

Journal of Universal Computer Science, vol. 28, no. 6 (2022), 648-669
submitted: 16/1/2022, accepted: 27/4/2022, appeared: 28/6/2022 CC BY-ND 4.0

Traffic Optimization with Software-Defined Network
Controller on a New User Interface

Derya Yiltas-Kaplan
(Istanbul University-Cerrahpasa, Istanbul, Turkey

 https://orcid.org/0000-0001-8370-8941, deryayiltas@gmail.com)

Abstract: Software-defined networking (SDN) has emerged as a solution to the cumbersome
structures of classical computer networks. It separates control and data planes to give
independence to devices with respect to either traffic routing or network management. The two
isolated planes communicate with each other via the help of software modules, which are located
in an SDN controller, such as Floodlight, NOX, or Ryu. In this study, Floodlight is used and an
SDN topology with 20 switches is constructed with Python code in Mininet. All algorithms have
been coded with Java. The default routing algorithm in Floodlight is Dijkstra’s algorithm. Four
different network optimization algorithms, namely Bellman-Ford, Ford-Fulkerson, Auction, and
Dual Ascent algorithms, are utilized in ordinary network routing instead of Dijkstra’s algorithm.
None of these four algorithms were used in SDN before and network implementations using
Ford-Fulkerson, Auction, or Dual Ascent algorithms were scarce in the literature. The results are
analyzed with multiple types of normalization on a new user interface communicating with
Floodlight part via HTTP requests. There has not been a user interface that performs the same
operations in Floodlight. In the future, this study may possibly be improved with considering
normalization processes based on various proportions among the metric values and accounting
the computational time of the algorithms.

Keywords: Auction algorithm, Bellman-Ford, Dual ascent, Floodlight, Ford-Fulkerson, SDN,
SDN GUI, SDN routing, Traffic optimization
Categories: C.2.2, C.2.3, C.4, H.5.2
DOI: 10.3897/jucs.80625

1 Introduction

Computer networks consist of several devices and architectures, the basic examples of
which are switches, routers, data hubs, and firewalls (hardware). The number of devices
increases with the number of data centers. In such structures, network management and
organization become difficult and complicated; for example, increasing the number of
endpoint devices in networks causes high probability of occurrence of connections and
message transmissions. As a result, network traffic grows and some difficulty in
processing big data arises. Similarly, the routing tables used for end-to-end packet
transmission come up with confusion in classical network environments. In recent
years, there have been many attempts, such as proposing fundamental changes in
network structures, to eliminate those difficulties. One of the most important
improvements in this area is the approach of software-defined networking (SDN). SDN
presents advantages of hardware independence, simplification of network control and
applications with software, flexibility, dynamic network configuration, and system
scalability [Akbaş et al. 2016], [Özbek et al. 2020]. One of the most popular SDN

 649

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

architectures in the world is B4 wide area network of Google [Yiltas-Kaplan 2019].
There is also an architecture of software-driven wide area network announced by
Microsoft researchers, that controls the data centers from one center [Hong et al. 2013].

The layers in SDN construction are named as Infrastructure, Control, and
Application, as shown in Figure 1 [Open Networking Foundation 2014]. The
infrastructure layer involves network elements, namely switches, that represent their
operations with the southbound interface coming from the controller and execute the
controller commands. The control layer contains tasks related to the controller and
serves as the center of the network logically. There are several software examples, such
as Floodlight, working as the controller on the control plane. The top layer of SDN,
namely the application layer, incorporates all the SDN applications and has connections
to the controller via the northbound interface to provide various network requirements
[Akçay and Yiltas-Kaplan 2019], [Open Networking Foundation 2014], [Yiltas-Kaplan
2019].

Figure 1: SDN layers

The main purpose in this study is to adapt various algorithms into Floodlight

software to forward packet flows and find the least-cost paths. The algorithms
employed in this paper had not been used in SDN applications before. Moreover, there
had been hardly any regular implementation, like the ones used in this study,
constructed in traditional computer networks. The default routing algorithm in
Floodlight is Dijkstra’s algorithm (DA). The algorithms evaluated in this paper include
Bellman-Ford algorithm (BFA), Ford-Fulkerson algorithm (FFA), Auction algorithm
(AA), and Dual Ascent algorithm (DAA). The theoretical definitions and mathematical
representations of these algorithms appear in the literature [Bertsekas 1998], but they
have not been implemented in any SDN topologies before. In this study, they are coded
for penetrating into the Floodlight system in line with the study’s fundamental goal of
applying various optimization algorithms with different metrics in the Floodlight
modules for the first time and improving the routing performance. This is a process that
requires common data structures with Floodlight. Furthermore, it is critical to consider
that the network packets are transmitted as flows in SDNs, in contrary to traditional
computer networks. Thus, in this study, different network optimization algorithms are
performed instead of DA by adapting to the Floodlight data structures with the purpose
of representing various performance measurements visually.

Like DA, BFA is a well-defined and preferred solution for the shortest path
problem. On the other hand, FFA is involved in the algorithms, which are proposed to
compute the maximum flow, and AA and DAA are for minimum cost flow [Bertsekas
1998]. In this study, the applications of FFA, AA, and DAA in routing operations and

650

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

their multi-valued structures will be studied and discussed for the first time. Hence, the
present study marks remarkable progress in routing optimization of two metrics while
utilizing normalization rules.

The two metrics extracted from Floodlight are latency and bandwidth. The sample
SDN topology in this study has 20 switches. After the coding steps of the algorithms
and normalization processes, a graphical user interface (GUI) is created to provide an
analysis of overall results. With this GUI, it is possible to investigate the results based
on various algorithms and on each normalization type independently. Thus, the present
study is organized to pioneer work on the Floodlight project by presenting ways of
module changes for routing operation.

The rest of the paper is designed as follows: Section 2 focuses on the description
of the software materials, algorithms, normalization process, GUI structure, and the test
process. Section 3 presents the experimental results of cost and flow calculations.
Finally, Section 4 provides the conclusion and future directions for this study.

2 Materials and Method

2.1 Floodlight and Mininet

SDN controller takes the central role between the southbound and the northbound
interfaces. This implies that the services and the applications in the networks are
dissociated from the equipment. The controllers manage the routing operations and the
flows between switches via the southbound interface and provide connections to the
applications via the northbound interface. Actually, the control and the routing
operations diverge from each other, as shown in the southbound interface in Figure 1,
and therefore, the programming of the control part can be performed directly [Özbek et
al. 2020].

Floodlight is one of the most commonly used SDN controllers, and it is an
important Java-based project, which has an open-source software approach [Wang
2018]. Any Java module can be easily integrated into Floodlight, which covers network
applications, services, and modules supported by the REST API. Some modules in this
part are Topology, Statistics, Device Manager, Load Balancer, and Web UI. Floodlight
can perform application tests with both physical and virtual OpenFlow-enabled
switches. Path computations for the flow transmissions between the switches are made
by Topology Manager/Router, which is a core service in Floodlight. DA is the default
routing algorithm for obtaining the least-cost path in the network within the class of
TopologyInstance.java in the Topology module. Here, the input of each path
computation consists of all the nodes in the network, the source and destination node
pair, the single metric cost information for each link. The output is the shortest path
with a cost value. REST API accomplishes several operations such as insertion,
deletion, and interrogation of the flow inputs [Ilhan and Yiltas-Kaplan 2020], [Özbek
et al. 2020].

It is highly practical to run the virtual network structures constructed with Mininet
emulator for the topologies or the traffic and the service computations in SDN [Özbek
et al. 2020]. It is because Mininet works on Linux kernels, a Linux-based operating
system is set up either on the virtual machine or directly into the host to provide correct
Floodlight and Mininet connection. For the software part in this study, various versions

 651

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

were tested, and Ubuntu 18.04 was approved for Floodlight-Mininet applications at the
end. Java 8 was installed as mentioned in the Floodlight setup documents, and IntelliJ
IDEA was used instead of Eclipse. The Python programming language was utilized for
the commands in Mininet side [Ilhan and Yiltas-Kaplan 2020] for constructing a sample
network with 20 switches.

2.2 Optimization Algorithms

Initially, performance of the optimization algorithms, particularly the DA-related part
in the Floodlight modules, has been investigated. After this, the algorithms have been
coded and integrated into the correct places. The main part for this procedure in
Floodlight is the net.floodlightcontroller.topology module in the directory
src/main/java. Each algorithm’s codes have been added into the related parts of the
TopologyInstance.java file in the Topology module. The following subsections give
more details about theoretical descriptions of the algorithms and their implementation
plans regarding the software part of this study.

2.2.1 Bellman-Ford algorithm

Basically, a computer network is defined with the graph G=(V, E), where V is the set
of network nodes and E the edge set. The graph is modified as G=(V, E, w) if the weight
or cost function w applies to the edges. The terms weight or cost will be used
alternatively throughout the study. Suppose that there are no negative-weight cycles in
graph G, and d is the metric value (such as distance value) for each link. The
pseudocode of BFA will then be written as in Figure 2 [Klappenecker 2022].

Input: G = (V, E, w)

for ∀v ∈ V {
 d[v] = infinite; parent[v] = none; }
d[s] = 0; parent[s] = s;
for i := 1 to |V| - 1 {
 for each (u,v) in E {
 if (d [u] + w(u,v) < d [v]) then { d [v] := d [u] +
w(u,v); parent[v] := u; }
 } }

Figure 2: Pseudocode of BFA

BFA returns the shortest path lengths from a source to all the other nodes in the
graph. The result also covers whether there is a negative-weight cycle, which is a
circular cycle with the sum of link metrics smaller than 0 [Demaine and Wenk 2022].

2.2.2 Ford-Fulkerson algorithm

FFA uses the logic of the breadth-first search (BFS). This study proposes a modified
version of FFA (dFFA) to perform the routing and the flow control in the network. In

652

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

dFFA, initially, all the links in the network are assigned positive weight values. A
specific number of paths is obtained between a predetermined source and destination
pair in the network topology. The link weights of these paths are computed from the
latency and bandwidth values, both derived from Floodlight. The paths, that have the
minimum weights, are deemed suitable for network flows.

The coding of the algorithm can be divided into two procedures. The first one
involves BFS process, and the second one obtains the most suitable paths. Figures 3
and 4 show the pseudocodes of these procedures respectively.

1 Define a variable q in the Queue type.

2 Define a variable path in the ArrayList type.

3 Define a variable matrix in the two-dimensional ArrayList type.

4 Insert the first node into the path.

5 Insert path to q.

6 Do the following until q becomes empty:

6.1 path <= q.poll() { Return the first variable of q and then delete it from
q. }

6.2 Define last and assign the reference of the last element of the path list
to last.

6.3 If last is the destination node and the method that returns the Random
value gives true, then add the path to the matrix.

6.4 If the number of elements in the matrix reaches 50, then end the
process.

6.5 Return the nodes starting by the node last sequentially and do the
following:

6.5.1 Give the name current to the next node and do the following if it
has not been visited before:

 6.5.1.1 Define a new variable newPath in ArrayList<Integer> type.

6.5.1.2 Insert current to newPath.
6.5.1.3 Insert newPath to q.

7 Return the variable matrix.

Figure 3: Pseudocode of BFS part of dFFA

 653

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

Figure 4: Pseudocode of the best path selection part of dFFA

In step 6.3 of Figure 3, a method returning Random value means an operation

occurring with a determined probability. During the process in which the paths are
obtained, a control class is constructed so that this method returns true for each path
with a probability of 25%. The main goal of this operation is to prevent finding the best
paths limited only to specific regions of the topology. BFS finds paths according to the
starting point of the topology; therefore, its results can only be accumulated for some
regions.

After the steps shown in Figure 3, a limited number of paths are obtained. In this
study, this number is 50. These paths are stored in two-dimensional ArrayList of matrix
having ArrayList<Integer> elements, each of which presents an overall path. After
completing the procedure in Figure 3, the second pseudocode in Figure 4 is used to find
the best path among those 50 paths based on the weight computations.

In accordance with the normalization rule, which is based on separate computations
being performed independently, the weight computation in step 3.1 of Figure 4 is
performed separately.

2.2.3 Auction algorithm

To the best of our knowledge, the current research literature reveals a lack of computer
network implementation with AA. To fill that gap in the literature, seminal papers and
books on AA were investigated, and significant information was drawn from four of
the most effective studies [Becker et al. 2016], [Bertsekas 1991], [Bertsekas 1992],
[Bertsekas 1998]. The steps of the algorithms were put in order, and the coding was
planned according to this information. Consequently, numerical values of all the
network nodes were stored in vectors during the implementation of AA. The relevant
node was either inserted into, or deleted from, the solution set, after the required
comparisons. The insertion of the destination node to the solution set is the termination
criterion of this procedure.

The assumptions underlying the adaptation of AA with DA can be explained in two
parts:

1 Define an int variable as minPrefIndex and initialize it with 0.

2 Define a double variable as costValue.

3 Do the following for each element (namely onePath) in two-
dimensional array matrix:

3.1 Compute the weight value of each element in one
dimensional array of onePath.

 3.2 Between all onePath elements, assign the smallest weighted
path to the variable bestOption.

4 Return bestOption as the solution set.

654

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

• Firstly, AA is commissioned with the goal of finding the shortest path between
two different nodes. DA in Floodlight, on the other hand, computes every
shortest path from a starting node to all the other nodes in a tree topology. In
this study, DA works as usual, but AA is organized to work between two
specific nodes. For performance comparison of DA and AA, the results of
these two determined nodes are considered.

• Secondly, as it is generally the case with computer network structures,
Floodlight gives different latency values for the opposite directions of two
nodes. Here, the latency is one of the link cost metrics in the system. In this
study, the smallest value is used as a basic cost metric in both directions for
elimination of any disorder in two different latency values on a link.

The pseudocode of AA can be inspected from Figure 5 [Bertsekas 1992].

1 End the process if starting and ending nodes become the same point.

2 Assign the starting node to CurrentNode.

3 Determine CurrentNode as solution.

4 Generate an array as Pvector having the number of elements including all
nodes. Initialize all values of the elements with 0.

5 Define the variable nextLink presenting the link connections.
6 Do the follows until the destination end of nextLink becomes the destination
node:
 6.1 Assign the list of connections arising out of the current node to
linksCurrentNode.
 6.2 Do follows for all nodes of linksCurrentNode list:
 6.2.1 Assign Pvector value of the node in which the current
connection arrived to vectorValue.
 6.2.2 Assign the link cost to linkValue.
 6.2.3 Assign the sum of linkValue+vectorValue to sumValue.
 6.2.4 Assign the connection providing sumValue to nextLink.
 6.3 Assign the value of CurrentNode in the vector p to currentVectorValue.
 6.4 If currentVectorValue is smaller than sumValue perform contractPath,
otherwise perform extendPath.
 6.4.1 contractPath: Remove the last node from the solution set.
 6.4.2 extendPath: Insert the node in which nextLink arrived to the
solution set.

Figure 5: Pseudocode of AA

2.2.4 Dual Ascent algorithm

This algorithm is a type of primal-dual algorithm and is defined to proceed over a dual
solution form of a linear program. In 1984, Richard T. Wong diversified the DAA logic
and proposed a distributed algorithm. At the beginning of the algorithm there are two

 655

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

data structures in the system, namely rootComponent and graph. These data structures
list the node elements of the topology. Originally, there are not any nodes in the graph.
The nodes are added into the graph iteratively starting from the source node. When the
destination node is added into the graph list, there is exactly one shortest path in the last
path set. The path between a source and destination pair is obtained, according to the
tree structure [Ilhan and Yiltas-Kaplan 2020], [Wong 1984].

Before planning the coding part of DAA in this study, the source codes of a DAA
sample in [GitHub 2017] were analyzed. Then, a general plan was derived from this
sample. The overall design of the algorithm codes in this paper depends on the
Floodlight data structures, which are totally different from the literature sample in
[GitHub 2017]. The pseudocode of DAA is presented in Figure 6 [GitHub 2017], [Ilhan
and Yiltas-Kaplan 2020].

Figure 6: Pseudocode of DAA [Ilhan and Yiltas-Kaplan 2020]

2.3 Normalization process

The Floodlight Project [Wang 2018] includes a function for computing the minimum
cost path between two nodes by using the cost values on this path. The connection costs
between the nodes are represented by the latency metric in the latest version of
Floodlight (V1.2-SNAPSHOT (Master branch)) during this study. This metric is used
for performing the path computations in DA of Floodlight.

In the literature of the traditional networks, there are numerous studies and methods
concerning multi-metric structures for improving the quality of service during the
routing processes, as can be seen in [Yiltas and Perros 2011], [Yiltas-Kaplan 2015].
There are also many studies about general decision-making processes with multi-metric
evaluations. In the literature this process is called multi-criteria decision making and

1 Create the arrays of rootComponent and graph for the nodes.
2 Once a temporary rootComponent list is extracted from the permanent graph
list.
3 Until the target node enters the graph array do the following iteratively:
 3.1 Find a suitable link by starting from the rootComponent list. This link
target node is chosen from the links in the rootComponent array.
 3.2 The reduced cost table is updated by using this link. In other words, if the
target node of each link is in the rootComponent list, then the link value in the
reduced cost table is updated by decreasing this value with that of the link which
has been chosen at the beginning and has the least-cost (link a) [GitHub 2017].
 3.3 The node a is added to the graph chain. Then the rootComponent array is
deleted and evaluated again copying from the graph chain.
4 Eliminate the nodes that have not any common link in both directions as source
side or target side in the graph solution set. To decide these operations, some
data structures are stored during the reduced cost updates.
5 All nodes in the graph list are checked whether the node subsets construct any
cycle and these relevant subsets are solved.

656

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

one of the related studies regarding real-time traffic management of autonomous
vehicles with totally 17 main and sub-criteria can be analysed in [Deveci et al. 2021].

In this study, the cost measurement is executed using two different metrics, for the
purpose of performance improvement. Adapting two different metrics in Floodlight is
quite complicated than the classical computer networks. Gathering large amount of
network data with SDN application requires robust hardware equipment in terms of
storage and processing. SDN provides the usage of virtual machines for the controller
software and these machines share the hardware resources during the executions of the
applications. Additionally, to construct SDN topology via Mininet covers some
definitions of devices and links with Python. The number of these definition lines in a
program is dependent on the number of network devices. This study aims to offer a
guide for joining two metrics of different data types and units and presenting means of
using the aggregated value in the routing algorithms through analyzing the performance
enhancement.

Some metrics are from the space of very large integers, and some are from decimal
numbers. A comparison of the metrics from various number spaces may not be
practical. The usage of functions, such as the Euclidean distance, provides aggregation
of several metric values into a single sum. However, this operation causes
outperforming of the metrics that have large numerical values [Aggarwal 2015].
Therefore, several different techniques were investigated, and normalization rules were
decided to be the most suitable method for filtering metrics. The Min-Max
Normalization (Rescaling) and Z-Score Normalization (Standard Scoring) are the two
rules that have emerged as ideal in the process.

2.3.1 Min-Max Normalization

This method is also called Rescaling. Suppose that the minimum and maximum values

of the jth metric become minj and maxj respectively. The ith record is and the value

of jth metric of is . As in (1), is scaled to [0, 1] Ì R+ [Aggarwal 2015].

 (1)

Min-Max normalization may eliminate the importance of some metrics in the
relevant data set during the scaling into [0, 1] if a numerical mistake occurs in the data.
For example, if the interval between the minimum and maximum values is written 100
instead of 10 by mistake, Min-Max normalization can produce irrelevant results. Z-
Score normalization is preferred in such circumstances [Aggarwal 2015].

2.3.2 Z-Score Normalization

This method is also called Standard Scoring or Standardization. Suppose that the
mean of the jth metric is , the standard deviation is and the ith record is

. The jth metric value of is . is normalized as in (2) [Aggarwal
2015].

iX

iX
j
ix

j
ix

jj

j
j
ij

i

x
y

minmax
min
-
-

=

jµ js

iX iX
j
ix

j
ix

 657

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

 (2)

So, the values are scaled into an interval based on the normal distribution. In
other words, the difference between a value and the mean in the unit of standard
deviation is represented by Z-Score [Molugaram and Rao 2017].

2.4 Graphical user interface

In the topology generation, algorithm executions and normalization processes of the
present study, the coding parts are related to Floodlight, Mininet, and IntelliJ IDEA.
Floodlight does not have any GUI that presents the topology, the routing process, and
the performance comparisons of the algorithms in the modules. The single GUI in the
Floodlight project was designed by the REST API only to give some properties of
Floodlight such as the status, the number of the devices and connections, and the flow
summary tables of the switches [Akçay and Yiltas-Kaplan 2017].

For the purposes of the present study, a new GUI is proposed to demonstrate the
steps of the process and the results from the above-mentioned software platforms. Thus,
this GUI aggregates all the other parts into an entire visual structure. It represents the
visual topology coded in Mininet and the final paths computed from the algorithms in
IntelliJ IDEA, and yields comparative results extracted from the result files of the basic
software platforms.

The application includes two fundamental sections:
• The User Interface
• The Floodlight Communication Server Software
A communication server is designed to display the results of the algorithms

executed in Floodlight part from the GUI view. To this end, the results of all the
algorithms executed in Floodlight are saved in a folder created in the communication
server. The user interface module gets the data concerning the path output of the
algorithm, the path cost, and flow simulation by sending HTTP requests to the
communication server upon any requirement.

Figure 7 illustrates the architectural diagram of the structure concerned with the
GUI. The user interface of the application was designed on React, which has been one
of the most popular and effective user interface frameworks in recent years. All
operations represented in the interface are as follows:

A. Procedures
 A.1. Topology Generation: The topology information is derived from the

communication layer and the nodes, and their network connections are created on the
screen.

 A.2. Algorithm Execution: This procedure involves three steps.
 A.2.1. In the first step, latency and bandwidth values are read from

the communication layer according to the selected normalization type. These values are
located on the topology.

 A.2.2. In the second step, the path produced with the relevant
algorithm is received from the communication layer and located in the network.

 A.2.3. In the third step, the path flow simulation data, that take 15
seconds between the source and destination nodes, are received from the
communication layer, and visualized.

j

j
j
ij

i

x
z

s
µ-

=

658

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

B. Comparison Graphs
 B.1. Comparative cost graphs for each normalization type of each algorithm

are demonstrated in the application.
 B.2. A collective graph is placed for showing the comparisons of all

algorithms in the same diagram.
 B.3. Graph values are requested from the communication layer.
Furthermore, a node.js based server software is developed as the server framework

in JavaScript language to read the data produced by Floodlight and transfer into the
interface module.

Figure 7: GUI architecture

The general view of the GUI can be seen in Figure 8.

Figure 8: Screenshot of the GUI

 659

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

2.5 Test Process

In this study, four different algorithms are used separately as the main routing methods
in the core Topology module of Floodlight. The default routing method of Floodlight
is DA, which is the fifth algorithm in the comparison results. The main purpose of
routing operations in Floodlight is to find the minimum cost path between all node
pairs. Original routing operations are investigated before the code development and
testing steps. Here, source and destination node pairs are determined for usage in test
data. Java classes of the algorithms are designed separately with constructing functions
to find the minimum cost paths on the network.

Different metrics can be used to determine the basic parameters of a function that
measure the costs and select the last routes. Original Floodlight function involves only
latency as the link cost metric. In this study, both latency and bandwidth are used. These
two metrics have different number spaces and units. At this step, the usage of
normalization process becomes important.

Test process should be performed with the same input data and network topology
for all algorithms. Each result should be measured as an average value of several
different executions. This study gives the comparison results based on these rules
clearly as seen in Section 3.

3 Discussion of Results

After running the algorithms and utilizing the GUI, the performance results are
collected. This operation provides a final analysis on the performance values. Besides
software codes, hardware is also important for this stage. Table 1 shows properties of
the computer that was used during the computations.

Brand Dell Inspiron N5110 (2012 Production)
RAM 8 GB RAM
Processor Intel Core i5-2450M CPU, 2.50 GHz, Quad Core

Table 1: Configuration properties of the test environment

All mentioned software environments are presented in Table 2.

Ubuntu Ubuntu 18.04
Java development
environment

IntelliJ IDEA Ultimate

Floodlight V1.2-SNAPSHOT (Master branch)
Mininet V2.2.1
Java version for Floodlight
integration

Java 8

Table 2: Versions of software platforms

The whole algorithm codes underpinning the software project proposed in this
paper are deposited at https://bitbucket.org/deryayiltas/project-derya.git repository and

660

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

GUI codes are at https://bitbucket.org/deryayiltas/gui.git. Similarly, the data
underpinning the analysis reported in this paper are deposited at “Data repository”
TrafficData at https://bitbucket.org/deryayiltas/TrafficData.git.

3.1 Cost comparisons

Cost comparisons of the algorithms based on No-normalization, Min-Max
normalization, and Z-Score normalization are given in Figures 9, 10, and 11,
respectively. Each relevant diagram value is computed using the average of 12 different
runs. The units of the two metrics are defined as millisecond (ms) for latency and Gbps
(Gigabits/sec) for bandwidth. Decisions on the flow routings are given according to
both metrics. The cost values represent the product of latency values with a
predetermined coefficient, which is assumed to be 10 in this study. In other words, the
diagram views are scaled to become completely observable. Here the most important
issue is making the graphical representations easier and more comprehensible. In
graphics, the differences between the algorithms are relatively important. As shown in
Figure 9, the cost results of DA and BFA are very close. According to Figure 10, DAA
gives the best results against all other algorithms. Therefore, using DAA with Min-Max
normalization instead of DA in Floodlight has advantages with respect to the network
cost values.

DA and BFA have very similar results in Figure 11, too. Figure 11 further
illustrates that BFA provides lower cost values. All results affirm that the normalization
processes bring forth cost-effective path selections in SDN applications.

According to overall results in Figures 9, 10, and 11, DA and BFA are generally
better selections for network operations having delay value as vital metric such as real
time applications, namely video or voice. Conversely, DAA with Min-Max
normalization is the best selection for real time applications.

Figure 9: Comparison results according to No-Normalization

 661

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

Figure 10: Comparison results according to Min-Max Normalization

Figure 11: Comparison results according to Z-Score Normalization

3.2 Flow comparisons

For an evaluation of the Data Transfer Rate (in Gbps), Average Amount of Data in one
second (in GByte) and the Total Amount of Data (in Gbyte) respectively, the iPerf
command in Mininet is used. A TCP traffic flow of 15 seconds is constructed. The

662

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

results are obtained for all algorithms with No-normalization, Min-Max normalization,
and Z-Score normalization. As a sample, the values of dFFA are given in Table 3. The
results in Table 3 demonstrate that Min-Max normalization helps dFFA to provide
precious values in terms of transmitting data rates.

 0-5 seconds 5-10 seconds 10-15
seconds

Overall (0-15
seconds)

No-
Normalization

25.98 Gbps
2.98 GBytes
14.89 GBytes

26.14 Gbps
3.04 GBytes
15.21 GBytes

25.5 Gbps
2.97 GBytes
14.84 GBytes

25.74 Gbps
3.00 GBytes
44.94 GBytes

Min-Max
Normalization

27.32 Gbps
3.18 GBytes
15,9 GBytes

28.32 Gbps
3.3 GBytes
16.5 GBytes

28.52 Gbps
3.3 GBytes
16.49 GBytes

28.05 Gbps
3.26 GBytes
48.89 GBytes

Z-Score
Normalization

27.32 Gbps
2.82 GBytes
14.09 GBytes

28.32 Gbps
3.21 GBytes
16.06 GBytes

28.52 Gbps
3.14 GBytes
15.7 GBytes

28.05 Gbps
3.06 GBytes
45.85 GBytes

Table 3: Average flow results of dFFA

Average results of several different executions of all algorithms are obtained and

presented in Figures 12 and 13. The values of data transfer rates in Figure 12 show the
average value for each second computed based on the TCP traffic flow of 15 seconds.
As shown in Figures 12 and 13, normalization rules in general and Min-Max
normalization in particular reveal increases in the values of the data transfer rates and
total amount of data. Especially dFFA gives better results than the other algorithms.
Moreover, DA and BFA give very close result values.

According to overall results in Figures 12 and 13, it is clear that dFFA is generally
the best selection for network operations requiring higher throughput values as vital
metric. Video or file transportations are some sample applications to these network
operations. Data transfer rates are very important in such data formats, especially for
video transmissions.

 663

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

Figure 12: Comparison of the data transfer rates (15- second flow)

Figure 13: Comparison of total amounts of data (15- second flow)

Additional evaluations are made for TCP traffic flows of 5 seconds and 60 seconds

respectively to show the difference between short and long flows. Figures 14 and 15
involve the average values of different executions at each point for traffic flows of 5

20
21
22
23
24
25
26
27
28
29
30

DA BFA dFFA AA DAA

D
at

a
Tr

an
sf

er
 R

at
e

(G
bp

s)

No-Normalization Min-Max Z-Score

35,0

37,0

39,0

41,0

43,0

45,0

47,0

49,0

51,0

53,0

55,0

DA BFA dFFA AA DAA

To
ta

l A
m

ou
nt

 o
f D

at
a

(G
by

te
)

No-Normalization Min-Max Z-Score

664

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

seconds. Figures 14 and 15 signify that for short flows Min-Max normalization is better
than Z-Score normalization and moves closer to No-Normalization. There are not many
data values for 5-second flows, for this reason Min-Max normalization cannot get a
large scale for minimum and maximum values for the metrics during the evaluation of
(1) and becomes similar to No-Normalization. According to Figures 14 and 15, dFFA
again gives good results versus the other algorithms.

Figure 14: Comparison of the data transfer rates (5- second flow)

25
26
27
28
29
30
31
32
33
34
35

DA BFA dFFA AA DAA

D
at

a
Tr

an
sf

er
 R

at
e

(G
bp

s)

No-Normalization Min-Max Z-Score

 665

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

Figure 15: Comparison of total amounts of data (5- second flow)

Similarly, Figures 16 and 17 give the average results for the traffic flows of 60

seconds.

Figure 16: Comparison of the data transfer rates (60- second flow)

15,0

15,5

16,0

16,5

17,0

17,5

18,0

18,5

19,0

19,5

20,0

DA BFA dFFA AA DAA

To
ta

l A
m

ou
nt

 o
f D

at
a

(G
by

te
)

No-Normalization Min-Max Z-Score

25
26
27
28
29
30
31
32
33
34
35

DA BFA dFFA AA DAA

D
at

a
Tr

an
sf

er
 R

at
e

(G
bp

s)

No-Normalization Min-Max Z-Score

666

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

Figure 17: Comparison of total amounts of data (60- second flow)

Figures 16 and 17 show that for long flows Min-Max normalization is again better
than Z-Score normalization, but No-Normalization exhibits an improvement for BFA,
dFFA, and AA against Min-Max normalization. For 60-second flows, there may be
numerous metric values that become outliers during Min-Max computations and this
situation causes fair average performance for some scenarios. On the other hand, the
results prove that any normalization method gives an opportunity to deactivate an
exceptional improvement of the algorithms in No-Normalization steps caused by
various random data values in long flows.

4 Conclusions
In this study, the routing module in Floodlight was changed according to four different
optimization algorithms, namely BFA, dFFA, AA, and DAA. The operations with No-
Normalization, Min-Max normalization, and Z-Score normalization were added to the
programs by considering two metrics: latency and bandwidth. The proposed routing
modules were compared against the default routing module of Floodlight using DA. A
GUI was constructed to see the topology, the results of the algorithms, and the graphic
comparisons of the whole processes. The results present that the normalization types,
especially Min-Max, improve the cost effectiveness in general. DA and BFA give very
close cost results for the paths. DAA outperforms all the other algorithms regarding
Min-Max normalization results.

The data transfer rates, and the total amount of data were also evaluated based on
the bandwidth. Here, in a similar manner DA and BFA again give very close results.
On the other hand, dFFA outperforms all the other algorithms in most of the scenarios
planned with different sizes of flows when using normalization steps.

180,0

185,0

190,0

195,0

200,0

205,0

210,0

215,0

220,0

DA BFA dFFA AA DAA

To
ta

l A
m

ou
nt

 o
f D

at
a

(G
by

te
)

No-Normalization Min-Max Z-Score

 667

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

This study performs different modules in Floodlight and provides a new GUI to see
the execution and comparison results. It serves as a preliminary study for the literature
with giving two-metric solutions for an SDN topology. Using several metrics instead
of only one metric increases the quality of service in SDNs for real world problems. In
network problems, bandwidth becomes one of the most important issues for flow
transmissions and traffic optimization. Therefore, bandwidth is vital during the routing
processes. In this study, individual data sets of two different metrics were brought
together with normalization steps. Improvement of the results by considering
normalization processes based on various proportions among the metric values is
suggested for future research. Concerning the traffic metrics, another future work can
be the use of several different metrics instead of two. The proposed solutions can also
give directions to any other field of studies related with cost optimization problems.
During the programming part of this study, all algorithms and computations were
planned to become effective in terms of computational time. Before the algorithm
executions, traffic flows are generated via Mininet and this process takes the relevant
seconds such as 5, 15 or 60 as the computational time. Java classes do not waste any
time except the switching options between the algorithms or normalization types.
Finally, GUI part displays the outputs in a few seconds, namely 7 seconds for a route
selection by using one algorithm and one normalization type.

Acknowledgements

This work has been supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) 3001 Starting R&D Projects Funding Program with the project
number of 116E905.

The author would like to thank Hilmi Tunahan Ilhan, Tolga Cubukcuoglu and Hani
Elubeyd for their helpful comments and skilled technical assistance during this study,
and Dr. Dilek Inal, Dr. Savio S.H. Tse and Dr. Mustafa Dagtekin for proofreading the
paper.

References

[Aggarwal 2015] Aggarwal, C. C.: “Data Mining: The Textbook (eBook)”, Springer
International Publishing.

[Akbaş et al. 2016] Akbaş, M. F., Karaarslan, E., Güngör, C.: “A Preliminary Survey on the
Security of Software-Defined Networks”, International Journal of Applied Mathematics,
Electronics and Computers, 4(Special Issue), (2016), 184-189,
https://doi.org/10.18100/ijamec.270088.

[Akçay and Yiltas-Kaplan 2017] Akcay, H., Yiltas-Kaplan, D.: “Web-Based User Interface for
the Floodlight SDN Controller”, Int. J. Advanced Networking and Applications, 8(5), (2017),
3175-3180.

[Akçay and Yiltas-Kaplan 2019] Akcay, H., Yiltas-Kaplan, D.: “Performing Classification for
Anomaly Detection in Software Defined Networking”, In Proc. 6th International Scientific
Research Congress, (2019), 513-523.

[Becker et al. 2016] Becker, R., Fickert, M., Karrenbauer, A.: “A Novel Dual Ascent Algorithm
for Solving the Min-Cost Flow Problem”, In Proc. of the Eighteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), (2016), 151-159.

668

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

[Bertsekas 1991] Bertsekas, D. P.: “An Auction Algorithm for Shortest Paths”, SIAM J.
Optimization, 1(4), (1991), 425-447.

[Bertsekas 1992] Bertsekas, D. P.: “Auction Algorithms for Network Flow Problems: A Tutorial
Introduction”, [online] https://dspace.mit.edu/bitstream/handle/1721.1/3265/P-2108-
26912652.pdf;sequence=1, (Accessed 15 January 2022).

[Bertsekas 1998] Bertsekas, D. P.: “Network Optimization: Continuous and Discrete Models”,
Athena Scientific.

[Demaine and Wenk 2022] Demaine, E., Wenk, C.: “Shortest Paths in Graphs Bellman-Ford
Algorithm”, [online] https://www2.cs.arizona.edu/classes/cs545/fall09/ShortestPath2.prn.pdf,
(Accessed 15 January 2022).

[Deveci et al. 2021] Deveci, M., Pamucar, D., Gokasar, I.: “Fuzzy Power Heronian Function
Based CoCoSo Method for the Advantage Prioritization of Autonomous Vehicles in Real-Time
Traffic Management”, Sustainable Cities and Society, 69, (2021),
https://doi.org/10.1016/j.scs.2021.102846.

[GitHub 2017] GitHub: “Java code to build and run evaluation of Approximation Algorithms for
the Directed Steiner Tree problem”, [online]
https://github.com/mouton5000/DSTAlgoEvaluation, (Accessed 15 January 2022).

[Hong et al. 2013] Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M.,
Wattenhofer, R.: “Achieving High Utilization with Software-Driven WAN”, In Proc. ACM
SIGCOMM, (2013), 15-26, https://doi.org/10.1145/2486001.2486012.

[Ilhan and Yiltas-Kaplan 2020] Ilhan, H. T., Yiltas-Kaplan, D.: “Changing Routing Module in
Floodlight”, In Proc. 2020 International Conference on Electrical, Communication, and
Computer Engineering (ICECCE), (2020), 1-5, 10.1109/ICECCE49384.2020.9179298.

[Klappenecker 2022] Klappenecker, A.: “The Bellman-Ford Algorithm”, [online]
http://faculty.cs.tamu.edu/klappi/csce411-f17/csce411-graphs6.pdf, (Accessed 15 January
2022).

[Molugaram and Rao 2017] Molugaram, K., Rao, G. S.: “Random Variables”, Statistical
Techniques for Transportation Engineering, Chapter 4, (2017), 113-279.

[Open Networking Foundation 2014] ONF: “SDN Architecture”, [online],
https://www.opennetworking.org/wp-
content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf, (Accessed 15 January 2022).

[Özbek et al. 2020] Özbek, U., Yiltas-Kaplan, D., Zengin, A., Ölmez, S.: “Traffic Analysis of a
Software Defined Network”, In Proc. 1st International Congress on Engineering Technologies
(EngiTek), (2020), 44-49.

[Wang 2018] Wang, Q.: “Installation Guide, Floodlight” [online],
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343544/Installation+Gui
de#InstallationGuide-FloodlightMasterandAbove, (Accessed 15 January 2022).

[Wong 1984] Wong, R. T.: “A Dual Ascent Approach for Steiner Tree Problems on a Directed
Graph”, Mathematical Programming, 28(3), (1984), 271–287.

[Yiltas and Perros 2011] Yiltas, D., Perros, H.: “Quality of Service-Based Multi-Domain Routing
Under Multiple Quality of Service Metrics”, IET Communications, 5(3), (2011), 327-336,
10.1049/iet-com.2010.0144.

 669

Yiltas-Kaplan D.: Traffic Optimization with Software-Defined Network Controller on ...

[Yiltas-Kaplan 2015] Yiltas-Kaplan, D.: “Cost Functions for Two-Metric Quality Of Service
Routing”, Istanbul University Journal of Electrical and Electronics Engineering, 15(2), (2015),
1913-1919.

[Yiltas-Kaplan 2019] Yiltas-Kaplan, D.: “The Usage Analysis of Machine Learning Methods for
Intrusion Detection in Software-Defined Networks”, Chapter 5, Artificial Intelligence and
Security Challenges in Emerging Networks, Editor: Ryma Abassi, IGI Global, Hershey, PA, 124-
145.

