − B and D be the decision
attribute. The significant degree of the feature a with respect to B and D is:

SIG(a,B,D) = Hρ(D|B)−Hρ(D|B ∪ {a}) (3.10)

Note that if B = ∅, then Hρ(D|B) = Hρ(D).

According to Eq. 3.10, a larger value of SIG(a,B,D) implies that a is more promi-
nent for D.

Example 4. AssumeA is the feature set,B ⊆ A, a, b ∈ A−B,D is the decision attribute
and Rρ

B , R
ρ
B∪{a}, R

ρ
B∪{b} and RD (the decision equivalence relation) are as follows:

Rρ
B =

[
1 0 1
0 1 0
1 0 1

]
Rρ

B∪{a} =

[
1 0 0
0 1 1
0 1 1

]
Rρ

B∪{b} =

[
1 1 1
1 1 0
1 0 1

]
RD =

[
1 0 0
0 1 0
0 0 1

]
SIG(a,B,D) and SIG(b,B,D) are computed as follows:

Hρ(D|B) = log
|Rρ

B |
|RD ∩Rρ

B |
= log

5

3
= 0.7369

Hρ(D|B ∪ {a}) = log
|Rρ

B∪{a}|
|RD ∩Rρ

B∪{a}|
= log

5

3
= 0.7369

Hρ(D|B ∪ {b}) = log
|Rρ

B∪{b}|
|RD ∩Rρ

B∪{b}|
= log

7

3
= 1.2223

SIG(a,B,D) = Hρ(D|B)−Hρ(D|B ∪ {a}) = 0.7369− 0.7369 = 0

SIG(b,B,D) = Hρ(D|B)−Hρ(D|B ∪ {b}) = 0.7369− 1.2223 = −0.4854
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Since SIG(a,B,D) > SIG(b,B,D), the feature a is added to B.

3.3 Feature selection

After computing SIG of features, the final features are selected by a greedy algorithm.
In a similar way to [Wang et al., 2017], Algorithm 1 is used to select the final features.
Table 2 describes the parameters and variables of the algorithm. In line 1, A = B and
none of the features has been selected. In lines 3 to 6, SIG of each feature ai ∈ B
is computed. In line 7, the feature with the maximum SIG is selected. In line 8, it is
checked whether the maximum SIG is greater than the threshold α or not; if it is not,
the main loop in lines 2 to 14 is terminated by start = 0. Otherwise, the sets B and
SelectedFeatures are updated in lines 9 to 10 and this process continues.

Algorithm 1 The greedy algorithm for feature selection

Input: S,A,D, σ, α
Output: SelectedFeatures
1: Initialize: SelectedFeatures← ∅, B ← A− SelectedFeatures, start← 1;
2: while start do
3: for each (ai ∈ B) do
4: compute the neighborhood relation Rρ

SelectedFeatures∪{ai}
;

5: compute SIG(ai, SelectedFeatures,D);
6: end for
7: Find ak with the maximum SIG(ak, SelectedFeatures,D);
8: if (SIG(ak, SelectedFeatures,D) > α) then
9: SelectedFeatures← SelectedFeatures ∪ {ak}
10: B ← B − SelectedFeatures
11: else
12: start← 0;
13: end if
14: end while
15: return SelectedFeatures;

Example 5. In this example, EPSTEIN is employed on the IRIS data set selected from
the UCI Machine Learning Repository [Blake, 1998]. There are three species of IRIS in
the data set, each species has 50 samples and each sample is described by four features.
Assume σ = 0.01 and α = 0.001. The process of the feature selection according to
Algorithm 1 is as follows (note that SIGi is SIG of the feature i):

– Iteration 1: A = B = {1, 2, 3, 4}, SelectedFeatures = ∅, SIG1 = 0, SIG2 =
0.10591, SIG3 = 0.23339, SIG4 = 0

– Iteration 2: B = {1, 2, 4}, SelectedFeatures = {3}, SIG1 = −0.231334, SIG2 =
0.021879, SIG4 = −0.23339

– Iteration 3: B = {1, 4}, SelectedFeatures = {2, 3}, SIG1 = −0.00454, SIG4 = 0

In each iteration, the feature with the maximum SIG > α is selected. In iteration 3,
since SIG of all the unselected features (B) is less than α, the algorithm is terminated.

4 Evaluation

In this section, we provide a comprehensive evaluation of EPSTEIN. The classification
accuracy of EPSTEIN and the effect of the most important parameters on the feature
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selection are considered in this section.We evaluate EPSTEIN on fifteen data sets selected
from the UCI Machine Learning Repository [Blake, 1998]. Table 3 shows these data
sets. There are two parameters for EPSTEIN: σ and α. The parameters setting for the
evaluation of EPSTEIN is as follows:

– α: the small values of α might lead to increasing the number of the selected features,
which could increase the duration of the training phase of classifiers and decrease
the classification accuracy. On the other hand, the large values of α might lead to the
inability to identify all the significant features. In [Wang et al., 2017], the impact of
α has been considered and α = 0.001 has been selected. So, we also set α = 0.001
for evaluation.

– σ: The local density of data points is computed based on σ. The value of σ should
be selected in a way that an appropriate subset of data points is used to compute
the local density. The small values of σ cause a few points to be considered as the
nearest neighbors. On the other hand, the large values of σ cause many points to
be considered as the nearest neighbors. Therefore, different values of σ can lead to
different classification accuracy; The impact of σ on the classification accuracy and
the number of the selected features are evaluated.

EPSTEIN is compared with some state-of-the-art methods such as HANDI [Wang
et al., 2017], KNFI [Thejas et al., 2019], KNFE [Thejas et al., 2019], CFS [Hall, 2000],
FCBF [Yu and Liu, 2003] and PCA-IG [Omuya et al., 2021]. These methods have been
reviewed in section 2.1. Since the parameters have a significant effect on the prediction
results of the classifiers [Amiri et al., 2018a, Amiri et al., 2018b, Amiri and Askari,
2022], each method is evaluated by using the best values of its parameters:

– FCBF: The relevance threshold of FCBF is set to 0 [Cortes andVapnik, 1995, Altman,
1992].

– HANDI: The threshold δ (a similar parameter to α) of HANDI is set to 0.001 [Wang
et al., 2017]. Since the core of EPSTEIN and HANDI are similar, we also investigate
the impact of the neighborhood radius (ε) on the number of the selected features and
the classification accuracy in a similar way to σ.

– PCA-IG: In this model, a set threshold t is used to select features based on IG.
According to [Prasetiyowati et al., 2021], t is set to 0.05.

Three common classifiers RBF-SVM [Cortes and Vapnik, 1995], KNN [Altman, 1992]
and Decision Tree [Loh, 2011] are used to evaluate these algorithms. Because our goal is
to compare the performance of the different feature selection algorithms, we don’t focus
on the parameter setting of the classifiers. According to the results reported in [Ho and
Wechsler, 2008], the control parameter C is set to 100 and the Gaussian kernel parameter
gamma is set to 1. We setK = 7 for KNN. Table 5 lists the values and parameters of
the methods. We employ 5-fold cross validation. So the data sets are randomly divided
into five subsets; one is used for testing and the remaining four are used for training. The
Feature selection algorithms are employed on the training set; the reduced training and
testing sets are classified. After 5 rounds, the average value of the classification accuracy
is reported as the final performance. All the algorithms have been implemented in Python
and all the experiments run on a machine with an Intel(R) Core(TM) i5 CPU M 480 @
2.67GHz processor and 16 GB of RAM. The impact of the most important parameters
on EPSTEIN and HANDI and the impact of the selected features on the classification
accuracy are considered in sections 4.1 and 4.2 respectively. In section 4.3, the time
complexity of EPSTEIN and the other methods are considered.
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Table 3: The description of data

sets [Blake, 1998]

No Data set Sample Features Class

1 Credit 690 14 2

2 SCADI 70 205 7

3 Forest types 325 27 4

4 Sonar 208 60 2

5 ILPD 583 10 2

6 Spect heart 267 22 2

7 Leaf 340 15 30

8 Thoracic Surgery 470 17 2

9 Seeds 210 7 3

10 Wine 178 13 3

11 IRIS 150 4 3

12 Wpbc 198 33 2

13 Lung cancer 31 56 3

14 Primary tumor 339 17 22

15 Breast tissue 106 9 6

Table 4: The best value of σ for the first

ten data sets

No Data set σ

1 Credit 0.01

2 SCADI 0.1

3 Forest types 0.04

4 Sonar 0.03

5 ILPD [0.01, 0.1] (in the experiments: σ = 0.01)

6 Spect heart [0.01, 0.1](in the experiments: σ = 0.01)

7 Leaf 0.03

8 Thoracic Surgery [0.01, 0.1](in the experiments: σ = 0.01)

9 Seeds 0.01

10 Wine 0.05

Table 5: The parameters setting of Decision Tree, SVM and KNN

Method Decision Tree SVM KNN

Parameter Criterion for selecting nodes Kernel gamma C Number of neighbors

Value Gini Index RBF 1 100 7

Table 6: The impact of the parameters of EPSTEIN and HANDI (σ and ε) on
accuracy and selected features

Data Set
Accuracy Selected Features

EPSTEIN (σ) HANDI (ε) EPSTEIN (σ) HANDI (ε)

Credit
Min=0.8086 Max=0.855 Min=0 Max=0.8246 Min=1 Max=2.2 Min=0 Max=12.2

Var=0.0002 Avg=0.8483 Var=0.0312 Avg=0.7528 Var=0.144 Avg=2.08 Var=8.9925 Avg=7.8571

SCADI
Min=0.64 Max=0.6857 Min=0 Max=0.6714 Min=2 Max=4.2 Min=0 Max=7.3

Var=0.0003 Avg=0.6654 Var=0.0216 Avg=0.5769 Var=0.4271 Avg=2.94 Var=2.4172 Avg=6.2857

Forest types
Min=0.7876 Max=0.8584 Min=0 Max=0.8153 Min=3 Max=6.2 Min=0 Max=25

Var=0.0003 Avg=0.8337 Var=0.0588 Avg=0.7125 Var=0.9528 Avg=4.52 Var=86.9224 Avg=17.5047

Sonar
Min=0.39 Max=0.5581 Min=0 Max=0.5347 Min=2.6 Max=5 Min=0 Max=26.6

Var=0.0028 Avg=0.5036 Var=0.0233 Avg=0.3771 Var=0.4462 Avg=3.52 Var=99.6104 Avg=14.2952

ILPD
Min=0.7134 Max=0.7134 Min=0 Max=0.7134 Min=1 Max=1 Min=0 Max=7.8

Var=0 Avg=0.7134 Var=0.0235 Avg=0.6440 Var=0 Avg=1 Var=4.4636 Avg=3.0190

Spect heart
Min=0.7952 Max=0.7952 Min=0 Max=0.7197 Min=1 Max=1 Min=0 Max=2.8

Var=0 Avg=0.7952 Var=0.0246 Avg=0.6551 Var=0 Avg=1 Var=0.3094 Avg=1.9952

Leaf
Min=0.3941 Max=0.5176 Min=0 Max=0.5352 Min=4.6 Max=6 Min=0 Max=15

Var=0.0012 Avg=0.4670 Var=0.0213 Avg=0.4539 Var=0.2528 Avg=5.42 Var=18.6451 Avg=11.8285

Thoracic Surgery
Min=0.8 Max=0.8 Min=0 Max=0.8 Min=0.8 Max=0.8 Min=0 Max=8.2

Var=0 Avg=0.8 Var=0.0218 Avg=0.6592 Var=0 Avg=0.8 Var=3.2533 Avg=6.1333

Seeds
Min=0.8047 Max=0.8857 Min=0 Max=0.8857 Min=2.8 Max=3.8 Min=0 Max=9

Var=0.0007 Avg=0.8404 Var=0.0615 Avg=0.6999 Var=0.0693 Avg=3.44 Var=5.7104 Avg=5.2952

Wine
Min=0.7693 Max=0.9269 Min=0 Max=0.9611 Min=3.6 Max=5.6 Min=0 Max=13

Var=0.0022 Avg=0.8727 Var=0.0751 Avg=0.7749 Var=0.496 Avg=4.44 Var=17.0436 Avg=7.7809

IRIS
Min=0.16 Max=0.9564 Min=0 Max=0.9138 Min=0.2 Max=2.6 Min=0 Max=3.2

Var=0.0577 Avg=0.5668 Var=0.0587 Avg=0.5753 Var=0.5262 Avg=1.32 Var=0.8702 Avg=2.4857

Wpbc
Min=0.5968 Max=0.9036 Min=0 Max=0.7775 Min=2 Max=3.2 Min=0 Max=3.8

Var=0.0073 Avg=0.7357 Var=0.0244 Avg=0.6365 Var=0.3004 Avg=2.56 Var=0.7859 Avg=2.3904

Lung cancer
Min=0.1532 Max=0.4125 Min=0 Max=0.3759 Min=2 Max=4.2 Min=0 Max=8.2

Var=0.0055 Avg=0.2169 Var=0.0058 Avg=0.2823 Var=0.5671 Avg=2.56 Var=3.4871 Avg=5.3285

Primary tumor
Min=0.619 Max=0.7325 Min=0 Max=0.6435 Min=1 Max=1.8 Min=0 Max=13

Var=0.0012 Avg=0.6310 Var=0.0018 Avg=0.5076 Var=0.1137 Avg=1.64 Var=9.0196 Avg=9.847

Breast tissue
Min=0.1798 Max=0.2315 Min=0 Max=0.2681 Min=2.2 Max=3.4 Min=0 Max=7

Var=0.0002 Avg=0.1956 Var=0.0032 Avg=0.1612 Var=0.1071 Avg=2.94 Var=2.9942 Avg=5.0142
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4.1 Impact of parameters

Since EPSTEIN and HANDI are similar in the basic structure, the impact of σ on
EPSTEIN and ε on HANDI is evaluated in this section. For this purpose, we consider the
average accuracy of the classifier RBF-SVM and the average number of selected features
for the first ten data sets. The impact of σ on EPSTEIN in the interval of [0.01, 0.1] with
the step of 0.01 and the impact of ε on HANDI in the interval of [0, 1] with the step of
0.1 are investigated.
Figure 4 shows the impact of σ on the data sets. According to the figure, in the data sets
Spect heart, Thoracic Surgery and ILPD, there is no significant change in both of the
accuracy and selected features for different values of σ. In the other data sets, there are
minor changes in accuracy and selected features for different values of σ. Table 4 shows
the best value of σ, which leads to the maximum value of accuracy. Figure 5 shows
the impact of ε on the performance of HANDI for the different data sets. According to
the figure, for all the data sets, there are significant changes in accuracy and selected
features for different values of ε. For a comprehensive comparison, table 6 compares the
impact of σ on EPSTEIN with ε’s on HANDI on all the data sets in terms of average,
variance,min andmax of the accuracy and selected features. As the table shows, the
parameter ε has a significant influence on the performance of the HANDI algorithm. So
selecting an appropriate value for ε is very challenging. On the contrary, the impact of σ
on the performance of EPSTEIN is more tolerable.

4.2 The impact of the selected features on the classification accuracy

In this section, the impact of the features selected by the different algorithms on the
classification accuracy and F-measure is investigated. To provide a fair comparison
between EPSTEIN and the other algorithms, the best parameters of the algorithms are de-
termined carefully. The classifiers run 5 times and their average accuracy and F-measure
are reported as the performance. Tables 7, 8 and 9 and Figure 6 show the average ac-
curacy of Decision Tree, RBF-SVM and KNN on the different data sets respectively.
The average F-measure of Decision Tree, RBF-SVM and KNN is also reported in Fig-
ure 7. In addition to the feature selection algorithms, the classification accuracy without
feature selection (the column AF ) is also investigated. In the tables, for each data set,
the maximum accuracy is indicated in bold type. For algorithms HANDI and EPSTEIN,
the best values of ε and σ are also reported (since their best values are the same, we
only report them for the average accuracy). To summarize the results, the last row of the
tables, indicated by < G,E,L >, shows the number of data sets that the accuracy of
EPSTEIN is, respectively, greater than, equal to and less than the other algorithms’.
Table 7 and Figure 6a show the accuracy of Decision Tree. KNFI and KNFE provide
the highest classification accuracy in the data sets SCADI, Sonar, Leaf and Primary
tumor. FCBF achieves the highest classification accuracy in the data sets Spect heart and
Thoracic Surgery. PCA-IG provides the highest classification accuracy only in the data
set Leaf. In the other data sets, EPSTEIN provides the most precise results. According to
the last row, EPSTEIN provides more reliable results generally. Table 8 and Figure 6b
show the accuracy of RBF-SVM. HANDI provides the highest classification accuracy in
the data sets Wine and Breast tissue. FCBF and FCS achieve the highest classification
accuracy in the data sets Forest types and Thoracic Surgery. KNFI and KNFE achieve
the highest classification accuracy in the data sets Leaf and Primary tumor. In the other
data sets, EPSTEIN provides the most precise results. According to the last two rows, EP-
STEIN provides more reliable results on 9, 13, 13, 13, 10, 11 and 15 data sets compared
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Table 7: The classification accuracy of Decision Tree based on the different feature

selection algorithms

data set EPSTEIN HANDI CFS FCBF AF KNFI KNFE PCA-IG

Credit
0.8550 0.7840 0.7942 0.7333 0.7826 0.8318 0.8507 0.7391

σ = 0.01 ε = 0.8

SCADI
0.6857 0.6571 0.7571 0.5714 0.7285 0.7835 0.7857 0.6581

σ = 0.1 ε = 0.2

Forest types
0.7846 0.7661 0.7415 0.7415 0.7446 0.76 0.7538 0.7461

σ = 0.04 ε = 0.45

Sonar
0.4754 0.5144 0.4760 0.4331 0.4279 0.5370 0.5968 0.3552

σ = 0.03 ε = 0.05

ILPD
0.7134 0.6329 0.6416 0.6773 0.6243 0.6894 0.6312 0.6413

σ = 0.01 ε = 0.6

Spect heart
0.7952 0.7197 0.7342 0.7952 0.7342 0.7252 0.7738 0.7009

σ = 0.01 ε = 0.05

Leaf
0.3735 0.3882 0.3470 0.2352 0.3735 0.3917 0.3970 0.4029

σ = 0.03 ε = 0.95

Thoracic Surgery
0.8 0.6319 0.7531 0.8446 0.7361 0.7831 0.7940 0.5129

σ = 0.01 ε = 0

Seeds
0.7904 0.7809 0.7761 0.7523 0.7571 0.7619 0.7238 0.7666

σ = 0.01 ε = 0.25

Wine
0.8712 0.8480 0.7917 0.4871 0.8257 0.8538 0.8198 0.7902

σ = 0.05 ε = 0.6

IRIS
0.9645 0.9228 0.9133 0.5 0.9124 0.9533 0.9533 0.8933

σ = 0.01 ε = 0

Wpbc
0.8953 0.8831 0.5851 0.8505 0.7721 0.6714 0.6252 0.7017

σ = 0.04 ε = 0.45

Lung cancer
0.3911 0.3759 0.2857 0.1190 0.3521 0.2034 0.2321 0.2142

σ = 0.02 ε = 0.5

Primary tumor
0.6137 0.6436 0.6345 0.6343 0.6258 0.7287 0.6816 0.6346

σ = 0.01 ε = 0.95

Breast tissue
0.2795 0.2681 0.2281 0.1809 0.2169 0.2663 0.2757 0.2042

σ = 0.04 ε = 0.3
Average 0.6841 0.6544 0.6311 0.5638 0.6395 0.6627 0.6596 0.5974

< G,E,L > — < 12, 0, 3 > < 11, 0, 4 > < 12, 1, 2 > < 12, 1, 1 > < 11, 0, 4 > < 11, 0, 4 > < 13, 0, 2 >

Table 8: The classification accuracy of RBF-SVM based on the different feature

selection algorithms

data set EPSTEIN HANDI CFS FCBF AF KNFI KNFE PCA-IG

Credit
0.8550 0.8246 0.8188 0.7333 0.7811 0.8333 0.8320 0.8057

σ = 0.01 ε = 0.8

SCADI
0.6857 0.6714 0.6714 0.6 0.4142 0.5048 0.4142 0.5285

σ = 0.1 ε = 0.2

Forest types
0.8584 0.8153 0.8646 0.8430 0.8184 0.7152 0.6895 0.84

σ = 0.04 ε = 0.45

Sonar
0.5581 0.5347 0.4376 0.1975 0.3209 0.5501 0.5428 0.3974

σ = 0.03 ε = 0.05

ILPD
0.7134 0.7134 0.7100 0.7134 0.6809 0.7134 0.7083 0.7048

σ = 0.01 ε = 0.6

Spect heart
0.7952 0.7197 0.7944 0.7952 0.7895 0.7952 0.7809 0.6828

σ = 0.01 ε = 0.05

Leaf
0.5176 0.5352 0.4970 0.1792 0.5352 0.5264 0.6117 0.4852

σ = 0.03 ε = 0.95

Thoracic Surgery
0.8 0.8 0.8042 0.8489 0.7893 0.8510 0.8297 0.6147

σ = 0.01 ε = 0

Seeds
0.8857 0.8857 0.8666 0.7666 0.8857 0.8428 0.8238 0.8285

σ = 0.01 ε = 0.25

Wine
0.9269 0.9611 0.9158 0.4985 0.9496 0.9247 0.8938 0.8823

σ = 0.05 ε = 0.6

IRIS
0.9564 0.9138 0.9266 0.4466 0.9102 0.9466 0.9466 0.92

σ = 0.01 ε = 0

Wpbc
0.9036 0.7775 0.6664 0.8946 0.8821 0.7210 0.7316 0.7061

σ = 0.04 ε = 0.45

Lung cancer
0.4125 0.3759 0.3095 0.090 0.3529 0.2158 0.1849 0.1619

σ = 0.02 ε = 0.5

Primary tumor
0.7325 0.6436 0.6845 0.6607 0.7280 0.7287 0.7405 0.6280

σ = 0.01 ε = 0.95

Breast tissue
0.2315 0.2681 0.2186 0.1142 0.2756 0.2 0.26 0.2059

σ = 0.04 ε = 0.3
Average 0.7219 0.696 0.6790 0.5587 0.6755 0.6712 0.6660 0.6261

< G,E,L > — < 9, 2, 4 > < 13, 0, 2 > < 13, 2, 0 > < 13, 1, 1 > < 10, 2, 3 > < 11, 0, 4 > < 15, 0, 0 >
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Table 9: The classification accuracy of 7NN based on the different feature selection

algorithms

data set EPSTEIN HANDI CFS FCBF AF KNFI KNFE PCA-IG

Credit
0.8275 0.7449 0.8217 0.4202 0.8104 0.8057 0.7753 0.8031

σ = 0.01 ε = 0.8

SCADI
0.7442 0.7652 0.7371 0.6857 0.7124 0.7714 0.7857 0.7428

σ = 0.1 ε = 0.2

Forest types
0.8276 0.8030 0.8153 0.7846 0.8122 0.8038 0.8030 0.7538

σ = 0.04 ε = 0.45

Sonar
0.5232 0.5439 0.4149 0.3081 0.3682 0.6825 0.5473 0.3931

σ = 0.03 ε = 0.05

ILPD
0.6998 0.6774 0.6534 0.6637 0.6137 0.6791 0.6604 0.6620

σ = 0.01 ε = 0.6

Spect heart
0.7205 0.6713 0.7619 0.7529 0.7603 0.7730 0.7327 0.6635

σ = 0.01 ε = 0.05

Leaf
0.3522 0.3117 0.3323 0.1617 0.3418 0.3041 0.3152 0.3235

σ = 0.03 ε = 0.95

Thoracic Surgery
0.8 0.7510 0.8106 0.8268 0.8197 0.7910 0.8271 0.7031

σ = 0.01 ε = 0.25

Seeds
0.8619 0.8476 0.8571 0.7809 0.8325 0.7428 0.8095 0.8238

σ = 0.01 ε = 0.25

Wine
0.9158 0.9041 0.8988 0.5488 0.9104 0.9028 0.8993 0.8542

σ = 0.05 ε = 0.6

IRIS
0.9189 0.9237 0.9133 0.4533 0.9045 0.96 0.9533 0.94

σ = 0.01 ε = 0

Wpbc
0.8921 0.8647 0.7420 0.8875 0.7524 0.7619 0.7366 0.6607

σ = 0.04 ε = 0.45

Lung cancer
0.38 0.3781 0.1904 0.0571 0.2512 0.2218 0.2129 0.0285

σ = 0.02 ε = 0.5

Primary tumor
0.7333 0.71 0.6445 0.4549 0.7044 0.6578 0.7199 0.6022

σ = 0.01 ε = 0.95

Breast tissue
0.181 0.2599 0.0852 0.019 0.21 0.0190 0.0852 0.2042

σ = 0.04 ε = 0.3
Average 0.6918 0.6771 0.6452 0.5203 0.6536 0.6584 0.6575 0.6105

< G,E,L > — < 11, 0, 4 > < 12, 0, 3 > < 13, 0, 2 > < 12, 0, 3 > < 11, 0, 4 > < 11, 0, 4 > < 13, 0, 2 >

Table 10: The average number of the features selected by the different algorithms

data set EPSTEIN HANDI CFS FCBF AF KNFI KNFE PCA-IG

Credit 1 7.2 6 2 14 8.6 3.2 3

SCADI 2.8 6.8 23.4 11.2 205 3 199.4 16

Forest types 5 3.2 9.8 5.2 27 3.2 7 5.8

Sonar 4 3.6 6.2 2 60 4.2 5.4 6

ILPD 1 1 6.2 1 10 1.8 7.8 2

Spect Heart 1 2.2 15.6 1 22 1 13.2 4

Leaf 6 14.2 7.2 2 15 6.6 13.4 4.4

Thoracic surgery 0.8 7 8 1 17 1.2 8.8 1

Seeds 3.4 3 6.6 1.8 7 4.4 4.4 2.8

Wine 5.6 13 6.4 1 13 4 9.6 7.2

IRIS 2.6 2.8 6 2 4 1.2 2.8 3

Wpbc 2 1.8 6.8 2 33 4.8 17.2 2.4

Lung cancer 4.2 4 15.6 1.8 56 2 2.3 10

Primary tumor 1 7.8 9.6 1 17 9.2 10.4 3.4

Breast tissue 3 4.8 7.6 2 9 2 7.2 2.6
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(a) Decision Tree

(b) RBF-SVM

(c) 7NN

Figure 6: The average accuracy of the classifiers based on the different feature selection

algorithms for all the data sets
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(a) Decision Tree

(b) RBF-SVM

(c) 7NN

Figure 7: The average F-measure of the classifiers based on the different feature

selection algorithms for all the data sets
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to HANDI, CFS, FCBF, AF, KNFI, KNFE and PCA-IG respectively. In none of the data
sets, PCA-IG could not provide reliable results compared to HANDI and EPSTEIN.
Table 9 and Figure 6c show the accuracy of 7NN. HANDI provides the highest clas-
sification accuracy in the data set Breast tissue. KNFI and KNFE achieve the highest
classification accuracy in the data sets SCADI, Sonar, Spect heart, Thoracic Surgery and
IRIS. In the other data sets, EPSTEIN provides the most precise results. According to the
last two rows, EPSTEIN provides more reliable results on 11, 12, 13, 12, 11, 11 and 13
data sets compared to HANDI, CFS, FCBF, AF, KNFI, KNFE and PCA-IG respectively.
PCA-IG achieves more classification accuracy than EPSTEIN in the data sets IRIS and
Breast tissue. Figure 7 shows the F-measure of Decision Tree, RBF-SVM and 7NN.
According to the tables and the figure, for all the classifiers, EPSTEIN improves the
F-measure compared to the other algorithms on most of the data sets. As the last two
rows of the tables show, EPSTEIN provides more reliable results on average compared
to the other algorithms. Table 10 shows the average number of the features selected
by the different algorithms for each data set. As the results show, EPSTEIN selects
fewer features compared to the other algorithms on average. So not only does EPSTEIN
alleviate the impact of the neighborhood radius on the neighborhood relation, but it also
improves the classification accuracy and decreases the number of the selected features,
which can lead to decreasing time complexity of classification.

4.3 Time Complexity Analysis

As our experimental results in section 4.2 show, EPSTEIN, HANDI, KNFI and KNFE
provide the most reliable results. So, due to space limitation, we compare the time
complexity of EPSTEIN with HANDI’s, KNFI’s and KNFE’s briefly:

– KNFI and KNFE: Let n be the number of samples in each batch of mini-batch
Kmeans clustering,m be the number of the features, k be the number of clusters and
t be the number of iterations of mini-batch Kmeans. The time complexity of the filter
method is O(n×m× k × t). The time complexity of the wrapper method depends
on the classifier used to obtain the subset of features. If the time complexity of the
classifier is O(y), then the time complexity of the wrapper method is O(m× y).

– HANDI: Let n be the number of samples andm be the number of the features. The
time complexity of neighborhood relations construction is O(n2). The overall time
complexity of the algorithm is O(n2 ×m).

– EPSTEIN: Let n be the number of samples and m be the number of the features.
The time complexity of neighborhood relations construction is O(n3). The overall
time complexity of the algorithm is O(n3 ×m).

As time complexities and the experimental results show, EPSTEIN improves the other
methods with comparable complexity.

5 Conclusion and Future Work

In this paper, we present EPSTEIN, a new approach to construct the neighborhood
relation. In EPSTEIN, the target points are determined based on their local density.
Then, the circles centered at the target points are drawn and the points inside or on
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the circles are considered to be neighbors. In the next steps, based on the conditional
discrimination index and the greedy algorithm, an appropriate subset of features is
selected. The performance of EPSTEIN is compared to HANDI, KNFE, KNFI, CFS and
FCBF on fifteen data sets.According to the experiment results, 1) EPSTEIN alleviates the
impact of the neighborhood radius on the neighborhood relation, 2) EPSTEIN improves
the classification accuracy and 3) EPSTEIN decreases the number of the selected features,
which can lead to decreasing time complexity of classification.
In the future work, we plan to conduct more experiments to evaluate the efficiency
of EPSTEIN on larger data sets. We also plan to consider outliers and missing values.
Furthermore, we plan to propose an approach to select the values of the parameters
according to the characteristic of data sets.
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