
 Journal of Universal Computer Science, vol. 28, no. 7 (2022), 708-732 
submitted: 14/1/2022, accepted: 10/5/2022, appeared: 28/7/2022 CC BY-ND 4.0 

A Neuro-Fuzzy Hybridized Approach for Software 
Reliability Prediction 

Ajay Kumar 
(Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College, 

Ghaziabad, Uttar Pradesh, India, 
https://orcid.org/0000-0003-0126-7172, ajaygarg100@gmail.com) 

 
 
 
Abstract: Context: Reliability prediction is critical for software engineers in the current 
challenging scenario of increased demand for high-quality software. Even though various 
software reliability prediction models have been established so far, there is always a need for a 
more accurate model in today's competitive environment for producing high-quality software. 
Objective: This paper proposes a neuro-fuzzy hybridized method by integrating self-organized-
map (SOM) and fuzzy time series (FTS) forecasting for the reliability prediction of a software 
system. Methodology: In the proposed approach, a well-known supervised clustering algorithm 
SOM is incorporated with FTS forecasting for developing a hybrid model for software reliability 
prediction. To validate the proposed approach, an experimental study is done by applying 
proposed neuro-fuzzy method on a software failure dataset. In addition, a comparative study was 
conducted for evaluating the performance of the proposed method by comparing it with some of 
the existing FTS models. Results: Experimental outcomes show that the proposed approach 
performs better than the existing FTS models. Conclusion: The results show that the proposed 
approach can be used efficiently in the software industry for software reliability prediction. 
 
Key Words: Software Reliability; Self-Organized-Map (SOM); Fuzzy-Time-Series (FTS) 
Category: D.2, D.2.4, D.2.9 
DOI: 10.3897/jucs.80537 
 
 
1    Introduction 
 
In day-to-day life, software plays an important role in many applications such as home 
appliances, industrial controls, hospital health care units, nuclear reactor plants, aircraft, 
air traffic control, shopping, and many more. To increase their effectiveness and 
efficiency, many governments and commercial organizations depend on software. In 
this growing scenario of software technology, software practitioners are concerned 
about the good quality of the software as it is highly correlated with end-user 
satisfaction. Software failure may lead to economic loss and customer dissatisfaction 
for the organizations. So, in this scenario, software reliability is a key factor for 
measuring the overall quality of any software system.  
     Software reliability is defined as the likelihood of software execution in a given 
environment without failure for a certain period of time [Iannino and Musa 1990].  For 
example, suppose the software has a reliability of 98 percent over ten elapsed 
processing hours (execution time). In that case, it means that the software is likely to 
operate 98 times without any failure out of 100 times. Here, software failure means that 
it is producing an incorrect output corresponding to a particular input received as per 



   709 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

specification [Pham 2006]. Thus, software failure occurs due to the presence of 
software fault, which can occur for many reasons such as incorrect code, data handling 
error, computation error, execution flow failure, data input error, and many more. 
     The demand for good and reliable software is growing every day in today's 
competitive economy. For developing reliable software, the prediction of reliability is 
an important step. Software reliability prediction aids the software industry in 
developing good reliable software systems within budget constraints and given time. 
As a result, researchers have always been interested in building an efficient and accurate 
model for software reliability prediction. Over the last few decades, various software 
reliability growth models (SRGMs) have been developed and reported in the literature. 
     In the earlier research work done by various researchers to develop software 
reliability prediction models, the emphasis was to represent the failure phenomenon 
during the testing process as a non-homogeneous poison process (NHPP) [Pham 2006]. 
This resulted in extreme difficulty to validate underlying assumptions about software 
failure phenomenon and led to the introduction of non-parametric non-linear tools such 
as artificial neural network (ANN) [Bisi and Goyal 2016], which could generate a 
software reliability model from historical data of observed failures. However, ANNs 
have the problem of getting stuck in a local minimum and slow convergence, which led 
software reliability researchers to explore ensemble and hybrid techniques for 
estimating software reliability.  
     Current initiatives in software reliability research are directed towards more accurate 
hybrid techniques based on integrating ANNS with other computational intelligence 
techniques [Bisi and Goyal 2016, Bisi and Goyal 2015]. Based on self-organized maps 
(SOM) and fuzzy time series (FTS), this paper proposes a neuro-fuzzy hybridized 
method referred to as SOMFTS to predict a software system's reliability based on its 
failure history. 
     This paper's remainder is as follows: The research on software reliability prediction 
is discussed in Section 2. Section 3 describes the dataset used in this paper. The 
proposed hybrid SOMFTS technique for software reliability prediction is described in 
Section 4. Section 5 describes the performance measures that were used to evaluate the 
proposed method SOMFTS. Finally, section 6 summarizes the experimental findings, 
section 7 presents discussion of results while section 8 concludes the paper. 
 
 
2    Related Work  
 
The work involved in establishing software reliability prediction models is described 
in this section. Various researchers have been working on constructing software 
reliability prediction models for the past two decades. However, in recent years most 
researchers emphasized deep neural-based techniques for software reliability 
prediction. 
     [Karunanithi et al. 1992] proposed the first software reliability growth model 
(SRGM) based on an artificial neural network (ANN) for predicting the cumulative 
failure counts. [Cai et al. 2001] developed a model based on a backpropagation neural 
network for software reliability prediction. They predicted the next step failure time by 
using successive failure times as an input. [Tian and Noore 2005] developed an 



710    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

evolutionary model based on multiple-delayed-input-single-output architecture for 
predicting cumulative software failure time using ANN. 
     [Kumar and Singh 2012] conducted an empirical study of selected machine learning 
techniques, including ANN, SVM, Fuzzy Inference System (FIS), Decision Trees, and 
Cascade Correlation Neural Network (CCNN). They concluded that SVR might be a 
better choice for software reliability prediction. 
     [Ramakrishna et al. 2012] proposed software reliability prediction models based on 
Support Vector Regression (SVR) and Multilayer Perceptron (MLP). Based on an 
evaluation study, they concluded that MLP performs better than SVR for software 
reliability prediction. [Benala et al. 2013] proposed a functional link artificial neural 
network (FLANN) model based on PSO for software effort prediction. 
     [Amin et al. 2013] proposed a time series forecasting approach using Autoregressive 
Integrated moving average (ARIMA) for the software reliability prediction. They 
compared their proposed model with other traditional software reliability growth 
models. They claimed that the time series-based model predicts the reliability of a 
software system better than that of conventional models. 
     [Kewen et al. 2013] proposed an ensemble method by using K-means clustering 
methods. In their proposed method, authors use the K-means clustering algorithm to 
select one combination of various generated neural networks and select the best output 
using the entropy weight method. In their study, a comparison was carried out between 
optimal individual networks and ensembled networks. Based on results analysis, 
authors suggest that ensemble networks give better results than those produced by 
individual networks. 
     [Jin and Jin 2014] proposed a hybrid model (IEDA-SVR) by integrating SVR with 
the improved estimation of distributed algorithms. Based on a comparative study with 
the other four models, the authors conclude that the proposed IEDA-SVR model can be 
used for software reliability prediction with better efficiency. In their study, [Song and 
Chang 2014] have used various non-homogeneous poisson process (NHPP) and time 
series regression curve models. Furthermore, they collected two software failure 
datasets for the validation of their proposed approach. The first dataset was collected 
from the test of system T at AT & T Bell laboratory, and the second dataset was 
collected from NTDS having information about the failure of the real-time multi-
computer complex system. Based on result analysis, the authors find that for dataset1 
logarithmic approach is best and for dataset2 S-model is best for the prediction of 
software reliability. 
     For software reliability prediction, [Roy et al. 2014] proposed a feed-forward and 
recurrent neural network-based dynamic weighted combination model. Based on 
experimental results authors concluded that the proposed model could be used as an 
efficient model for the software reliability prediction. 
     [Bisi and Goyal 2015] proposed a hybrid model PSO-ANN by incorporating particle 
swarm optimization (PSO) technique in an artificial neural network to determine the 
optimal weights of the network. The proposed model PSO-ANN was compared with 
the other four traditional software reliability growth models, namely the Jelinski 
Moranda model, Geometric, Musa Okumoto, and Musa Basic. Based on experimental 
results, the authors concluded that the proposed hybrid performed better than the 
singular ANN approach on normalized root means square metric. However, it is 
difficult to determine the optimal architecture of ANNs in terms of the number of layers 
in the network and the number of neurons in each layer. 



   711 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

     [Lou et al. 2016] applied relevance vector machine (RVM) for software reliability 
prediction. Although the RVM shares functional similarities with SVM, it is a 
probabilistic model. RVM requires more training time than SVM because of 
optimization of a non-convex function, but it does not require the use of free 
parameters. Regardless of the advantages of RVM over SVM, it requires the selection 
of a number of kernel parameters that vary according to the type of kernel used.  
     [Bisi and Goyal 2016] have used four versions of hybrid models by integrating ANN 
and PSO for software reliability prediction. After comparison with Genetic Algorithm 
(GA) based software reliability models such as GA-based SVR, GA-based MLP, and 
GA-based M5P, they came to the conclusion that their proposed model produces more 
accurate software reliability predictions.  
     [Jabeen et al. 2017] proposed a hybrid model by combining Jelinski Moranda (JM) 
model with Grey Model (GM). They have used the advantages of both models JM and 
GM to produce better results than the results produced by individual models. In another 
study, [Roy et al. 2017] have used the integration of Particle Swarm Optimization 
(PSO) and artificial neural network (ANN). Based on experimental results taking 
Average Error (AE), Mean Square Error (MSE) as evaluation criteria, the authors 
concluded that their proposed model is better than existing neural network-based 
models to predict software reliability.  
     A hybrid model was proposed by [Mallikharajuna and Kodali 2017] based on 
modified artificial bee colony (MABC) optimization techniques and modified cuckoo 
search (MCS). In a study, [Jaiswal and Malhotra 2018] evaluate several machine 
learning techniques used for software reliability prediction such as Feed forward 
backpropagation neural network, Artificial neural fuzzy inference system, SVR, 
general regression neural network, MLP, cascading forward BPNN, Bagging, Instance-
based learning, MLR, M5P, M5Rules and reduced error pruning tree. They concluded 
that ANFIS outperformed all other models used in their study. Further, they suggest 
combining various machine learning techniques to get better performance. 
     [Ma et al. 2018] proposed a software reliability prediction model based on support 
vector regression (SVR). They compared their proposed model with other conventional 
models and found that the SVR model performed better than the conventional models 
for software reliability prediction.  
     [Jabeen et al. 2019] developed a software reliability prediction model based on the 
Grey-Markov chain concept. The proposed model was compared with two well-known 
models M-J-M and GM (1,1). Based on results obtained of performance measures used 
in their study, authors conclude that the proposed model can be used as an efficient 
model for the software reliability prediction.  
     [Roy et al. 2019] proposed a software reliability prediction model by incorporating 
neighborhood particle swarm optimization (PSO) in an artificial neural network (ANN) 
to determine the optimal weights of the network. They concluded that the neighborhood 
PSO-ANN approach performed better than the standard PSO-ANN approach and 
singular ANN approach on the average error performance metric. 
     For enhancing the prediction accuracy of existing software reliability growth models 
(SRGMs), [Jabeen et al. 2019] proposed a high precision error iterative analysis method 
(HPEIAM). They combined the residual errors obtained from the estimated results of 
SRGMs with the artificial neural network sign estimator for enhancing the prediction 
accuracy of SRGMs. After applying HPEIAM on various SRGMs (GO, J-M, 



712    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

Littlewood, Jinyong-GO, and Musa), they concluded that HPEIAM enhanced the 
performance of compared traditional SRGMs models. 
     [Li et al. 2019] proposed a hybrid model based on artificial bee colony (ABC) and 
particle swarm optimization (PSO). Their proposed model constructs a new fitness 
function for the parameter estimation of existing software reliability growth models 
such as the GO model. They have used five classic sets of software failure data for 
parameter estimation of the GO model and concluded that the ABC-PSO model was 
more capable for parameter estimation and reliability prediction than the traditional 
SRGMs. 
     [Behera et al. 2019] proposed a hybrid technique based on chemical reaction 
optimization (CRO) and FLANN. They concluded that their proposed hybrid model 
was performed better than conventional models for software reliability prediction. In 
another study, [Pandey et al. 2020] proposed a hybrid model by combining ensemble 
learning (EL) and deep representation (DR) for software reliability prediction.  
     [Juneja 2020] proposed a neuro-fuzzy-based model for enhancing the reliability 
prediction of software systems. A Pareto-distribution ant colony optimization (PD-
ACO) hybrid technique was proposed by [Sudharson 2020] for software reliability 
prediction during the testing phase. [Kumaresan and Ganeshkumar 2020] proposed a 
software reliability prediction model based using a time series forecasting approach 
ARIMA. The authors compared the proposed model with other existing time series-
based models to show the better efficiency of their proposed model for software 
reliability prediction. 
     [Zhen et al. 2020] proposed a hybrid model (PSO-WPA) by considering the 
advantages of particle swarm optimization and wolf pack algorithm. Based on 
experimental results, the authors concluded that the hybrid approach (WPA-PSO) 
performs better than the individual method WPA and PSO to predict software 
reliability. In a recent study, [Behra et al. 2021] proposed a model based on a functional 
link artificial neural network where the chemical reaction optimization trained the 
model's parameters. 
     [Kassaymeh et al. 2021] proposed a hybrid model for software reliability prediction 
by combining the Salp swarm algorithm (SSA) with backpropagation neural network 
(BPNN) to determine the optimal network weights. After a comparative study based on 
various performance measures, they concluded that the hybrid model SSA-BPNN 
outperformed the BPNN after a comparative study based on various performance 
measures. 
     From the related work as described above, it can be observed that most of the 
researchers emphasized the use of artificial neural networks for predicting software 
reliability. It is noted that neural network-based models are complex due to the 
involvement of a large number of layers and neurons. Further, it is also noticeable that 
there is no silver bullet intelligent technique for predicting the reliability of software 
systems, and hence it is desirable to explore competitive and alternative techniques. 
Along with the high prediction capability, robustness, efficiency, and ease of 
interpretation of intelligent techniques for software reliability prediction are also 
desired. This motivates us to develop a software reliability prediction method based on 
hybridizations of different categories of intelligent techniques. 
     In contrast to neural networks, which are regarded as black boxes and difficult to 
interpret, fuzzy systems are easily interpretable, which motivates us to apply the fuzzy 
time series approach. Based on self-organized maps (SOM) and fuzzy time series 



   713 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

(FTS), this paper proposes a neuro-fuzzy hybridized method referred to as SOMFTS to 
predict a software system's reliability based on its failure history. To the best of the 
author’s knowledge, no previous research has attempted to predict the software 
reliability of a software system using the hybrid neuro-fuzzy technique SOMFTS. 
 
3    Description of Software Failure Dataset    
 
This study chooses a well-known software failure dataset for the military software 
system originally collected by John D. Musa in 1979 presented in Table 1.       
 

t Ft t Ft t Ft 
t0 5.768 t34 10.630 t68 12.598 
t1 9.574 t35 8.333 t69 12.086 
t2 9.105 t36 11.315 t70 12.277 
t3 7.966 t37 9.487 t71 11.960 
t4 8.648 t38 8.139 t72 12.025 
t5 9.989 t39 8.671 t73 9.287 
t6 10.196 t40 6.462 t74 12.495 
t7 11.640 t41 6.462 t75 14.557 
t8 11.628 t42 7.696 t76 13.328 
t9 6.492 t43 4.701 t77 8.946 
t10 7.901 t44 10.002 t78 14.782 
t11 10.268 t45 11.013 t79 14.897 
t12 7.684 t46 10.862 t80 12.140 
t13 8.891 t47 9.437 t81 9.798 
t14 9.293 t48 6.664 t82 12.091 
t15 8.350 t49 9.229 t83 13.098 
t16 9.043 t50 8.967 t84 13.368 
t17 9.603 t51 10.353 t85 12.721 
t18 9.374 t52 10.100 t86 14.192 
t19 8.587 t53 12.608 t87 11.370 
t20 8.788 t54 7.155 t88 12.202 
t21 8.779 t55 10.003 t89 12.279 
t22 8.047 t56 9.860 t90 11.367 
t23 10.846 t57 7.868 t91 11.392 
t24 8.742 t58 10.576 t92 14.411 
t25 7.544 t59 10.929 t93 8.333 
t26 8.594 t60 10.660 t94 8.071 
t27 11.040 t61 12.497 t95 12.202 
t28 10.120 t62 11.375 t96 12.783 
t29 10.179 t63 11.916 t97 13.159 
t30 5.894 t64 9.575 t98 12.753 
t31 9.546 t65 10.450 t99 10.353 
t32 9.620 t66 10.587 t100 12.490 
t33 10.385 t67 12.720   

 
Table 1: Software Failure Dataset 

 



714    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

The dataset consists of 101 failures that occurred during the development phase with 
approximately 1,80,000 lines of code at the execution time of 1035 (CPU Time) 
[recorded in Amin et al. 2013 and Mohanty et al. 2013]. Each failure is represented in 
the form of the pair (t, Ft), where Ft represents time (in seconds) to software failure 
after tth modification has been done. Despite being old, this dataset has been used in 
this study because it is very popular in the field of software reliability and has been 
widely used in previous studies [Li and Malaiya 1993, Kiran and Ravi 2007, Zemouri 
et al. 2010, Mohanty et al. 2013, Jin and Jin 2014, Bisi and Goyal 2015, Behera et al. 
2021]. 
 
4    Proposed Hybrid Technique for Software Reliability Prediction 
 
This section describes the proposed hybrid technique for software reliability prediction. 
For the purpose of simple and better understanding, the proposed method is divided 
into four subsections. Subsection 4.1 presents an overview of the proposed method with 
graphical abstract of the proposed neuro-fuzzy hybrid model for software reliability 
prediction. As the proposed method is based on the fuzzy time series and self-
organized-map, first these two concepts are discussed before presenting the detailed 
description of proposed software reliability prediction model. Subsection 4.2 presents 
the brief overview of fuzzy time series (FTS) and basic concepts of fuzzy set theory 
such as fuzzy sets, membership function, fuzzification and defuzzification. Subsection 
4.3 describes the self-organized-map and finally detailed description of the proposed 
method is presented in subsection 4.4.  
 
 
4.1 An Overview of Proposed Method  
 
For developing reliable software, the prediction of reliability is an important step. 
Software reliability prediction aids the software industry in developing good reliable 
software systems within budget constraints and given time. As a result, researchers have 
always been interested in building an efficient and accurate model for software 
reliability prediction. In this study a neuro-fuzzy hybridized model SOMFTS is 
proposed for developing accurate software reliability prediction model that can be used 
as an efficient tool by the software practitioners in software industries to predict 
reliability of a software system.  
     The proposed model is based on self-organized-map and fuzzy-time-series to predict 
software reliability. In the proposed approach, software reliability prediction of a 
software system is modelled as fuzzy time series forecasting problem, since software 
failure dataset has only one dependent variable with no independent variables.  
     An overview of the proposed method is as follows:  

i. A Software failure dataset having time to failure history of a software 
system is taken as the input for predicting time to failure values of the 
software system as fuzzy time series forecasting.  

ii. A Software failure dataset is partitioned into a number of intervals. For 
partitioning the dataset into intervals, an unsupervised two-layered neural 
network self-organized-map (SOM) was used.  



   715 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

iii. Further, these intervals are represented by fuzzy sets by defining linguistic 
term.  

iv. Each observation of the software failure dataset is fuzzified according to 
the interval to which time between failure value belongs. For fuzzification 
of the software failure dataset, we have applied a triangular membership 
function [see Buckley 1985] on each defined fuzzy set corresponding to 
each interval.  

v. Construct the fuzzy logical relationships (FLRs) and fuzzy logical 
relationship groups (FLRGs) used to obtain the fuzzy forecast values of 
time to failure of software failure dataset.  

vi. Finally, Defuzzification is applied to obtain the predicted values of time 
to failures of software failure dataset.    

 
The graphical representation of the proposed software reliability prediction model is 
shown in Figure 1. 
 

 
 
 

Figure 1: An overview of the proposed software reliability prediction model 
 

Time to failure 
history of a 
Software 
system  
 

Universe of 
discourse (U) 
= software 
failure dataset 
in ascending 
order 

Use self-
organized-map 
(SOM) for 
dividing U into 
a number of 
intervals 

Represent each 
interval as fuzzy 
set by defining 
linguistic term 

Fuzzification of 
software failure 
dataset  

Establish Fuzzy 
logical 
relationship 
(FLR) and 
Fuzzy logical 
relationship 
group (FLRG) 

Use 
defuzzification 
for predicting 
software 
reliability  



716    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

4.2   Fuzzy Set and FTS - An overview 
 
This subsection describes the basic concepts of fuzzy set theory and fuzzy time series 
used in this study. 
 
4.2.1 Fuzzy Sets 
 
Meaning of fuzziness is ‘vagueness’. To deal with the uncertainty arising due to 
vagueness, fuzzy set theory is an excellent mathematical tool. The concept of fuzzy set 
was introduced by [Zadeh 1965] for processing data in the presence of uncertainty. 
Fuzzy set allow the varying degree of membership (between 0 and 1) of the elements 
to a set. If U is the universe of discourse and particular element of U is represented by 
u, then a fuzzy set FS defined on U can be written as follows: 
 

  
 

(1) 

Where  is a membership function associated with fuzzy set FS. For example, let 
U= {s1, s2, s3, s4, s5} be the universe of discourse of students. Let FS={(s1,0.5), 
(s2,0.4), (s3,1), (s4,0.8), (s5,0.9)} be the fuzzy set of smart students, where ‘smart’ is a 
fuzzy linguistic term. Here FS represents the smartness of s1 is 0.5, s2 is 0.4 and so on.  
 
 
4.2.2 Membership Function 
 
Membership function provides a measure of degree of similarity of an element to a 
fuzzy set. Various types of membership functions are available in the literature such as 
triangular, trapezoidal, sigmoid and gaussian. In this study triangular membership 
function is used because of its simplicity and widely used in previous studies.   
 
 
4.2.3 Fuzzy Time Series (FTS) 
 
Fuzzy Time Series (FTS) is a modelling approach to predict the future values from the 
previous or historical values of time series by employing fuzzy set concept. Detailed 
description of FTS can be found in [Lu et al. 2015, Chen 2014].      
 
 
4.2.4 Fuzzification and Defuzzification  
 
Fuzzification is the process of converting the dataset of crisp values into a number of 
fuzzy sets using a membership function. On the other hand, defuzzification is just the 
reverse process of fuzzification means converting fuzzified values into the crisp values. 
In this study, fuzzification procedure is used to obtain the fuzzified values of time to 
failure values of software failure dataset for employing the concept of fuzzy time series 
forecasting. Defuzzification procedure is used to obtain the predicted values of time to 
failure values of software failure dataset used in this study. Detailed procedure of 

( ){ }, ( ) ,  FSFS u u u Uµ= Î

( )FS uµ



   717 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

fuzzification and defuzzification for software failure dataset used in this study is 
described in the section 4.3 namely detailed description of the proposed method. 
 
 
4.3 Self-Organized-Map (SOM) 
 
SOM is an unsupervised two-layered neural network based upon the principle of 
competitive learning [Kohonen 1990]. The first layer is designated as the input layer, 
and the second layer is designated as the output layer. The output layer is also called a 
feature map. Usually, the output layer of SOM is a one-dimensional or two-dimensional 
lattice of neurons. The crux of the SOM neural technique is to map each training vector 
onto a feature space.  SOM tries to visualize the similarity between data vectors within 
a low-dimensional feature space. In the context of this paper, the SOM technique is 
integrated with the Fuzzy time Series to predict software reliability. SOM technique is 
applied to effectively fuzzify the time between failures datasets of software systems.  
 
 
4.4 Detailed Description of Proposed Method 
   
For software reliability prediction, the proposed method is divided into the following 
seven steps. 
Step1: Represent software failure dataset as universe of discourse U. 
Step2: Use SOM for partitioning U into the intervals. 
Step3: Assign linguistic terms to each interval. 
Step4: Fuzzification of software failure dataset. 
Step5: Establishment of the FLRs (Fuzzy logical relationship) for software failure 
dataset. 
Step6: Establishment of FLRGs (Fuzzy logical relationship groups) for software failure 
dataset. 
Step7: Defuzzify and predict the software reliability from the fuzzified values of the 
software failure dataset. 
 
A detailed description of each step of the proposed method with application on the 
software failure dataset as described in section 3 is presented as follows:   
 
Step1: Represent software failure dataset as U= [Umin, Umax] where Umin and Umax are 
the minimum and maximum values of time to failure, respectively. In this study U= 
[4.701, 14.897]. 
 
Step2: Use SOM for partitioning U into the intervals. 
[Description] Divide U into n number of partitions by applying the well-known 
clustering algorithm SOM (Self-Organized-Map) [see Kohonen 1990]. Take these 
partitions as the intervals of different lengths, namely fs0, fs1, fs2, …., and fsn-1. Further, 
each time to failure value of software failure dataset can be assigned to one of the 
intervals fs0, fs1, fs2, …., and fsn-1. Then, compute the centroid value of each interval by 
calculating the mean of all values in the corresponding interval. Intervals obtained for 
the software failure dataset as discussed in section 3 by applying SOM with their 
corresponding centroid value are listed in Table 2. 



718    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

 
 

Interval Centroid Interval Centroid 

fs0 = [4.701, 4.701] 4.701 fs33 = [10.100, 10.120] 10.110 

fs1 = [5.768, 5.894] 5.831 fs34 = [10.179, 10.196] 10.187 

fs2 = [6.462, 6.492] 6.472 fs35 = [10.268, 10.268] 10.268 

fs3 = [6.664, 6.664] 6.664 fs36 = [10.353, 10.353] 10.353 

fs4 = [7.155, 7.155] 7.155 fs37 = [10.385, 10.385] 10.385 

fs5 = [7.544, 7.544] 7.544 fs38 = [10.450, 10.450] 10.450 
fs6 = [7.684, 7.696] 7.690 fs39 = [10.576, 10.587] 10.581 
fs7 = [7.868, 7.901] 7.884 fs40 = [10.630, 10.660] 10.645 

fs8 = [7.966, 7.966] 7.966 fs41 = [10.846, 10.846] 10.846 

fs9 = [8.047, 8.071] 8.059 fs42 = [10.862, 10.862] 10.862 

fs10 = [8.139, 8.139] 8.139 fs43 = [10.929, 10.929] 10.929 

fs11 = [8.333, 8.333] 8.333 fs44 = [11.013, 11.040] 11.026 

fs12 = [8.350, 8.350] 8.350 fs45 = [11.315, 11.315] 11.315 

fs13 = [8.587, 8.594] 8.591 fs46 = [11.367, 11.375] 11.371 

fs14 = [8.648, 8.671] 8.660 fs47 = [11.392, 11.392] 11.392 

fs15 = [8.742, 8.742] 8.742 fs48 = [11.628, 11.640] 11.634 

fs16 = [8.779, 8.788] 8.784 fs49 = [11.916, 11.916] 11.916 

fs17 = [8.891, 8.891] 8.891 fs50 = [11.960, 11.960] 11.960 

fs18 = [8.946, 8.967] 8.957 fs51 = [12.025, 12.025] 12.025 
fs19 = [9.043, 9.043] 9.043 fs52 = [12.086, 12.091] 12.088 

fs20 = [9.105, 9.105] 9.105 fs53 = [12.140, 12.140] 12.140 

fs21 = [9.229, 9.229] 9.229 fs54 = [12.202, 12.202] 12.202 

fs22 = [9.287, 9.287] 9.287 fs55 = [12.277, 12.279] 12.278 

fs23 = [9.293, 9.293] 9.293 fs56 = [12.490, 12.497] 12.494 

fs24 = [9.374, 9.374] 9.374 fs57 = [12.598, 12.598] 12.598 

fs25 = [9.437, 9.437] 9.437 fs58 = [12.608, 12.608] 12.608 

fs26 = [9.487, 9.487] 9.487 fs59 = [12.720, 12.721] 12.720 

fs27 = [9.546, 9.546] 9.546 fs60 = [12.753, 12.783] 12.768 

fs28 = [9.574, 9.575] 9.575 fs61 = [13.098, 13.368] 13.128 

fs29 = [9.603, 9.620] 9.611 fs62 = [13.328, 13.368] 13.348 
fs30 = [9.798, 9.798] 9.798 fs63 = [14.192, 14.192] 14.192 

fs31 = [9.860, 9.860] 9.860 fs64 = [14.411, 14.557] 14.484 

fs32 = [9.989, 10.003] 9.998 fs65 = [14.782, 14.897] 14.840 

 
Table 2: Intervals with their centroid values for software failure dataset 

 



   719 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

 
Step3: Assign linguistic terms to each interval.  
[Description] Assign n linguistic terms FS0, FS1, FS2…., and FSn-1 for n number of 
intervals fs0, fs1, fs2, …., and fsn-1 respectively. Fuzzy sets for representing these 
linguistic terms can described as follows: 
 

 

FS0= 1/fs0 + 0.5/fs1 + 0/fs2 + …+ 0/fsn-3 + 0/fsn-2 + 0/fsn-1, 
FS1= 0.5/fs0 + 1/fs1 + 0.5/fs2 + …+ 0/fsn-3 + 0/fsn-2 + 0/fsn-1, 
FS2= 0/fs0 + 0.5/fs1 + 1/fs2 + …+ 0/fsn-3 + 0/fsn-2 + 0/fsn-1, 
. 
. 
FSn-1= 0/fs0 + 0/fs1 + 0/fs2 + …+ 0/fsn-3 + 0.5/fsn-2 + 1/fsn-1 

 
 

 
 
 
 
 
(2) 

     

     Here, interval fsi has maximum value of membership degree of fuzzy set FSi and 
0≤i≤(n-1). In this study 66 linguistic terms are defined as FS0, FS1, FS2…., FS65 for 66 
intervals generated by SOM. All linguistic terms are given as follows: 
   

 

FS0= 1/fs0 + 0.5/fs1 + 0/fs2 + …+ 0/fs63 + 0/fs64 + 0/fs65, 
FS1= 0.5/fs0 + 1/fs1 + 0.5/fs2 + …+ 0/fs63 + 0/fs64 + 0/fs65, 
FS2= 0/fs0 + 0.5/fs1 + 1/fs2 + …+ 0/fs63 + 0/fs64 + 0/fs65, 
. 
. 
FS65= 0/fs0 + 0/fs1 + 0/fs2 + …+ 0/fs63 + 0.5/fs64 + 1/fs65 
 

(3) 
      

     For example, in Eq. 3 linguistic term FS0 can be represented by fuzzy set = {fs0, fs1, 
fs2, …., fs65} having 66 members with membership degree values = {1,0.5, 0, ….0}. In 
the similar manner FS1 can be represented by fuzzy set = {fs0, fs1, fs2, …., fs65} having 
66 members with membership degree values = {0.5,1, 0, ….0} and so on. Each interval 
has been assigned a weight. The weight of each interval is the number of elements that 
belong to that interval. The weight of the fs2 interval, for example, will be 3 if it 
contains three elements. 
 
Step4: Fuzzification of software failure dataset.  
[Description] Each observation of the software failure dataset is fuzzified according to 
the interval to which time between failure value belongs. For fuzzification of the 
software failure dataset, we have applied a triangular membership function [see 
Buckley 1985] on each defined fuzzy set corresponding to each interval. Assume that 
maximum membership degree of time to failure after a software modification occurs at 
interval fsi and 0≤i≤(n-1), and FSi denotes fuzzified value for that particular 
modification. For example, the time to failure after t5 modification is 9.989, which 
belongs to the interval fs32 = [9.989, 10.003] with the maximum membership value one, 
so it can be fuzzified as FS32. In Eq.3, the membership degree of interval fs0 in FS0 and 
FS1 are 1 and 0.5, respectively, with 0 membership values for the remaining fuzzy sets. 
     Similarly, the membership degree of interval fs1 in FS0, FS1, and FS2 are 0.5, 1, and 
0.5, respectively, with 0 membership values for the remaining fuzzy sets and so on. For 
the purpose of easy calculation membership degree for each fuzzy set is taken as 0, 0.5, 
or 1. The fuzzified time to failure values for the software failure dataset used in this 
study is listed in Table 3. 
 



720    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

t Ft Fuzzified 
Ft Centroid Weight t Ft Fuzzified 

Ft Centroid Weight 

t0 5.768 FS1 5.831 2 t51 10.353 FS36 10.353 2 
t1 9.574 FS28 9.575 2 t52 10.100 FS33 10.110 2 
t2 9.105 FS20 9.105 1 t53 12.608 FS58 12.608 1 
t3 7.966 FS8 7.966 1 t54 7.155 FS4 7.155 1 
t4 8.648 FS14 8.660 2 t55 10.003 FS32 9.998 3 
t5 9.989 FS32 9.998 3 t56 9.860 FS31 9.860 1 
t6 10.196 FS34 10.187 2 t57 7.868 FS7 7.884 2 
t7 11.640 FS48 11.634 2 t58 10.576 FS39 10.581 2 
t8 11.628 FS48 11.634 2 t59 10.929 FS43 10.929 1 
t9 6.492 FS2 6.472 3 t60 10.660 FS40 10.645 2 
t10 7.901 FS7 7.884 2 t61 12.497 FS56 12.494 3 
t11 10.268 FS35 10.268 1 t62 11.375 FS46 11.371 3 
t12 7.684 FS6 7.690 2 t63 11.916 FS49 11.916 1 
t13 8.891 FS17 8.891 1 t64 9.575 FS28 9.575 2 
t14 9.293 FS23 9.293 1 t65 10.450 FS38 10.450 1 
t15 8.350 FS12 8.350 1 t66 10.587 FS39 10.581 2 
t16 9.043 FS19 9.043 1 t67 12.720 FS59 12.720 2 
t17 9.603 FS29 9.611 2 t68 12.598 FS57 12.598 1 
t18 9.374 FS24 9.374 1 t69 12.086 FS52 12.088 2 
t19 8.587 FS13 8.591 2 t70 12.277 FS55 12.278 2 
t20 8.788 FS16 8.784 2 t71 11.960 FS50 11.960 1 
t21 8.779 FS16 8.784 2 t72 12.025 FS51 12.025 1 
t22 8.047 FS9 8.059 2 t73 9.287 FS22 9.287 1 
t23 10.846 FS41 10.846 1 t74 12.495 FS56 12.494 3 
t24 8.742 FS15 8.742 1 t75 14.557 FS64 14.484 2 
t25 7.544 FS5 7.544 1 t76 13.328 FS62 13.348 2 
t26 8.594 FS13 8.591 2 t77 8.946 FS18 8.957 2 
t27 11.040 FS44 11.026 2 t78 14.782 FS65 14.840 2 
t28 10.120 FS33 10.110 2 t79 14.897 FS65 14.840 2 
t29 10.179 FS34 10.187 2 t80 12.140 FS53 12.140 1 
t30 5.894 FS1 5.831 2 t81 9.798 FS30 9.798 1 
t31 9.546 FS27 9.546 1 t82 12.091 FS52 12.088 2 
t32 9.620 FS29 9.611 2 t83 13.098 FS61 13.128 2 
t33 10.385 FS37 10.385 1 t84 13.368 FS62 13.348 2 
t34 10.630 FS40 10.645 2 t85 12.721 FS59 12.720 2 
t35 8.333 FS11 8.333 2 t86 14.192 FS63 14.192 1 
t36 11.315 FS45 11.315 1 t87 11.370 FS46 11.371 3 
t37 9.487 FS26 9.487 1 t88 12.202 FS54 12.202 2 
t38 8.139 FS10 8.139 1 t89 12.279 FS55 12.278 2 
t39 8.671 FS14 8.660 2 t90 11.367 FS46 11.371 3 
t40 6.462 FS2 6.472 3 t91 11.392 FS47 11.392 1 
t41 6.462 FS2 6.472 3 t92 14.411 FS64 14.484 2 
t42 7.696 FS6 7.690 2 t93 8.333 FS11 8.333 2 
t43 4.701 FS0 4.701 1 t94 8.071 FS09 8.059 2 
t44 10.002 FS32 9.998 3 t95 12.202 FS54 12.202 2 
t45 11.013 FS44 11.026 2 t96 12.783 FS60 12.768 2 
t46 10.862 FS42 10.862 1 t97 13.159 FS61 13.128 2 
t47 9.437 FS25 9.437 1 t98 12.753 FS60 12.768 2 
t48 6.664 FS3 6.664 1 t99 10.353 FS36 10.353 2 
t49 9.229 FS21 9.229 1 t100 12.490 FS56 12.494 3 
t50 8.967 FS18 8.957 2      

 

Table 3: Fuzzified values of time to failures for the software failure dataset with their 
centroid and weight 



   721 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

 
Step5: Establishment of the FLRs (Fuzzy logical relationship) for software failure 
dataset. 
[Description] According to the definition given in [Song and Chissom 1993], the 
establishment of the FLRs between two successive fuzzified values of time to failure 
for the given software failure dataset can be done as follows: 
Consider FS(t-1) =FSi and FS(t) =FSj, are two successive fuzzy values. The FLR 
between these two successive fuzzy values can be represented as follows: 
 

 FSi→FSj, 
 

(4) 

Where FSi and FSj represent the preceding state and present state of FLR.   
 
For example, from Table 3, it can be noted that fuzzified values of time to failure for t3 
and t4 are FS8 and FS14, respectively. So, an FLR as FS8 → FS14 can be established 
between FS8 and FS14. Similarly, FLRs for the software failure dataset can be generated 
and are listed in Table 4. 
 

FLRs FLRs FLRs FLRs FLRs FLRs 

FS1 → FS28 FS29 → FS24 FS40 → FS11 FS36 → FS33 FS57 → FS52 FS59 → FS63 

FS28 → FS20 FS24 → FS13 FS11 → FS45 FS33 → FS58 FS52 → FS55 FS63 → FS46 

FS20 → FS8 FS13 → FS16 FS45 → FS26 FS58 → FS4 FS55 → FS50 FS46 → FS54 

FS8 → FS14 FS16 → FS16 FS26 → FS10 FS4 → FS32 FS50 → FS51 FS54 → FS55 

FS14 → FS32 FS16 → FS9 FS10 → FS14 FS32 → FS31 FS51 → FS22 FS55 → FS46 

FS32 → FS34 FS9 → FS41 FS14 → FS2 FS31 → FS7 FS22 → FS56 FS46 → FS47 

FS34 → FS48 FS41 → FS15 FS2 → FS2 FS7 → FS39 FS56 → FS64 FS47 → FS64 

FS48 → FS48 FS15 → FS5 FS2 → FS6 FS39 → FS43 FS64 → FS62 FS64 → FS11 

FS48 → FS2 FS5 → FS13 FS6 → FS0 FS43 → FS40 FS62 → FS18 FS11 → FS09 

FS2 → FS7 FS13 → FS44 FS0 → FS32 FS40 → FS56 FS18 → FS65 FS09 → FS54 

FS7 → FS35 FS44 → FS33 FS32 → FS44 FS56 → FS46 FS65 → FS65 FS54 → FS60 

FS35 → FS6 FS33 → FS34 FS44 → FS42 FS46 → FS49 FS65 → FS53 FS60 → FS61 

FS6 → FS17 FS34 → FS1 FS42 → FS25 FS49 → FS28 FS53 → FS30 FS61 → FS60 

FS17 → FS23 FS1 → FS27 FS25 → FS3 FS28 → FS38 FS30 → FS52 FS60 → FS36 

FS23 → FS12 FS27 → FS29 FS3 → FS21 FS38 → FS39 FS52 → FS61 FS36 → FS56 

FS12 → FS19 FS29 → FS37 FS21 → FS18 FS39 → FS59 FS61 → FS62  

FS19 → FS29 FS37 → FS40 FS18 → FS36 FS59 → FS57 FS62 → FS59  

 

Table 4: FLRs for the software failure dataset 



722    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

 
Step6: Establishment of FLRGs (Fuzzy logical relationship groups) for software failure 
dataset. 
[Description] As per the definition of FLRGs given in [Cheng 1996], FLRs having the 
same preceding state can be collected together in the same FLRG. Consider the 
following FLRs: 
 

 

FSi→FSk1, 
FSi→FSk2, 
FSi→FSk3, 
. 
. 
. 
FSi→FSkm 
 

 
 
 
 
 
(5) 

 
Now all the FLRs on the right-hand side of Eq. 5 can be collected together in the same 
FLRG as follows: 
 

 
 
FSi→FSk1, FSk2, FSk3 …, FSkm. 
 

 
(6) 

 
For example, from Table 4, it can be observed that three FLRs FS2 → FS7, FS2 → FS2, 
and FS2 → FS6 have the same preceding state and hence can be grouped to form the 
FLRGs as FS2 → FS7, FS2, FS6. Thus, all FLRGs for the software failure dataset can be 
constructed in a similar way. 
After the construction of FLRGs, assign trends as described in [Singh 2018] to each 
fuzzy set in the present state of FLRGs according to the following three cases: 
 
Case1 Upward trend (↑): 
 
If the index value of the preceding state's fuzzy set is less than the index value of the 
present state's fuzzy set, the fuzzy set trend of the present state will be upward (↑). 
 
Case2 Downward trend (↓): 
 
If the index value of the preceding state's fuzzy set is greater than the index value of the 
present state's fuzzy set, the fuzzy set trend of the present state will be downward (↓). 
 
Case3 Unchanged (=): 
 
If the index value of the preceding state's fuzzy set is equal to the index value of the 
present state's fuzzy set, the present state's fuzzy set trend will remain unchanged (=). 
For example, consider FLRG: FS2 → FS7, FS2, FS6. Here FS7, FS2, and FS6 can be 
associated with the trends FS7 (↑), FS2 (=), and FS6 (↑) respectively. Therefore, all the 
FLRGs for the software failure dataset are listed in Table 5. 
 



   723 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

FLRGs Preceding state → Present state FLRGs Preceding state → Present state 

FLRG1 FS0 → FS32 (↑) FLRG34 FS33 → FS34 (↑), FS58 (↑) 
FLRG2 FS1 → FS27 (↑), FS28 (↑) FLRG35 FS34 → FS1 (↓), FS48 (↑) 
FLRG3 FS2 → FS2 (=), FS6 (↑), FS7 (↑) FLRG36 FS35 → FS6 (↓) 
FLRG4 FS3 → FS21 (↑) FLRG37 FS36 → FS33 (↓), FS56 (↑) 
FLRG5 FS4 → FS32 (↑) FLRG38 FS37 → FS40 (↑) 
FLRG6 FS5 → FS13 (↑) FLRG39 FS38 → FS39 (↑) 
FLRG7 FS6 → FS0 (↓), FS17 (↑) FLRG40 FS39 → FS43 (↑), FS59 (↑) 
FLRG8 FS7 → FS35 (↑), FS39 (↑) FLRG41 FS40 → FS11 (↓), FS56 (↑) 
FLRG9 FS8 → FS14 (↑) FLRG42 FS41 → FS15 (↓) 
FLRG10 FS9 → FS41 (↑), FS54 (↑) FLRG43 FS42 → FS25 (↓) 
FLRG11 FS10 → FS14 (↑) FLRG44 FS43 → FS40 (↓) 
FLRG12 FS11 → FS9 (↓), FS45 (↑) FLRG45 FS44 → FS33 (↓), FS42 (↓) 
FLRG13 FS12 → FS19 (↑) FLRG46 FS45 → FS26 (↓) 
FLRG14 FS13 → FS16 (↑), FS44 (↑) FLRG47 FS46 → FS47 (↑), FS49 (↑), FS54 

(↑) 
FLRG15 FS14 → FS2 (↓), FS32 (↑) FLRG48 FS47 → FS64 (↑) 
FLRG16 FS15 → FS5 (↓) FLRG49 FS48 → FS2 (↓), FS48 (=) 
FLRG17 FS16 → FS9 (↓), FS16 (=) FLRG50 FS49 → FS28 (↓) 
FLRG18 FS17 → FS23 (↑) FLRG51 FS50 → FS51 (↑) 
FLRG19 FS18 → FS36 (↑), FS65 (↑) FLRG52 FS51 → FS22 (↓) 
FLRG20 FS19 → FS29 (↑) FLRG53 FS52 → FS55 (↑), FS61 (↑) 
FLRG21 FS20 → FS8 (↓) FLRG54 FS53 → FS30 (↓) 
FLRG22 FS21 → FS18 (↓) FLRG55 FS54 → FS55 (↑), FS60 (↑) 
FLRG23 FS22 → FS56 (↑) FLRG56 FS55 → FS46 (↓), FS50 (↓) 
FLRG24 FS23 → FS12 (↓) FLRG57 FS56 → FS46 (↓), FS64 (↑) 
FLRG25 FS24 → FS13 (↓) FLRG58 FS57 → FS52 (↓) 
FLRG26 FS25 → FS3 (↓) FLRG59 FS58 → FS4 (↓) 
FLRG27 FS26 → FS10 (↓) FLRG60 FS59 → FS57 (↓), FS63 (↑) 
FLRG28 FS27 → FS29 (↑) FLRG61 FS60 → FS36 (↓), FS61 (↑) 
FLRG29 FS28 → FS20 (↓), FS38 (↑) FLRG62 FS61 → FS60 (↓), FS62 (↑) 
FLRG30 FS29 → FS24 (↓), FS37 (↑) FLRG63 FS62 → FS18 (↓), FS59 (↓) 
FLRG31 FS30 → FS52 (↑) FLRG64 FS63 → FS46 (↓) 
FLRG32 FS31 → FS7 (↓) FLRG65 FS64 → FS11 (↓), FS62 (↓) 
FLRG33 FS32 → FS31 (↓), FS34 (↑), FS44 (↑) FLRG66 FS65 → FS53 (↓), FS65 (=) 

 
Table 5: FLRGs for the software failure dataset 

 
Step7: Defuzzify and predict the software reliability from the fuzzified values of the 
software failure dataset. 
[Description] The fuzzified value at a time (t-1) is necessary to predict software 
reliability at time t. The complete procedure can be divided into three cases. The first 
two cases are adopted from the frequency distribution-based defuzzification technique 
given in [Singh 2018]. The third case is included to deal with the situation where the 



724    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

fuzzified value of the preceding state is not present in FLRGs. A detailed explanation 
of all the cases is given below: 
 
Case1: This case will be applicable when the present state has more than one fuzzified 
value. Description of this case is given below: 
 
Step i: Obtain the fuzzified value of time to failure time (t-1) as FSi. 
Step ii:  FLRG of the form “FSi→FSj0, FSj1, …FSjp” is obtained from FLRGs.   
Step iii: Obtain the interval fsi where fuzzy set FSi (preceding state) has the maximum 
degree of membership. 
Step iv: Further, variation vi in the time to failure for fuzzy set FSi can be computed 
using the following formula. 
 

 
 

(7) 

 
Here, and  represents the centroid of corresponding interval fsi and weightage of 
fuzzy set FSi, respectively. 
Step v: Find intervals fsj0, fsj1…, fsjp for the maximum membership value of fuzzy sets 
FSj0, FSj1…..., FSjp, respectively. Calculate centroids cj0, cj1, …., cjp for fsj0, fsj1…, fsjp 
respectively. 
Step vi: Compute FScentroid, mean of centroids cj0, cj1, …., cjp by using the following 
formula. 
 

 
 

(8) 

 
Here p denotes the number of fuzzy sets in a FLRG’s present state. 
Step vii: Compute trend value by using the following formula. 
 

 
 

(9) 

 
Here * represents the operator addition or subtraction depending upon downward trend 
and upward trend, respectively. For the trend unchanged, the centroid value is taken as 
it is. 
Step viii: Predict software reliability using the following formula. 
 

 
 

(10) 

 

Case2: This case will be applicable when the present state has only one fuzzified value. 
Description of this case is given below: 
Step i: Obtain the fuzzified value of time to failure at the time (t-1) as FSi 

100
i i

i
c wv
´

=

ic iw

0 1 .....j j jp
centroid p

c c cFS
+ +

=

( ) ( ) ( )0 1* * ..... *i i ij j jpv v v
T

p
c c c+ + +

=

( )
2

Tcentroid
predict

FSFS
+

=



   725 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

Step ii: FLRG of the form “FSi→FSj” is obtained from FLRGs.   
Step iii: Obtain the interval fsi where fuzzy set FSi (preceding state) has the maximum 
degree of membership. 
Step iv: Further, variation vi in the time to failure for fuzzy set FSi can be computed 
using the following formula. 
 

 
 

(11) 

 
Here, and  represents the centroid of corresponding interval fsi and weightage of 
fuzzy set FSi, respectively. 
Step v: Compute trend value by using the following formula. 
 

  (12) 

 
Here *, ci, and vi have the same meaning as in case 1. 
Step vi: Predict software reliability using the following formula. 
 

 
 

 

(13) 

 
Case3: This case will be applicable when the fuzzified value of the preceding state is 
not present in FLRGs. Description of this case is given below: 
This case is applicable when the previous state fuzzified value is not present in FLRGs. 
A detailed explanation of this case is given below: 
 
Step i: Obtain the fuzzified value of time to failure at the time (t-1) as FSi 
Step ii: Take the centroid of interval fsi as the predicted value since there is no rule in 
FLRGs corresponding to FSi as the preceding state. 
 
 
5    Performance Measures 
 
For the evaluation of the proposed model, four performance measures have been 
considered as evaluation criteria. All four measures are defined as follows: 

● Normalized Root Mean Square Error (NRMSE) can be defined as:  

 
 

 

 (14) 

• Average Prediction Error Rate (APER) can be defined as: 

100
i i

i
c wv
´

=

ic iw

( )*i iT c v=

2
jc T

FS predict
+

=

( )2
1

2

1

n

i i
i

n

i
i

predict actual
NRMSE

actual

=

=

-
=
å

å



726    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

 

 
 

 

 (15) 

 
• Mean Absolute Error (MAE) can be defined as: 

 

 
 

 
 (16) 

 
● Correlation Coefficient (r) gives the strength of the relationship between two 

variables (in this study, actual value and predicted value). This study chooses 
Pearson’s correlation coefficient and can be calculated using the following 
equation. 

 

 

 

 

(17) 
1 

 
In this study, actuali and predicti are the actual and predicted value of time to failure of 
the software after ith modification in the software, and n is the total number of 
predictions for time to failure. 
 
 
6    Experimental Results 
 
This section is further divided into two subsections. The first subsection presents 
computed predictions of time to failure for the software failure dataset used in this 
study, as described in section 3. The second subsection describes the results of four 
performance measures as defined in section 5 for the proposed SOMFTS method and 
four existing fuzzy time series models for comparative study. SOMFTS was 
implemented using MATLAB R2021 version 9.10. Open-source package PyFTS was 
used to implement four existing fuzzy time series models, namely [Chen 1996], [Yu 
2005], [Cheng et al. 2009], and [Efendi et al. 2013]. 
 

( )
1

/
100

n

i i i
i

predict actual actual
APER

n
=

æ ö
-ç ÷

ç ÷= ´
ç ÷
ç ÷
è ø

å

1

1 n

i i
i

MAE predict actual
n =

= -å

( )( )( ) ( )( )
( ) ( )2 22 2

i i i i

i i i i

n actual predict actual predict
r

n actual actual n predict predict

-
=

é ù é ù- -ê ú ê úë û ë û

å å å
å å å å



   727 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

6.1   Results of Predictions for Time to Failures for Software Failure Dataset 
 
Computed predicted values of time to failures of the software failure dataset as 
described in section 3 using the proposed SOMFTS approach are listed in Table 6.  Here 
two examples have been explained to compute the predicted values of the time to failure 
of the software system by applying the proposed SOMFTS approach. 
     Example 1: For predicting the time to failure value at t6, the fuzzified time to failure 
value at t5 is required. From Table 3, the fuzzified time to failure value at t5 can be 
obtained, which is FS32. Next, obtain the FLRG for which the preceding state is FS32. 
From Table 5, this FLRG can be obtained as FLRG33 in the form FS32 → FS31 (↓), FS34 
(↑), FS44 (↑). Because there is more than one fuzzified time to failure value (FS31, FS34, 
and FS44) are available in the present state here, case 1 is applicable. In FLRG FS32 → 
FS31 (↓), FS34 (↑), FS44 (↑), the fuzzified time to failure values in the present state exhibit 
two different trends as an upward trend (FS34 (↑), FS44 (↑)) and downward trend (FS31 
(↓)). Next, obtain the interval fs32 from Table 2, for which the fuzzy set FS32 has the 
maximum degree of membership. The centroid value for this interval fs32 is 9.998 
(=C32). Here the weight of fuzzy set FS32 is 3 (=W32). Compute the variation in time to 
failure for fuzzy set FS32 as V32= [9.998*3/100] =0.299 using Eq. (7). 
Next, from Table 2, find the intervals for which fuzzy sets FS31, FS34, and FS44 have the 
maximum membership degree values, fs31, fs34, and fs44, respectively. Centroid for these 
intervals fs31, fs34 and fs44 are 9.860 (=C31), 10.187 (=C34) and 11.026 (=C44) 
respectively. Average of centroids can be calculated as Fcentroid = 
(9.860+10.187+11.026)/3= 10.358 using Eq. (8). Now, using Eq. (9) trend value can 
be calculated as: T= (9.860+0.299)/3 +(10.187-0.299)/3+ (11.026-0.299)/3 =10.258. 
Here, the addition and subtraction operation are done for the downward trend and 
upward trend, respectively. Now, prediction for time to failure value at t6 can be 
computed using Eq. (10) as follows: Fpredict= (10.358+10.258)/2=10.308. 
      Example 2: For predicting the time to failure value at t15, the fuzzified time to failure 
value at t14 is required. From Table 3, the fuzzified time to failure value at t14 can be 
obtained, which is FS23. Next, obtain the FLRG for which the preceding state is FS23. 
From Table 5, this FLRG can be obtained as FLRG24 in the form FS23 → FS12 (↓). 
Here case 2 is applicable since only one fuzzified time to failure value (FS12) is 
available in the present state. In FLRG FS23 → FS12 (↓), the fuzzified time to failure 
value in the present state exhibits a downward trend. Next, obtain the interval fs23 from 
Table 2, for which the fuzzy set FS23 has the maximum degree of membership. The 
centroid value for this interval fs23 is 9.293 (=C23). Here the weight of fuzzy set FS23 is 
1 (=W23). Compute the variation in time to failure value for fuzzy set FS23 using Eq. 
(11) as follows: V23= [9.293*1/100] =0.09293. Next, from Table 2, find the interval 
for which fuzzy set FS12 has the maximum membership degree, fs12. The centroid for 
this interval fs12 is 8.350 (=C12). Now, using Eq. (9) trend value can be calculated as 
T= (8.350+0.09293) =8.443. Here, an addition operation is done for the downward 
trend. Now, prediction for time to failure value at t15 can be computed using Eq. (13) 
as follows: Fpredict= (8.350+8.443)/2=8.396. 

 

 
 



728    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

t Ft 

(Actual)  
Ft’ 
(Predicted) 

t Ft 
(Actual)  

Ft’ 
(Predicted) 

t  Ft 

(Actual) 
Ft’ 
(Predicted) t0 5.768 - t34 10.630 10.593 t68 12.598 13.395 

t1 9.574 9.502 t35 8.333 10.414 t69 12.086 12.151 
t2 9.105 9.778 t36 11.315 9.687 t70 12.277 12.582 
t3 7.966 8.011 t37 9.487 9.544 t71 11.960 11.788 
t4 8.648 8.620 t38 8.139 8.187 t72 12.025 11.965 
t5 9.989 8.235 t39 8.671 8.619 t73 9.287 9.347 
t6 10.196 10.308 t40 6.462 8.235 t74 12.495 12.448 
t7 11.640 8.733 t41 6.462 7.284 t75 14.557 12.927 
t8 11.628 9.111 t42 7.696 7.284 t76 13.328 10.985 
t9 6.492 9.111 t43 4.701 6.796 t77 8.946 10.972 
t10 7.901 7.284 t44 10.002 9.975 t78 14.782 12.507 
t11 10.268 10.346 t45 11.013 10.308 t79 14.897 13.564 
t12 7.684 7.741 t46 10.862 10.596 t80 12.140 13.564 
t13 8.891 6.796 t47 9.437 9.492 t81 9.798 9.859 
t14 9.293 9.249 t48 6.664 6.519 t82 12.091 12.039 
t15 8.350 8.396 t49 9.229 9.196 t83 13.098 12.582 
t16 9.043 9.001 t50 8.967 9.003 t84 13.368 13.058 
t17 9.603 9.566 t51 10.353 12.507 t85 12.721 10.972 
t18 9.374 9.879 t52 10.100 11.302 t86 14.192 13.395 
t19 8.587 8.637 t53 12.608 11.297 t87 11.370 11.441 
t20 8.788 9.819 t54 7.155 7.218 t88 12.202 11.666 
t21 8.779 8.465 t55 10.003 9.962 t89 12.279 12.401 
t22 8.047 8.465 t56 9.860 10.308 t90 11.367 11.788 
t23 10.846 11.443 t57 7.868 7.934 t91 11.392 11.666 
t24 8.742 8.796 t58 10.576 10.346 t92 14.411 14.427 
t25 7.544 7.588 t59 10.929 11.685 t93 8.333 10.985 
t26 8.594 8.553 t60 10.660 10.700 t94 8.071 9.687 
t27 11.040 9.819 t61 12.497 10.414 t95 12.202 11.443 
t28 10.120 10.596 t62 11.375 12.927 t96 12.783 12.401 
t29 10.179 11.297 t63 11.916 11.666 t97 13.159 11.741 
t30 5.894 8.733 t64 9.575 9.634 t98 12.753 13.058 
t31 9.546 9.502 t65 10.450 9.778 t99 10.353 11.741 
t32 9.620 9.563 t66 10.587 10.529 t100 12.490 11.302 
t33 10.385 9.879 t67 12.720 11.685    

Table 6: Predictions for time to failure for software failure dataset using proposed 
approach SOMFTS 

 
6.2   Comparative Study 
 
Considering the corpus of fuzzy time series models, comparing the proposed approach 
to all of the fuzzy time series models is impossible. To assess the proposed method's 
performance, we have compared it with four existing fuzzy time series models, namely 
[Chen 1996], [Yu 2005], [Cheng et al. 2009], and [Efendi et al. 2013]. The experimental 
results in terms of four performance measures as described in section 5 for the proposed 
method SOMFTS and four existing fuzzy time series models are presented in Table 7. 



   729 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

 

Model/Performance Measures NRMSE APER MAE Correlation 
Coefficient (r) 

SOMFTS (Proposed Model) 0.1037 1.241 0.7252 0.8540 

[Chen 1996] 0.1625 2.7902 1.3048 0.5794 

[Yu 2005] 0.1685 5.3125 1.3131 0.5520 

[Cheng et al. 2009] 0.1700 5.5065 1.3411 0.5356 

[Efendi et al. 2013] 0.1622 3.2484 1.2915 0.5803 

Table 7: Experimental Results for software reliability prediction 

 
7    Discussion of Results 
 
From Table 7, it can be observed that the proposed method SOMFTS has the minimum 
values 0.1037, 1.241, and 0.7252 for NRMSE, APER, and MAE, respectively. On the 
other hand, SOMFTS has a maximum value of 0.8540 for coefficient correlation (r). 
Thus, the proposed approach SOMFTS outperforms the four existing fuzzy time series 
methods used in this study in terms of all the four performance results. 
 
 
8    Conclusion 
 
This paper proposes a novel approach by integrating a well-known unsupervised 
clustering technique, self-organized-map, and fuzzy time series (FTS) forecasting for 
the reliability prediction of a software system based on its failure history. An 
experimental study was done by applying SOMFTS on a software failure dataset for 
the military system to validate the proposed approach. A comparison study was also 
carried out to assess the performance of the proposed approach by comparing SOMFTS 
to four existing FTS models. Based on experimental study, the proposed method can 
be employed as an efficient tool in the software industry for software reliability 
prediction. The proposed software reliability prediction method will aid the software 
industry in developing good reliable software systems within budget constraints and 
given time. Furthermore, applying the proposed approach to a large number of datasets 
and in other fields may be the direction for future work. 
 
 
References 
 
[Amin et al. 2013] Amin, A., Grunske, L., Colman, A.: “An approach to software reliability 
prediction based on time series modeling”; Journal of Systems and Software, 86, 7 (2013), 1923-
1932. 



730    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

[Behera et al. 2019] Behera, A. K., Nayak, S. C., Dash, C. S. K., Dehuri, S., Panda, M.: 
“Improving software reliability prediction accuracy using CRO-based FLANN”; 
Proc. Innovations in Computer Science and Engineering, Springer, Singapore (2019), 213-220. 

[Behera et al. 2021] Behera, A. K., Panda, M., Dehuri, S.: “Software reliability prediction by 
recurrent artificial chemical link network”; International Journal of System Assurance 
Engineering and Management, (2021), 1-14. 

[Benala et al. 2013] Benala, T. R., Chinnababu, K., Mall, R., Dehuri, S.: “A particle swarm 
optimized functional link artificial neural network (PSO-FLANN) in software cost estimation”; 
Proc. International Conference on Frontiers of Intelligent Computing: Theory and Applications 
(FICTA), Springer, Berlin, Heidelberg (2013), 59-66. 

[Bisi and Goyal 2015] Bisi, M., Goyal, N. K.: “Prediction of software inter-failure times using    
artificial neural network and particle swarm optimisation models”; International Journal of 
Software Engineering, Technology and Applications, 1, 2 (2015), 222-244. 

[Bisi and Goyal 2016] Bisi, M., Goyal, N.K.: “Software development efforts prediction using      
artificial neural network”; IET Software, 10, 3 (2016), 63-71. 

[Buckley 1985] Buckley, J. J.: “Ranking alternatives using fuzzy numbers”; Fuzzy sets and 
systems, 15, 1 (1985), 21-31. 

[Cai et al. 2001] Cai, K. Y., Cai, L., Wang, W. D., Yu, Z. Y., Zhang, D.: “On the neural network 
approach in software reliability modeling”; Journal of Systems and Software, 58, 1 (2001), 47-
62. 

[Chen 2014] Chen, MY.: “A high-order fuzzy time series forecasting model for internet stock 
trading”; Future Generation Computer Systems, 37, (2014), 461-467. 

[Chen 1996] Chen, S. M. (1996).: “Forecasting enrollments based on fuzzy time series”; Fuzzy 
sets and systems, 81, 3 (1996), 311-319. 

[Cheng et al. 2009] Cheng, C.-H., Chen, Y.-S., Wu, Y.-L.: “Forecasting innovation diffusion of 
products using trend-weighted fuzzy time-series model”; Expert Systems with Applications, 36, 
2 (2009), 1826–1832. 

[Efendi et al. 2013] Efendi, R., Ismail, Z., Deris, M. M.: “Improved weight Fuzzy Time Series 
as used in the exchange rates forecasting of US Dollar to Ringgit Malaysia”; International Journal 
of Computational Intelligence and Applications, 12, 1 (2013), 1350005. 

[Iannino and Musa 1997] Iannino, A., Musa, J. D.: “Software Reliability”; Advances in    
Computers, 30 (1997), 85-170. 

[Jabeen et al. 2017] Jabeen, G., Yang, X., Ping, L., Rahim, S., Sahar, G., Shah, A. A.: “Hybrid 
software reliability prediction model based on residual errors”: Proc. 8th IEEE International 
Conference on Software Engineering and Service Science (ICSESS), IEEE, (2017), 479-482. 

[Jabeen et al. 2019a] Jabeen, G., Yang, X., Luo, P., Rahim, S.: “Application of Grey-Markov 
Chain Model in Software Reliability Prediction”; Journal of Computers, 30, 3 (2019), 14-27. 

[Jabeen et al. 2019b] Jabeen, G., Luo, P., Afzal, W.: “An improved software reliability prediction 
model by using high precision error iterative analysis method”; Software Testing, Verification & 
Reliability, 29, 6–7 (2019). 

[Jaiswal and Malhotra 2018] Jaiswal, A., Malhotra, R.: “Software reliability prediction using 
machine learning techniques”; International Journal of System Assurance Engineering and 
Management, 9, 1 (2018), 230-244. 



   731 
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

[Jin and Jin 2014] Jin, C., Jin, S. W.: “Software reliability prediction model based on support 
vector regression with improved estimation of distribution algorithms”; Applied Soft 
Computing, 15 (2014), 113-120. 

[Juneja 2019] Juneja, K.: “A fuzzy-filtered neuro-fuzzy framework for software fault prediction 
for inter-version and inter-project evaluation”; Applied Soft Computing, 77 (2019), 696-713. 

[Karunanithi et al. 1992] Karunanithi, N., Whitley, D., Malaiya, Y. K.: “Using neural networks 
in reliability prediction”; IEEE Software, 9, 4 (1992), 53-59. 

[Kassaymeh et al. 2021] Kassaymeh, S., Abdullah, S., Al-Laham, M., Alweshah, M., Al-Betar, 
M. A., Othman, Z.: “Salp Swarm Optimizer for Modeling Software Reliability Prediction 
Problems”; Neural Processing Letters, (2021), 1-37. 

[Kiran and Ravi 2007] Kiran, N. R., Ravi, V.: “Software Reliability Prediction by Soft 
Computing Techniques”; The Journal of Systems and Software, 81, 4 (2007), 576-583. 

[Kohonen 1990] Kohonen, T.: “The self-organizing map”; Proc. IEEE, (1990), 1464-1480. 

[Kumar and Singh 2012] Kumar, P., Singh, Y.: “An empirical study of software reliability 
prediction using machine learning techniques”; International Journal of System Assurance 
Engineering and Management, 3, 3 (2012), 194-208. 

[Kumaresan and Ganeshkumar 2020] Kumaresan, K., Ganeshkumar, P.: “Software reliability 
prediction model with realistic assumption using time series (S) ARIMA model”; Journal of 
Ambient Intelligence and Humanized Computing, 11, 11 (2020), 5561-5568. 

[Li et al. 2013] Li, K., Zhao, K., Liu, W.: “Neural network ensemble based on K-means clustering 
individual selection and application for software reliability prediction”; Proc. Fourth World 
Congress on Software Engineering, IEEE (2013), 131-135. 

[Li et al. 2019] Li, Z., Yu, M., Wang, D., Wei, H.: “Using hybrid algorithm to estimate and 
predicate based on software reliability model”; IEEE Access, 7 (2019), 84268-84283. 

[Li and Malaiya 1993] Li, N., Malaiya, K. Y.: “Enhancing Accuracy of Software Reliability 
Prediction”; Proc. 1993 IEEE International Symposium on Software Reliability 
Engineering, (1993), 71-79. 

[Lou et al. 2016] Lou, J., Jiang, Y., Shen, Q., Shen, Z., Wang, Z., Wang, R.: “Software reliability 
prediction via relevance vector regression”; Neurocomputing, 186 (2016), 66-73. 

[Lu et al. 2015] Lu, W., Chen, X., Pedrycz W., Liu, X., Yang, J.: “Using interval information 
granules to improve forecasting in fuzzy time series”; International Journal of Approximate 
Reasoning, 57, (2015), 1-18. 

[Ma et al. 2018] Ma, Z. Y., Wang, J. P., Zhang, W., Shan, Z. W., Liu, F. S., Han, K.: “Software 
reliability prediction based on optimized Support Vector Regression”; Proc. 2018 International 
Conference on Big Data and Computing, (2018), 129-133. 

[Mallikharjuna and Kodali 2017] Mallikharjuna, R. K., Kodali, A.: “An Efficient Method for 
Enhancing Reliability and Selection of Software Reliability Growth Model through Optimization 
Techniques”; Journal of Software, 12, 1 (2017), 1-8. 

[Mohanty et al. 2013] Mohanty, R., Ravi, V., Patra, M.R.: “Hybrid Intelligent Systems for 
Predicting Software Reliability”; Applied Soft Computing, 13 (2013), 189-200. 

[Pandey et al. 2020] Pandey, S. K., Mishra, R. B., Tripathi, A. K.: “BPDET: An effective 
software bug prediction model using deep representation and ensemble learning 
techniques”; Expert Systems with Applications, 144 (2020), 113085. 



732    
 

Kumar A.: A Neuro-fuzzy Hybridized Approach for Software Reliability Prediction 

[Pham 2006] Pham, H.: “System Software Reliability”; Springer, London, England (2006) 

[Ramakrishna et al. 2012] Ramakrishna, V., Rao, M. N., Padmaja, T. M.: “Software Reliability 
Prediction using Neural Networks”; International Journal of Computer Applications, 60, 7 
(2012), 44-48. 

[Roy et al. 2014] Roy, P., Mahapatra, G. S., Rani, P., Pandey, S. K., Dey, K. N.: “Robust 
feedforward and recurrent neural network based dynamic weighted combination models for 
software reliability prediction”; Applied Soft Computing, 22 (2014), 629-637. 

[Roy et al. 2017] Roy, P., Mahapatra, G. S., Dey, K. N.: “An efficient particle swarm 
optimization-based neural network approach for software reliability assessment”; International 
Journal of Reliability, Quality and Safety Engineering, 24, 4 (2017), 1750019. 

[Roy et al. 2019] Roy, P., Mahapatra, G. S., Dey, K. N.: “Forecasting of software reliability using 
neighborhood fuzzy particle swarm optimization based novel neural network”; IEEE/CAA 
Journal of Automatica Sinica, 6, 6 (2019), 1365-1383. 

[Singh 2018] Singh, P.: “Rainfall and financial forecasting using fuzzy time series and neural 
networks-based model”; International Journal of Machine Learning and Cybernetics, 9, 3 (2018), 
491-506. 

[Song and Chissom 1993] Song, Q., Chissom, B. S.: “Forecasting enrollments with fuzzy time 
series—Part I”; Fuzzy sets and systems, 54, 1 (1996), 1-9. 

[Song and Chang 2014] Song, K. Y., Chang, I. H.: “Parameter estimation and prediction for 
NHPP software reliability model and time series regression in software failure data”; Journal of 
the Chosun Natural Science, 7, 1 (2014), 67-73. 

[Sudharson 2020] Sudharson, D.: “Hybrid software reliability model with Pareto distribution and 
ant colony optimization (PD–ACO)”; International Journal of Intelligent Unmanned Systems, 8, 
2 (2020), 129-140. 

[Tian and Noore 2005] Tian, L., Noore, A.: “Evolutionary neural network modeling for software 
cumulative failure time prediction”; Reliability Engineering & system safety, 87, 1 (2005), 45-
51. 

[Yu 2005] Yu, H. K.: “Weighted fuzzy time series models for TAIEX forecasting”; Physica A: 
Statistical Mechanics and its Applications, 349, 3-4 (2005), 609-624. 

[Zadeh 1965] Zadeh, L.A.: “Fuzzy Sets”; Information and Control, 8, (1965), 338-353. 

[Zemouri and Patic 2010] Zemouri, R., Patic, P. C.: “Recurrent Radial Basis Function Network 
for Failure Time Series Prediction”; International Journal of Computer and Information 
Engineering, 4, 12 (2010), 1920-1924. 

[Zhen et al. 2020] Zhen, L., Liu, Y., Dongsheng, W., Wei, Z.: “Parameter estimation of software 
reliability model and prediction based on hybrid wolf pack algorithm and particle swarm 
optimization”; IEEE Access, 8 (2020), 29354-29369. 


