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Abstract: Although linear classifiers are one of the oldest methods in machine learning, they

are still very popular in the machine learning community. This is due to their low computational

complexity and robustness to overfitting. Consequently, linear classifiers are often used as base

classifiers of multiple ensemble classification systems. This research is aimed at building a new

fusion method dedicated to the ensemble of linear classifiers. The fusion scheme uses both mea-

surement space and geometrical space. Namely, we proposed a probability-driven scoring function

which shape depends on the orientation of the decision hyperplanes generated by the base classifiers.

The proposed fusion method is compared with the reference method using multiple benchmark

datasets taken from the KEEL repository. The comparison is done using multiple quality criteria.

The statistical analysis of the obtained results is also performed. The experimental study shows

that, under certain conditions, some improvement may be obtained.
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1 Introduction

The concept of a linear classifier is one of the oldest machine learning methods. They are
dated back to the 1950s [Rosenblatt, 1958]. For decades many algorithms for building
linear classifiers have been developed [McLachlan, 1992, Devroye et al., 1996, Gurney,
1997, Kuncheva and Bezdek, 1998, Cortes and Vapnik, 1995, Zhu et al., 2018]. Today
they are still used by the machine learning society [Kim et al., 2017]. This is due to the
relatively low computational complexity of training and predicting phases [Plumpton
et al., 2012]. What is more, after a suitable data preprocessing, linear classifiers may offer
classification quality comparable to nonlinear ones [Yuan et al., 2012]. Additionally,
for some linear classifiers, it is possible to obtain nonlinear decision boundaries using
the kernel trick [Zhu et al., 2018]. Nonlinear decision boundaries may also be obtained
using ensembles of classifiers [Kim et al., 2017, Taud and Mas, 2017].

Ensemble classifiers are complex systems built with multiple classifiers called base
classifiers. That is why they are also called multiclassifiers [Woźniak et al., 2014]. The
classifiers constituting the ensemble are trained together, and then their outputs are
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combined to form the response of the ensemble [Dong et al., 2019]. Using multiple
classifiers instead of one has many advantages. As it was mentioned above, combining
multiple classifiers allows building a more complex decision boundary [Kim et al., 2017].
What is more, it also improves the result stability (reduces variance) and robustness to
outliers [Sagi and Rokach, 2018]. Consequently, in general, they allow obtaining better
classification quality compared to a single model [Krawczyk et al., 2017]. They proved
to be efficient tools for dealing with a wide range of practical classification tasks [Zhang
et al., 2021, Yang et al., 2021, Chandra et al., 2021, Mehmood et al., 2021]. This is the
reason why building an ensemble of classifiers is still a widely explored topic in machine
learning [Woźniak et al., 2014, Krawczyk et al., 2017, Sagi and Rokach, 2018, Dong
et al., 2019].

The operation of the ensemble classifier is usually divided into two stages: generation
and integration (fussion) [Mohandes et al., 2018]. During the generation phase, a set of
accurate and diverse classifiers is constructed. By exact, we mean the classifier which
accuracy is better than the random guessing. Simply speaking, the diversity guarantees
that different base classifiers make invalid predictions for different samples. Diversity is
more important because we cannot benefit from combining a set of identical classifiers
[Dietterich, 2000]. There are two well-known ways of creating a diversified group of
classifiers. One involves building an ensemble of classifiers based on various learning
paradigms (heterogeneous ensemble) [Ghaderi Zefrehi and Altınçay, 2020]. The other
is to build a homogeneous ensemble utilizing classifiers that follow the same learning
paradigm, but the models are trained using different training data [Wang et al., 2021].
The most commonly employed methods of creating homogeneous ensembles are bagging
[Breiman, 1996], boosting [Freund and Shapire, 1996], random subspaces [Ho, 1998],
and random projections [Vrahatis et al., 2020].

In the integration stage, the final decision of the ensemble is obtained. In this stage,
a certain subset of previously created base classifiers can be selected [Cruz et al., 2018].
Generally, the fusion strategies may be divided into a few categories [Rokach, 2009,
Woźniak et al., 2014]

– Trainable [Kuncheva and Rodríguez, 2012] and untrainable [Kittler and Alkoot,
2003]. The trainable ones need the combiner to be trained using a separate set of
training data, whereas the untrainable ones do not;

– Static [Kuncheva and Rodríguez, 2012, Kittler and Alkoot, 2003] and dynamic [Val-
dovinos and Sánchez, 2009]. Static combiners use the same mix of base classifiers
for each example. On the other hand, the dynamic combination procedure depends
on the sample being classified for the dynamic ones.

The classifier fusion can be done using various output spaces [Mohandes et al., 2018,
Pujol and Masip, 2009].

– Abstract space (class space) combiners using only information about the class as-
signed to the sample [Kuncheva, 2014].

– Rank space. In this case, the base classifiers produce a class ranking. The position
within the ranking is expressed using an integer number [Przybyła-Kasperek and
Wakulicz-Deja, 2017].

– The measurement space. In the measurement space, the classifier expresses class-
specific support using a real number. The higher the number is, the greater is belief
that the sample belongs to the given class. The class support values are usually
normalized within the [0; 1] interval and sum up to one [Kuncheva, 2014].
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– Geometric space. The geometric combiners use properties of the geometrical space
in which the decision boundary is placed [Pujol and Masip, 2009]. For example, the
method proposed in [Pujol and Masip, 2009] uses characteristic boundary points and
weight estimation to provide a piecewise linear classifier. On the other hand, the meth-
ods proposed in [Yujian et al., 2011, Leng et al., 2019] constructs a multiconlitron
that separates the classes.

In this paper, we extended the probability-based scoring function proposed in [Trajdos
and Burduk, 2020]. The scoring function combines measurement-level fusion with
geometric space fusion. That is, it uses geometric properties of the space combined with
the probabilistic framework. We have proposed three extended scoring functions. The
scoring functions harness additional probabilistic information about the data distribution
in the input (geometric) space. Namely, they utilize information about point distribution
along the decision plane. The function proposed in [Trajdos and Burduk, 2020] uses only
information about the point spread along the normal vector of the decision plane.

The main objectives of this work can be summarized as follows:

– A proposal of new scoring functions that better utilize the probabilistic information
available.

– Harnessing the proposed scoring functions in the task of building a homogeneous
ensemble of classifiers.

– An experimental setup to compare the proposed scoring functions with the reference
methods. The comparison is done in terms of the selected quality criteria. During
the experiments, different base classifiers are used.

The outline of the paper is as follows: In the next section (Section 2), related works
are outlined. The proposed methods are presented in Section 3. In Section 4, the research
questions are formulated, and the experimental setup is described. The experimental
results are presented and discussed in Section 5. Finally, the paper is concluded in
section 6.

2 Related Work

This section describes the previous work related to the problem of building ensembles of
linear classifiers. We begin with the definition of a linear classifier and then switch to
the topic of building ensembles of such classifiers.

2.1 Linear Classifier

Let us begin with the definition of a linear classifier. The linear classifier assigns points
taken from the feature space X, which in this work is assumed to be a d− dimensional
Euclidean space X = Rd, to two possible classesM = {−1; 1} [Duda et al., 2012]. To
separate the two classes of feature space points, the classifier utilizes a hyperplane π
defined by the following equation:

π : 〈n; x〉+ b = 0, (1)
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where n is a unit normal vector of the decision hyperplane, b is the distance from the
hyperplane to the origin and 〈·; ·〉 is a dot product defined as follows [Shafarevich, 2005]:

〈a;b〉 =
d∑
i=1

aibi ∀a,b ∈ X. (2)

The norm of the vector x is defined using the dot product:

‖x‖ =
√

〈x; x〉. (3)

For each instance x, the linear classifier ψ produces the discriminant function
[Kuncheva, 2014]:

ω(x) = 〈n; x〉+ b, (4)

which absolute value equals the perpendicular distance from the decision hyperplane π
to the point x. The sign of the value returned by the discriminant function depends on
the site of the plane where the instance x lies. The decision of the linear classifier is thus
determined by checking the sign of the discriminant function:

ψ(x) = sign (ω(x)) . (5)

During the training phase of the linear classifier, the proper decision plane is found
using the training set T . which consists of |T | (where | · | is the cardinality of a set) pairs
of feature space vectors x and their corresponding class labelsm:

T =
{
(x(1),m(1)), (x(2),m(2)), . . . , (x(|T |),m(|T |))

}
, (6)

where x(k) ∈ X and m(k) ∈ M. The literature contains various procedures for obtain-
ing the decision plane [Yuan et al., 2012]. Among the others, we may mention such
algorithms as: FLDA [McLachlan, 1992], Logistic Regression [Devroye et al., 1996],
Perceptron [Gurney, 1997], Nearest Centroid Classifier [Kuncheva and Bezdek, 1998],
and SVM [Cortes and Vapnik, 1995]. The procedures used in the experiments are listed
in Section 4.1.

Despite their simplicity, linear classifiers are often used to solve practical classifica-
tion tasks [Yuan et al., 2012]. First of all, they are useful due to their low computational
complexity. Additionally, due to their simplicity, they are also less overfitting prone
[Plumpton et al., 2012]. What is more, they can obtain a classification quality compa-
rable to nonlinear classifiers when the dimensionality of the input space is high [Yuan
et al., 2012]. However, for some classification problems with nonlinear classification
boundaries they are insufficient [Zhu et al., 2018]. One solution may be to tailor linear
classifiers to find non-linear decision boundary. This may be done by applying the kernel
trick [Yuan et al., 2012, Zhu et al., 2018]. The other way is to build a structure that
consists of multiple linear classifiers that are trained together. An example of such a
technique is to build a multilayer neural network [Taud and Mas, 2017], a deep neural
network in particular [Begum et al., 2019]. Another way is to use the multi-classifier
approach and build an ensemble of linear classifiers [Kim et al., 2017].
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2.2 An Ensemble of Linear Classifiers

Generally speaking, an ensemble of classifiers (a multiclassifier) is a set of classifiers
that work together to deliver more robust results [Kuncheva, 2014]. Throughout this
paper, the ensemble of classifiers is denoted by:

Ψ =
{
ψ(1), ψ(2), · · · , ψ(N)

}
(7)

In this paper, we are focused on the ensemble combination methods dedicated to
linear classifiers. The proposed weighting methods are trainable and dynamic ones that
combine the base classifiers in the geometric space. That is, the weights depend on the
orientation of the decision plane.

In the literature, we may find multiple methods of combining linear classifiers. Now,
we list these methods starting from the simplest one. The most straightforward way
to combine the results of several classifiers is to use model averaging [Skurichina and
Duin, 1998]. The model averaging approach is to simply calculate the mean value of the
classifier-specific discriminant functions:

ω(x) =
1

N

N∑
i=1

ω(i)(x), (8)

where ω(i)(x) is the value of the discriminant function provided by the classifier ψ(i)

for the point x. As we said before, the value taken by the discriminant function of the
linear classifier is proportional to the distance from the given point x to the decision
plane. In general, this distance is unbounded, which poses a major disadvantage of the
model averaging approach. That is, when one of the base classifiers has produced a
misplaced decision boundary, the high value of the discriminant function coming from
this boundary may significantly change the response of the entire ensemble.

This issue may be easily addressed by ignoring the exact value of the discriminant
function and taking only the sign of the value. This approach is called majority voting,
and the response of the ensemble is given by the following formula [Alpaydin, 2020]:

ω(x) =

N∑
i=1

sign
[
ω(i)(x)

]
, (9)

Although this approach is robust tomisplaced decision boundaries, it loses the information
related to the exact value of the discriminant function.

The aforementioned disadvantage can be partly eliminated by the application of a
type of a sigmoid transformation [Kuncheva, 2014]. The sigmoid function, also called
S-shaped function, is an increasing one that has finite upper and lower bounds. An
example of such a function is the softmax function:

ω̃(i)(x) =
(
1 + exp

[
−ω(i)(x)

])−1

. (10)

Applying this kind of transformation ensures that distance-specific information is not lost,
and it also reduces the impact of misplaced hyperplanes. Employing a simple sigmoid
function is a simplified version of the probability calibration task. In this task, we want
to provide an estimation of the class posterior probability distribution [Kull et al., 2017].
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This distribution may be obtained using various techniques such as Plat scaling (logistic
calibration) [Platt et al., 1999, Böken, 2021], sigmoid fitting [Zadrozny and Elkan, 2002],
or beta scaling [Kull et al., 2017] To produce the final outcome of the ensemble, the
transformed values are averaged:

ω(x) =
1

N

N∑
i=1

ω̃(i)(x). (11)

As it was said before, one of the problems with combining the linear classifiers is
that the discriminative function grows monotonically with the distance to the decision
plane. This poses no problem when a single classifier is queried. However, it may cause
a situation where the absolute value of the discriminant function is high, but the training
set of a classifier contains no instances so far from the decision boundary. In other
words, the classifier returns a high value of the discriminant function outside its region of
competence, which may distort the final prediction of the ensemble. The application of a
sigmoid function or more generally a sort of posterior probability scaling mitigates the
problem, but does not resolve it. The reason is that at a great distance from the decision
boundary, the calibrated discriminant function approaches its upper (lower) limit. The
values close to the limits still express relatively high class-specific support outside the
competence region of the base classifier. Our previous research has shown that reducing
the value of the discriminant function outside the competence region of the classifier
may significantly improve the classification quality achieved by the ensemble [Trajdos
and Burduk, 2019, Trajdos and Burduk, 2020]. Our first attempt was to provide a simple
non-monotonic parametric function [Trajdos and Burduk, 2019]:

g
(
ω(x)

)
=

√
2ζω(x) exp

[
−ζ

(
ω(x)

)2
+ 0.5

]
, (12)

where ζ is a coefficient that controls the position and steepness of peaks. Unfortunately,
we have not proposed a closed-form formula for finding the good value of this coefficient.
Consequently, the proper value of this coefficient must be found using cross-validation.
The translation constant 0.5 and the scaling factor

√
2ζ assure that the maximum and

positive and negative peaks of the discriminant functions are 1 and −1 respectively. The
final value of the discriminant function of the ensemble is calculated by averaging the
transformed values given by the base classifiers:

ω(x) =
1

N

N∑
i=1

g
(
ω(i)(x)

)
. (13)

The conducted experimental evaluation showed that applying this kind of non-monotonic
transformation causes a gain in the classification quality obtained by heterogeneous
ensembles. Unfortunately, the practical applications of this method are limited since it is
very sensitive to imbalanced class distribution. What is more the ζ coefficient has to be
tuned for each dataset separately. To eliminate these drawbacks, we proposed an approach
that models the data spread along the plane vector using kernel probability estimators
[Trajdos and Burduk, 2020]. The conducted experimental evaluation showed that the
previously proposed method offers some improvement over the formerly proposed and
reference methods.

The discriminant function created by a linear classifier uses only the information about
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Figure 1: The linear decision boundary for binary, two-dimensional data. Objects

belonging to the first class have been marked using red circles, whereas points

belonging to the other class have been marked using green triangles. The plot also

shows the normal vector of the decision plane n and a base vector of the plane b1.

the distance between an object and the decision hyperplane. However, the information
about the data distribution along the basis of the decision hyperplane may also be useful
when determining the competence region of the base classifier. The basis of the decision
hyperplane is a set of linearly independent vectors that span the plane [Shafarevich,
2005]:

B = {b1,b2, · · · ,bd−1} . (14)

The plane base for the two-dimensional classification problem is shown in Figure 1.
With that in mind, we proposed a method that incorporates this information into the

ensemble classifier.

3 Proposed Improvements of the Probability-based Potential func-
tion

Let us begin with a more detailed description of the method proposed in [Trajdos and
Burduk, 2021]. This description is needed since the methods proposed in this paper are
extensions of the above-mentioned methods.

3.1 Potential Functions

The potential function defined in [Trajdos and Burduk, 2021] is defined using a prob-
abilistic framework. It means that x andm are realizations of random variables X and
M, respectively. The joint distribution P (X,M) is also known. Then, the value of the
discriminant function ω(x) is also a realisation of a random variable defined as follows:

W = 〈n;X〉+ b. (15)
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This one-dimensional distribution describes the data spread along the line defined by the
normal vector n of the decision plane. This random variable is also jointly distributed
withM: P (W,M). We denote its probability density function of this random variable
by w(ω).

Under these assumptions, we may define the conditional probability of classm = 1
given ω(x):

P
(
M = 1|ω(x)

)
=

w
(
ω(x)|M = 1

)
P (M = 1)∑

m∈M w
(
ω(x)|M = m

)
P (M = m)

. (16)

The potential function is then defined to be proportional to the probability:

β
(
ω(x)

)
=

exp
[
w
(
ω(x)|M = 1

)
P (M = 1)

]
∑
m∈M exp

[
w
(
ω(x)|M = m

)
P (M = m)

] − 0.5. (17)

Using the softmax transformation allows avoiding numerical problems in areas with
low point density. Subtracting 0.5 from the expression puts the result into [−0.5; 0.5]
interval.

In this work, we employed probability density estimations that describe the point
distribution along the vectors of the plane basis B. To do so, we define a new multidi-
mensional random variable which elements are defined as the projection coefficients of
the random variable X onto the base vectors of the decision plane:

Yi =
〈X;bi〉
‖bi‖

. (18)

Consequently, the random variable describes the distribution of points projected onto
the basis of the decision plane. The probability density function of this random variable
is denoted by y(x).

Our first approach is to define the modified potential function using y(x) solely.
This potential function uses the information about the point distribution regardless the
class assigned to each of the points. We assumed that Y is normally distributed with
the expected value µ and the covariance matrix Σ: Y ∼ N (µ,Σ). This assumption is
made because the normal distribution is a unimodal one. Consequently, the max value of
the probability density function can be easily determined. The potential function is then
defined as:

ε(x) =
1

z(x)
P
(
M = 1|ω(x)

) exp (y(x))
exp (y(x))+exp (y(µ)) − 0.5, (19)

where z(x) is a normalization factor that guarantees these potentials comming from

P
(
M = 1|ω(x)

)
and P

(
M = −1|ω(x)

)
sum up to zero. Exponent in the equation (19)

is a softmax between the highest pdf value of the distribution y(µ) and y(x). For low
values of y(x) the value of the potential function tends to 0. Consequently, in the areas
where the concentration of samples is low, the discriminant function of the base classifier
is close to zero. In other words, in those areas, the classifier cannot definitely say which
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y(µ) value is set to 1.0.

class to choose. An example plot of the potential function is shown in Figure 2 .
Another strategy is to use conditional probabilities y(x|M = m) and use them to

calculate P
(
M = 1|ω(x)

)
. To employ these probabilities, we made a naive assumption

that y(x|M = m) and w
(
ω(x)|M = m

)
are conditionally independent givenM = m.

The same assumption is done in the Naive Bayes classifier [Hand and Yu, 2001]. Taking
this into account, the conditional class probability is calculated using the following
formula:

P
(
M = 1|ω(x)

)
=

w
(
ω(x)|M = 1

)
y
(
x|M = 1

)
P (M = 1)∑

m∈M w
(
ω(x)|M = m

)
y
(
x|M = m

)
P (M = m)

. (20)

Consequently, the potential is calculated as follows:

ε2(x) =
exp

[
w
(
ω(x)|M = 1

)
y
(
x|M = 1

)
P (M = 1)

]
∑
m∈M exp

[
w
(
ω(x)|M = m

)
y
(
x|M = m

)
P (M = m)

] − 0.5. (21)

3.2 Probability Estimation

In the previous section, a set of potential functions has been presented. For readability
purposes, all necessary probability distributions were assumed to be known. Unfortu-
nately, in real-world classification problems, these distributions remain unknown, and
they have to be estimated using the training data. This section describes the techniques
used to estimate the probabilities needed by the potential function.
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Prior class probabilities P (M = m) are estimated using the following formula:

P̂ (M = m) =
|T (m)|
|T |

, (22)

where T (m) is a subset of the training set containing objects which belong to classm:

T (m) =
{
(x(k),m(k))|m(k) = m

}
. (23)

To calculate the potential function ε(x), we need to estimate the probability dis-
tribution y(x). Random variable Y has also been assumed to follow the multivariate
normal distribution. Consequently, we use the maximum likelihood estimator to find the
parameters of the distribution [Pan and Fang, 2002].

For the conditional distribution y(x|M = m), we considered two estimation proce-
dures to be compared during the experimental study:

– We assumed that the underlying random variable follows the multivariate Gaussian
distribution. To estimate the conditional probability density function, we used the
maximum likelihood estimator [Pan and Fang, 2002].

– To make no assumptions about the shape of the distribution, we employed a non-
parametric kernel estimator. To avoid using multidimensional kernels, we used the
Naive Bayes assumption about the variables [Kulczycki, 2008, Węglarczyk, 2018].
In our work, we also decided to select the bandwidth using Silverman’s rule of thumb
[Silverman, 1986]

3.3 Toy Examples

In this section, the process of potential function building is visualized using a simple
two-dimensional data set shown in Figure 3. The decision boundary, shown in Fig-
ure 3, is generated using the Nearest Centroid classifier [Kuncheva and Bezdek, 1998].
After obtaining the decision boundary, the conditional probability density functions
w
(
ω(x)|M = m

)
are estimated. The result is shown in Figure 4.

Now, the process of calculating the potential function ε(x) is shown. First, the
probability density function y(x) is estimated. The result is shown in Figure 5. Then the
potential function ε(x) is calculated. It is visualised Figure 6.

The second example shows the process of calculating the potential function ε2(x).
First the conditional probability density functions f(X|M = m) are estimated. The reault
is shown in Figure 7. The potential function ε2(x) is then calculated according to (12).
It is visualised in Figure 8.
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Figure 3: The linear decision boundary created by the Nearest Centroid classifier for

binary, two-dimensional, banana-shaped data. Objects belonging to the first class have

been marked using red circles, whereas points belonging to the other class have been

marked using green triangles. The plot also shows the decision plane generated by the

Nearest Centroid classifier.
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4 Experimental Evaluation

The main goal of the experimental evaluation is to answer the following research ques-
tions:

– RQ1: Does the utilization of the information about the point distribution along the
basis of the decision plane significantly impact the classification quality achieved
by the ensemble?

– RQ2: Do the new formulated potential functions allow to improve the classification
quality achieved by the ensemble?

– RQ3: How is the ensemble utilizing the newly proposed potential functions doing
compared to the ensemble created using Naive Bayes classifier which uses the class
conditional probability calculated in a similar way.

4.1 Setup

Table 1 displays the collection of the 70 benchmark sets that were used during the
experimental evaluation of the proposed methods. The table is divided into two sections.
Each section is organized as follows. The first column contains the names of the datasets.
The remaining ones contain the set-specific characteristics of the benchmark sets: the
number of instances in the dataset |S|; dimensionality of the input space d; the number
of classes C and the average imbalance ratio IR, respectively.

The datasets were taken from the Keel 1 repository. The datasets are also available
in our repository 2.

During the dataset preprocessing stage, a few transformations on the datasets were
applied. The PCA method [Topolski, 2020] was applied and the percentage of covered
variance was set to 0.95. The attributes were also normalized to have zero mean and unit
variance.

In the experimental study we conducted, the proposed potential functions were used
to combine the predictions produced by a homogeneous ensemble of classifiers. The
homogeneous ensembles were created using a bagging approach [Skurichina and Duin,
1998]. The generated ensembles consist of 11 classifiers learned by using the bagging
method. Each bagging sample contains 80% of the number of instances from the original
dataset.

For each of the kernel estimators used, the kernel bandwidth was selected using the
Silverman rule [Silverman, 1986]. The Gaussian kernel is used.

During the experiment, the following ensembles were considered:

– ψNB – The ensemble was created using Naive Bayes classifier [Hand and Yu, 2001].

– ψKE – The ensemble in which base classifiers are combined according to approach
proposed in [Trajdos and Burduk, 2020]. See also equation (17).

– ψKA – The ensemble in which base classifiers are combined using the potential
function defined in (19).

1https://sci2s.ugr.es/keel/category.php?cat=clas
2https://github.com/ptrajdos/MLResults/blob/master/data/KeelData.tar.xz
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Name |S| d C IR Name |S| d C IR

abalone 4174 10 28 162.59 mammographic 830 5 2 1.03
adult 45222 103 2 2.02 marketing 6876 13 9 1.80
appendicitis 106 7 2 2.52 monk-2 432 6 2 1.06
australian 690 18 2 1.12 movement_libras 360 90 15 1.00
automobile 159 61 6 4.30 mushroom 5644 92 2 1.31
balance 625 4 3 2.63 newthyroid 215 5 3 3.43
banana 5300 2 2 1.12 nursery 12960 26 5 435.25
bands 365 19 2 1.35 optdigits 5620 64 10 1.02
breast 277 38 2 1.71 page-blocks 5472 10 5 58.12
bupa 345 6 2 1.19 penbased 10992 16 10 1.04
car 1728 21 4 10.08 phoneme 5404 5 2 1.70
chess 3196 38 2 1.05 pima 768 8 2 1.43
cleveland 297 13 5 5.08 post-operative 87 21 3 21.86
coil2000 9822 85 2 8.38 ring 7400 20 2 1.01
connect-4 67557 126 3 3.52 saheart 462 9 2 1.44
contraceptive 1473 9 3 1.37 satimage 6435 36 6 1.66
crx 653 42 2 1.10 segment 2310 19 7 1.00
dermatology 358 34 6 2.43 shuttle 57999 9 7 1326.03
ecoli 336 7 8 23.56 sonar 208 60 2 1.07
fars 100968 362 8 610.12 spambase 4597 57 2 1.27
flare 1066 37 6 2.90 spectfheart 267 44 2 2.43
german 1000 59 2 1.67 splice 3190 287 3 1.77
glass 214 9 6 3.91 tae 151 5 3 1.03
haberman 306 3 2 1.89 texture 5500 40 11 1.00
hayes-roth 160 4 3 1.37 thyroid 7200 21 3 19.76
heart 270 13 2 1.13 tic-tac-toe 958 27 2 1.44
hepatitis 80 19 2 3.08 titanic 2201 3 2 1.55
housevotes 232 16 2 1.07 twonorm 7400 20 2 1.00
ionosphere 351 33 2 1.39 vehicle 846 18 4 1.03
iris 150 4 3 1.00 vowel 990 13 11 1.00
kr-vs-k 28056 40 18 20.96 wdbc 569 30 2 1.34
led7digit 500 7 10 1.16 wine 178 13 3 1.23
letter 20000 16 26 1.06 wisconsin 683 9 2 1.43
lymphography 148 38 4 15.77 yeast 1484 8 10 17.08
magic 19020 10 2 1.42 zoo 101 21 7 4.84

Table 1: The characteristics of the benchmark sets

– ψKB – The ensemble in which base classifiers are combined using the potential
function defined in (21). The parametric gaussian estimator is used.

– ψKC – The ensemble in which base classifiers are combined using the potential
function defined in (21). The kernel estimator is used.

The following base classifiers were used to build the above-mentioned ensembles
(Except for Naive Bayes ensemble):

– ψFLDA – Fisher LDA [McLachlan, 1992],

– ψLR – Logistic regression classifier [Devroye et al., 1996],

– ψMLP – single layer MLP classifier [Gurney, 1997],

– ψNC – nearest centroid (Nearest Prototype) [Kuncheva and Bezdek, 1998] with the
class-specific Euclidean distance,

– ψSVM – SVM classifier with linear kernel (no kernel) [Cortes and Vapnik, 1995].

The classifiers used were implemented in the WEKA framework [Hall et al., 2009].
If not stated otherwise, the classifier parameters were set to their defaults. The multiclass
problems were dealt with using One-vs-One decomposition [Hüllermeier and Fürnkranz,
2010]. The source code of the proposed algorithms is available online 3.

To evaluate the proposed methods, six classification quality criteria are used:

3https://github.com/ptrajdos/piecewiseLinearClassifiers/tree/master
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– Macro-averaged:

• false discovery rate (1− precision, FDR);

• false negative rate (1− recall, FNR);

• Matthews correlation coefficient(MCC)

– Micro-averaged:

• false discovery rate (1− precision, FDR);

• false negative rate (1− recall, FNR);

• Matthews correlation coefficient(MCC)

Macro and micro-averaged measures were used to assess the performance for the majority
and minority classes. This is because the macro-averaged measures are more sensitive
to the performance for minority classes [Sokolova and Lapalme, 2009]. The criteria
are bounded in the interval [0, 1], where zero denotes the best classification quality. To
maintain consistency, the results obtained using the MCC criterion are also transformed
to fit the above-mentioned properties.

The experimental procedure was conducted using the ten-fold cross-validation pro-
cedure. The data folds were generated using methods implemented in WEKA software.
The random seed used to generate them is zero.

Following the recommendation of [Garcia and Herrera, 2008] the statistical signifi-
cance of the obtained results was assessed using the two-step procedure. The first step
was to perform the Iman-Davenport test [Garcia and Herrera, 2008] for each quality cri-
terion separately. Since multiple criteria were employed, the family-wise errors (FWER)
should be controlled [Bergmann and Hommel, 1988]. To do so, the Bergmann-Hommel
[Bergmann and Hommel, 1988] procedure of controlling FWER of the conducted Iman-
Davenport tests was employed. When the Iman-Davenport test shows that there is a
significant difference within the group of classifiers, the Bergmann-Hommel post hoc
test is applied [Garcia and Herrera, 2008, Bergmann and Hommel, 1988]. For all tests,
the significance level was set to α = 0.05.

5 Results and Discussion

To compare multiple algorithms on multiple benchmark sets, the average rank approach
is used. In this approach, the winning algorithm achieves a rank equal to ’1’, the second
achieves a rank equal to ’2’, and so on. In the case of ties, the ranks of algorithms that
achieve the same results are averaged. To provide a visualization of the average ranks,
radar plots are employed. In the radar plot, each of the radially arranged axes represents
one quality criterion. In the plots, the data is visualized in such a way that the lowest
ranks are closer to the centre of the graph. Consequently, higher ranks are placed near
the outer ring of the graph. Graphs are also scaled so that the inner ring represents the
lowest rank recorded for the analyzed set of classifiers, and the outer ring is equal to the
highest recorded rank. The radar plots are presented in Figures 9 – 13.

The numerical results are given in Tables 2 to 6. Each table is structured as follows.
The first row contains the names of the investigated algorithms. Then, the table is divided
into six sections – one section is related to a single evaluation criterion. The first row of
each section is the name of the quality criterion investigated in the section. The second
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row shows the p-value of the Iman-Davenport test. The third one shows the average
ranks achieved by algorithms. The following rows show p-values resulting from the post
hoc test. The p-value equal to .000 informs that the p-values are lower than 10−3 and
p-value equal to 1.00 informs that the value is higher than 0.999. P-values lower (or
equal) than α are bolded. Consequently, the bolded results show that there is a significant
difference between classifiers.

Let us begin with the analysis of differences between ψKE and its modifications that
allow us to incorporate the information about points spread along the decision plane
basis (ψKA, ψKB, and ψKC respectively). The conducted statistical analysis reports only a
few significant differences between these methods.

Most of the differences are observed for the macro-averaged FNR criterion. In terms
of this criterion ψKB and ψKC tend to be better than ψKE. For this criterion, the average
ranks achieved by the proposed methods tend to be lower than the ranks achieved by
ψKE. For the macro-averaged FDR measure, almost no significant differences have been
reported. For this criterion, only one significant difference is reported for ψNC base
classifier. What is more, the order (according to the average ranks) of classifiers depends
on the base classifier used. It means that for the minority classes, the modified methods
(ψKB and ψKC) improve the recall without harming the precision. Unfortunately, the
overall classification quality expressed in terms of the macro-averaged MCC criterion
has not been significantly improved. However, we may observe that the averaged ranks
for the proposed methods tend to be lower for this criterion. This is especially for ψKB and
ψKC. This trend is observed for all base classifiers. It means that including the information
about the point spread along the hyperplane basis allows obtaining some improvement.
Utilizing the class-specific densities y(x|M = m) causes higher differences in average
ranks. It means that using class-specific densities gives better results than using a global
density P (X = x).

For the micro-averaged criteria, significant differences are observed only for a sole
base classifier. The difference is observed for the ψMLP base classifier and all micro-
averaged criteria. However, in this case, the result is not so strong because the p-value
resulted from the Iman Davenport test is above the significance level α. Apart from that,
the results of the post-hoc test show that the ψKE classifier is significantly better than
ψKB classifier. What is more, the ψKB classifier tends to achieve higher ranks than ψKE
for all micro averaged criteria and base classifiers. It means that ψKB classifier may be
weaker when classifying the examples from the majority classes. For ψKA and ψKC, on
the other hand, the average ranks for micro-averaged criteria are lower than the ranks
calculated for ψKE. This result shows that for the proposed method, the choice of the
probability estimation method is fairly important. The nonparametric estimator seems
to be a better choice than a parametric one related to the arbitrarily chosen distribution
(The Gaussian one in this study). This is likely due to the ability of the kernel estimator
to provide a better estimation of the multimodal probability density.

Finally, let us compare ψKA, ψKB and ψKC classifies and the ensemble built using the
Naive Bayes algorithm (ψNB). This comparison needs to be made since the algorithms
use a similar approach to estimating the multidimensional probability distribution as the
Naive Bayes algorithm does.

First of all, for the macro-averaged FNR and FDR measures, the ψNB classifier
significantly outperforms the remaining classifiers for three out of five base classifiers.
What is more, the ψNB is also better in terms of the macro-averaged MCC classifier for
the nearest centroid base classifier. This is also true for the ψKC classifier that uses almost
the same procedure for estimation probability. The probable reasons for these differences
are twofold. The first reason is that the ψKC classifier uses one-vs-one decomposition to
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deal with multiclass problems whereas ψNB can handle multiclass problems directly. The
second reason is that ψNB estimates the probabilities using original attributes which are,
due to applied PCA transformation, uncorrelated. ψKC on the other hand uses an input
space spanned by the normal vector and decision hyperplane basis. The literature shows
that applying ψNB on uncorrelated attributes gives better results [Fan and Poh, 2007].

For the micro-averaged measures, on the other hand, no significant difference is
observed. It means that, when dealingwith themajority classes, the investigated classifiers
offer comparable classification quality.

ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC

Nam. MaFDR MaFNR MaMCC
ImD. 1.000e+00 1.253e-03 4.155e-01
Rank 2.929 3.236 3.029 3.007 2.800 2.957 3.636 3.200 2.593 2.614 2.971 3.336 3.157 2.921 2.614
ψNB 1.00 1.00 1.00 1.00 .044 .727 .519 .519 .727 1.00 1.00 .727
ψKE 1.00 1.00 1.00 .412 .001 .001 1.00 .727 .069
ψKA 1.00 1.00 .139 .139 1.00 .253
ψKB 1.00 .936 .727

Nam. MiFDR MiFNR MiMCC
ImD. 1.000e+00 1.000e+00 1.000e+00
Rank 3.136 2.986 2.836 3.207 2.836 3.136 2.986 2.836 3.207 2.836 3.136 2.986 2.836 3.207 2.836
ψNB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ψKE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ψKA 1.00 1.00 1.00 1.00 1.00 1.00
ψKB 1.00 1.00 1.00

Table 2: Statistical evaluation: the post-hoc test for the ensembles based on the FLDA

classifier.

ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC

Nam. MaFDR MaFNR MaMCC
ImD. 1.000e+00 4.966e-03 1.000e+00
Rank 2.864 3.193 3.236 2.900 2.807 2.950 3.557 3.236 2.543 2.714 2.993 3.279 3.179 2.800 2.750
ψNB 1.00 1.00 1.00 1.00 .092 .570 .511 .570 1.00 1.00 1.00 1.00
ψKE 1.00 1.00 1.00 .511 .001 .010 1.00 .480 .480
ψKA 1.00 1.00 .057 .153 .653 .653
ψKB 1.00 .570 1.00

Nam. MiFDR MiFNR MiMCC
ImD. 1.000e+00 1.000e+00 1.000e+00
Rank 3.164 2.936 2.879 3.129 2.893 3.164 2.936 2.879 3.129 2.893 3.164 2.936 2.879 3.129 2.893
ψNB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ψKE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ψKA 1.00 1.00 1.00 1.00 1.00 1.00
ψKB 1.00 1.00 1.00

Table 3: Statistical evaluation: the post-hoc test for the ensembles based on the LR

classifier.

6 Conclusions

In this paper, we proposed a few modifications of the algorithm proposed in [Trajdos
and Burduk, 2020]. The modifications allow the aforementioned algorithm to utilize
the information about the point spread along the decision plane basis. This information
should allow the created ensemble to better view the competence regions of the employed



286 Trajdos P., Burduk R.: Probability-driven scoring functions in…

best

worst

MaFDR

MaFNR

MaMCC

MiFDR

MiFNR

MiMCC

Algorithms:
ψNB
ψKE
ψKA
ψKB
ψKC

Figure 9: The radar plot for the ensembles based on ψFLDA
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Figure 10: The radar plot for the ensembles based on ψLR
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Figure 11: The radar plot for the ensembles based on ψMLP
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Figure 12: The radar plot for the ensembles based on ψNC
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ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC

Nam. MaFDR MaFNR MaMCC
ImD. 1.000e+00 4.497e-01 1.000e+00
Rank 2.993 3.093 2.921 3.057 2.936 3.086 3.279 3.150 2.764 2.721 3.150 3.007 2.921 3.100 2.821
ψNB 1.00 1.00 1.00 1.00 1.00 1.00 .691 .691 1.00 1.00 1.00 1.00
ψKE 1.00 1.00 1.00 1.00 .371 .371 1.00 1.00 1.00
ψKA 1.00 1.00 .653 .653 1.00 1.00
ψKB 1.00 1.00 1.00

Nam. MiFDR MiFNR MiMCC
ImD. 8.367e-02 8.367e-02 8.367e-02
Rank 3.279 2.657 2.743 3.414 2.907 3.279 2.657 2.743 3.414 2.907 3.279 2.664 2.736 3.414 2.907
ψNB .120 .135 1.00 .329 .120 .135 1.00 .329 .129 .129 1.00 .329
ψKE 1.00 .046 1.00 1.00 .046 1.00 1.00 .050 1.00
ψKA .072 1.00 .072 1.00 .067 1.00
ψKB .231 .231 .231

Table 4: Statistical evaluation: the post-hoc test for the ensembles based on the MLP

classifier.
ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC

Nam. MaFDR MaFNR MaMCC
ImD. 1.866e-06 1.084e-09 1.184e-05
Rank 2.214 3.643 3.379 2.879 2.886 2.236 3.829 3.493 2.607 2.836 2.214 3.514 3.407 2.979 2.886
ψNB .000 .000 .048 .048 .000 .000 .329 .099 .000 .000 .017 .048
ψKE .645 .025 .025 .418 .000 .001 1.00 .135 .112
ψKA .184 .184 .003 .028 .153 .153
ψKB .979 .418 1.00

Nam. MiFDR MiFNR MiMCC
ImD. 9.557e-03 9.557e-03 9.557e-03
Rank 2.379 3.157 3.150 3.350 2.964 2.379 3.157 3.150 3.350 2.964 2.379 3.157 3.150 3.350 2.964
ψNB .021 .021 .003 .114 .021 .021 .003 .114 .021 .021 .003 .114
ψKE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ψKA 1.00 1.00 1.00 1.00 1.00 1.00
ψKB .894 .894 .894

Table 5: Statistical evaluation: the post-hoc test for the ensembles based on the NC

classifier.

base classifiers. Identifying competence regions should allow the ensemble to achieve
better classification quality than the ensemble that does not use this information.

We conducted a set of experiments using different base classifiers and a set of
different quality measures to answer the formulated research questions. The experiments
were conducted using 70 publicly available benchmark sets.

The experimental study carried out allowed us to provide the following answers to
the research questions raised.

– RQ1: The utilization of the information about the point distribution along the basis
of the decision plane has some impact on the classification quality obtained by the
ensemble.

– RQ2: The utilization of the new formulated potential functions improves the ensem-
ble’s classification quality only for the macro-averaged FNR criterion.

– RQ3: The ensemble using the proposed new potential functions is comparable to the
ensemble constructed using the Naive Bayes classifier in terms of four out of six
criteria. For the remaining criteria, they are worse.

The proposed modifications do not significantly outperform the initial approach.
Consequently, our future research should be aimed at other techniques of improving the
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ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC ψNB ψKE ψKA ψKB ψKC

Nam. MaFDR MaFNR MaMCC
ImD. 6.298e-03 1.400e-02 1.908e-01
Rank 2.414 3.314 3.193 3.321 2.757 2.529 3.536 3.171 2.864 2.900 2.557 3.329 3.150 3.064 2.900
ψNB .007 .014 .007 .798 .002 .097 .658 .658 .039 .159 .231 .798
ψKE 1.00 1.00 .208 .658 .072 .097 1.00 .968 .653
ψKA 1.00 .208 .751 .751 1.00 1.00
ψKB .208 .894 1.00

Nam. MiFDR MiFNR MiMCC
ImD. 5.739e-01 5.739e-01 5.739e-01
Rank 3.014 2.764 2.914 3.386 2.921 3.014 2.764 2.914 3.386 2.921 3.014 2.764 2.914 3.386 2.921
ψNB 1.00 1.00 .658 1.00 1.00 1.00 .658 1.00 1.00 1.00 .658 1.00
ψKE 1.00 .201 1.00 1.00 .201 1.00 1.00 .201 1.00
ψKA .466 1.00 .466 1.00 .466 1.00
ψKB .466 .466 .466

Table 6: Statistical evaluation: the post-hoc test for the ensembles based on the SVM

classifier.
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Figure 13: The radar plot for the ensembles based on ψSVM

ensembles of linear classifiers. For example, a different ensemble building technique
may be proposed.
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