
Journal of Universal Computer Science, vol. 29, no. 1 (2023), 73-97
submitted: 28/1/2022, accepted: 6/10/2022, appeared: 28/1/2023CC BY-ND 4.0

Evaluations of Integrated Programming Environment for
First-Year Students in Computer Engineering

Matias Salinas
(Pragmatics Labs, Coquimbo, Chile

https://orcid.org/0000-0002-9408-9418, madasaso@gmail.com)

Paul Leger
(Escuela de Ingeniería, Universidad Católica del Norte, Coquimbo, Chile

https://orcid.org/0000-0003-0969-5139, pleger@ucn.cl)

Hiroaki Fukuda
(Shibaura Institute of Technology, Tokyo, Japan

https://orcid.org/0000-0003-1228-3186, hiroaki@shibaura-it.ac.jp)

Nicolás Cardozo
(University of the Andes, Bogota, Colombia

https://orcid.org/0000-0003-1565-4106, n.cardozo@uniandes.edu.co)

Vannessa Duarte
(Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo, Chile

https://orcid.org/0000-0001-5399-6620, vannessa.duarte@ucn.cl)

Ismael Figueroa
(Pragmatics Labs, Coquimbo, Chile

https://orcid.org/0000-0003-3661-4963, ifigueroap@gmail.com)

Abstract: Many factors influence the problems that currently exist in the learning-teaching process of

programming. The use of an Integrated Development Environment (IDE) makes the experience a complicated

process because these IDEs focus on professional programmers and not on novice learners. This also affects

the classrooms of the university “Pontificia Universidad Católica de Valparaíso (PUCV)” (Chile). The use of

professional IDEs negatively affects the learning process of first-year students who face the development of the

algorithms for the first time. One of the IDE widely used for teaching programming courses is Code::Blocks,

which is a tool for professional developers. Through a heuristic and usability evaluation, we found that

Code::Blocks has a complex user interface and a functional overload. Using these two findings, as well as

recommendations given during these tests, we highlight the important aspects that an IDE for novice learners

should have. Taking into account previous observations and state-of-the-art/practice of IDEs, a functional

IDE prototype, named Incre-IDLE, is developed. In addition to Code::Blocks evaluations, this paper reports

the results of a heuristic and usability evaluation applied to first-year students at PUCV about functionalities

provided by Incre-IDLE. These results suggest that Incre-IDLE has a simple interface, is easy to install and

use, and does not have functional overload (i.e., spend a considerable amount of time learning the tool).

Concretely, the results show that 66.7% of the students could complete tasks easily and 100% of them found

the GUI intuitive. In terms of GUI, 83.3% considered the application interface “very simple”; and the text,

concepts, and icons “very understandable” by 66.7%. The students also found the tool “motivating” (66.7%)

or “very motivating” (33.3%). These results closely match the findings obtained by the heuristic evaluation of

Incre-IDLE from the experts: 83.3% of them rated it as “useful” or “very useful”, and only a 16.7% rated it as

https://orcid.org/0000-0002-9408-9418
https://orcid.org/0000-0002-9408-9418
https://orcid.org/0000-0003-0969-5139
https://orcid.org/0000-0003-0969-5139
https://orcid.org/0000-0003-1228-3186
https://orcid.org/0000-0003-1228-3186
https://orcid.org/0000-0003-1565-4106
https://orcid.org/0000-0003-1565-4106
https://orcid.org/0000-0001-5399-6620
https://orcid.org/0000-0001-5399-6620
https://orcid.org/0000-0003-3661-4963
https://orcid.org/0000-0003-3661-4963

74 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

“useless”.

Keywords: IDE, First-year computer engineering students, Code::Blocks, Incre-IDLE
Categories: D.2.2, D.2.3, K.3

DOI: 10.3897/jucs.81329

1 Introduction

According to ACM and IEEE society, the computer curricula of any undergraduate degree
in Computer Science include the programming courses [ACM/IEEE-CS, 2013]. Based
on the fail rate, these courses are considered complicated in pedagogical terms, and it is
generally the first time that students face the areas of algorithms and programming [Yadin,
2011, Ko et al., 2020, Figueroa et al., 2019]. These courses involve many different tasks
and skills, such as learning how to structure algorithms, using an Integrated Development
Environment (IDE), coding algorithms following a specific programming language
syntax, using logical and abstract thinking, etc. The use of a professional IDE affects
the process of teaching-learning in programming courses; there is evidence that the high
failure rate of these courses is caused because there is no coherence between the tools
used and the active learning strategies [Lahtinen et al., 2005].

IDEs, like Code::Blocks [Code::Block Team, 2022], are used by professors of the
“Pontificia Universidad Católica de Valparaíso (PUCV)” (Chile) to teach programming
courses in the first year of study of any career related to the Computer Science area.
These IDEs are not focused on specialized programmers who are mostly developing an
algorithm for the first time [Algaraibeh et al., 2020]. Based on teaching experience, it is
considered that the use of professional environments harms learning in first-year students
since numerous features are never used, and it distracts the students’ attention from
learning [Kölling, 1999c]; however, these environments can simplify many processes
like compiling, linking, and executing a program. Using the literature review and existing
programming IDEs together, an heuristic and usability evaluations of Code::Blocks, we
propose a first working IDE prototype, named Incre-IDLE. This proposal points out to
remedy some of the problems that these students usually face. Incre-IDLE takes into
account most of the aspects found and also provides students a good orientation regarding
the use of buttons, texts, and comments, to solve tasks quickly and highlight errors before
compilation; making it possible to recommend Incre-IDLE for use by novice learners and
is useful for teaching courses. The productivity of Incre-IDLE shows how the application
works and also the features that help users to learn programming and the features that
should be added in other versions. In addition, this paper reports a case study on the
use of Incre-IDLE through heuristic and productivity goal evaluations. For example,
this report shows that 66.7% of the students could complete tasks, 100% found the GUI
intuitive, and also found that Incre-IDLE is “motivating” (66.7%) or “very motivating”
(33.3%).

In a few words, this paper’s methodology is comparing two IDEs for first-year
students using heuristic and usability evaluations. We took a commonly used IDE,
Code::Blocks, for first-year students from one Chilean university, and we carried out a
heuristic and usability evaluation. Taking the evaluation results and review of existing
IDEs, we then developed an IDE, Incre-IDLE, which should address the issues found in
Code::Blocks. Finally, we carried out the same evaluations to compare both IDEs. This
comparison allowed us to show that Incre-IDLE improved against Code::Blocks.

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 75

Paper roadmap. As this paper places a strong emphasis on evaluations of learning
environments for first-year computer engineering students, we define a methodology that
structures each section of this paper (Section 2). Following the proposed methodology,
Section 3 identifies issues and recommendations related to the learning process of pro-
gramming. Taking into account identified issues, recommendations, and Code::Blocks
evaluations, Section 5 presents Incre-IDLE, a prototype IDE for these students. Section 6
presents different evaluations (e.g., heuristic) of Incre-IDLE. Section 7 concludes this
paper.

Availability. The prototype Incre-IDLE is available on https://github.com/IncreIDLE/
increidle, and the questionnaire design for the Incre-IDLE evaluation is in the Google
Sheets format on https://github.com/pleger/increidle-results, where the questions (with
their evaluations) are in Spanish with an English translation. Finally, in the previous
GitHub repository, a reader can find and try an executable installer for the operating
system Microsoft Windows 8 and 10.

2 Methodology

To plan, design, and evaluate the proposal of Incre-IDLE, we use one methodology
from a set of them available in [Kline and Seffah, 2005], particularly which evaluates
an IDE for C++ using heuristic methods [Kline et al., 2002]. Figure 1 presents the
methodology used in this paper to propose and evaluate Incre-IDLE, where we can see
the sections that tackle the different components of this methodology. The methodology
is mainly based on four stages: review, evaluate existing IDE (Code::Blocks), propose an
IDE (Incre-IDLE), and evaluate and compare the proposal using heuristic and usability
evaluations. As figure 1, each section of this paper, with their subsections, tackles a
stage of this methodology. For the first step, we reviewed other similar IDEs available
applied to the first-year students. In parallel to the first step, we evaluate the heuristic and
usability of Code::Blocks. With the previous two outputs (Code::Blocks evaluations and
existing IDE analysis), we develop a working prototype, named Incre-IDLE. Finally, we
applied the same evaluation instruments to Incre-IDLE, where we added an evaluation
of the application user-interface to measure if the user-interface might affect the usability
evaluation by students.

2.1 Profile of Testers

As the dotted square in Figure 1 shows, the heuristic and usability evaluation for both
IDEs use two different tester profiles: advanced for heuristic and novice for usability.
As Table 1 shows, the advanced profile represents master and Ph. D. students, and the
novice profile represents first-year students in a programming course. In the advanced
profile, the testers already know a wide range of IDEs to develop that allows them to
compare and give guidelines on how an IDE can help novice learners. Conversely, the

Evaluation Profile Type of Student Number
Heuristic Advanced Master or Ph. D 6
Usability/Interface Novice Undergraduate 10

Table 1: Profiles of testers for evaluations

https://github.com/IncreIDLE/increidle
https://github.com/IncreIDLE/increidle
https://github.com/pleger/increidle-results

76 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

Heuristic Evaluation:
(Section 4.1)

Code::Blocks
Usability Evaluation

(Section 4.2)

Testers:
Advanced Testers:

Novice

Incre-IDLE
Design & Implementation

(Section 5)

Summary of evaluations in
Code::Blocks

Interface Evaluation
(Section 6.3)

Heuristic Evaluation
(Section 6.1)

Testers:
Novice

Testers:
Advanced

Usability Evaluation
(Section 6.2)

Testers:
Novice

Profile of testers:

Advanced:
Master or Ph. D students

Novice:
First-year students

Review
other IDEs
(Section 3)

Methods of evaluation:

Heuristic:
Ten Heuristics for interface design
(Nielsen, 1995)

Usability:
Solving 5 tasks and questionaries
(Diah et al., 2010)

The methodology is inspired by Kline’s works [Kline et al, 2002; Kline and Seffah, 2005]

Figure 1: The methodology used in this study

testers with a novice profile give their feedback as real users of the IDEs: Code::Blocks
and Incre-IDLE. Regarding the selection of testers, we made a call for participation
for each profile at the PUCV university. For the advanced profile, we made the call in
the postgraduate programs, where six testers participated. Instead, the call to the novice
profile was made in the first programming courses related to Computer Science programs,
where ten testers accepted to participate.

2.2 Evaluations

Regarding the guidelines followed in carrying out the heuristic and usability evaluations
in both IDEs, Code::Blocks and Incre-IDLE, we used two different evaluation strategies
(the dashed square in Figure 1). In the heuristic evaluation, we evaluate thirteen aspects
that are related to the use of an IDE (Table 2). The definition of these aspects follow the
description given in [Nielsen, 1995], which are evaluated by the testers with an advanced
profile. For the usability evaluation, we followed the method used in [Diah et al., 2010],
in which the testers first solve a set of tasks and then reply to a questionnaire related to
these tasks. In our study, the testers with a novice profile first resolve five tasks (Table 3)
using the IDE and then reply to a questionnaire (Table 4). For all questions, we used
a Likert scale [Albaum, 1997] of five levels (best to worst), which level names were
adapted to each question to help the student evaluations. Finally, the interface evaluation
is one question (number 6 in Table 4) that groups a set of elements related to the interface.

3 First-year Students at Universities:
Learning Process and Existing IDEs

This section highlights some studies that explain the aspects that inhibit learning in
programming. It also discusses IDEs for educational purposes of understanding the

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 77

Id Aspect Description
H1 Engagement The system must engage and motivate students

H2 Non-Threatening The system does not seem threatening in appearance or behav-
ior

H3 Minimal language redundancy The programming language should minimize redundancy in
their language constructs and libraries

H4 Learner-appropriate abstractions The system must use abstractions that are at the appropriate
level for the student and the task

H5 Consistency The model, language, and presentation interface should be
consistent internally and with each other

H6 Visibility The user should always be aware of the status and progress of
the system

H7 Secondary notations The system must automatically provide secondary notations
when useful

H8 Clarity The presentationmust maintain simplicity and clarity, avoiding
visual distractions

H9 Human-centering syntax Notation program must use syntax-centered human being

H10 Edit-order freedom The interface should allow freedom of the user in the order
you choose to work

H11 Minimal viscosity The system should minimize viscosity in the entry and manip-
ulation program

H12 Error-avoidance Preference should be given to prevent errors on report them

H13 Feedback The system must provide timely and constructive feedback

Table 2: Heuristic aspects used in the evaluation of IDEs

Id Task Description
1 Download and install Tester should go to the Web page, download, and

install the IDE

2 Open the IDE and check the initial interface Tester should open the IDE and interacts with the
initial interface

3 Create a new source file (c extension) Tester should find the way to open a new file, select
the location of the file, and give a name

4 Open an existing file, compile and execute Tester should open a file that is already created, and
execute it

5 Open a file with errors, compile and execute Tester should be capable of finding the error in the
file, fixing it, and executing the file without errors

Table 3: Tasks for testers

methodologies, common problems, and good practices in the learning-teaching process
of programming courses. Finally, this section lists the difficulties that students have in
learning and offers recommendations that an IDE should improve these difficulties.

3.1 Novice Learners in Programming

Teaching programming courses to novice students in the first-year represents a challenge
for teachers and students who should deal with difficulties in the context of learning to
program [Qian and Lehman, 2017]. This section describes the report of some experiences
and lessons learned.

Difficulties of novice learners. A significant number of studies have been carried out to
try to explain the difficulties of novice programmers; we briefly describe some of these
studies. In [Lahtinen et al., 2005], the authors study learning difficulties in programming
to support the development of material for basic programming courses (CS1/CS2). The
study was applied to over 559 students and 34 professors from Universities in Ger-
many, Iceland, Finland, Romania, and Latvia. The authors found difficulties in preparing

78 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

Id Question Possibles answers
1 Were you able to complete the task? very easy, easy, borderline, hardly,

very hardly
2 How oriented did you feel with the tool during the

experiment?
very oriented, oriented, borderline,
disoriented, very disoriented

3 How do you rate the application interface? very simple, simple, borderline, com-
plicated, very complicated

4 How motivated do you feel about the tool to learn to
program?

very motivating, motivating, border-
line, demotivating, very demotivating

5 Are the text, concepts, and icons of the environment
interface understandable?

very understandable, understandable,
borderline, complex, very complex

6 What do you think that news/messages are dis-
played within the Incre-IDLE application? (Only for
Incre-IDLE - Interface evaluation)

very useful, useful, borderline, useless,
very useless

Table 4: Questionnaire for testers

material and instructions that are adequate for each type of student in a class since pro-
gramming courses are commonly quite extensive in concepts that we need at the same
time (e.g., i/o operations, variables, branches, loops). Therefore, previous difficulties
cause high rates of students abandoning the classes. Regarding the contents of the courses,
authors in [Lahtinen et al., 2005] highlight that some concepts are more difficult to learn
because they require an understanding of larger entities in a program, which is also
evidenced in similar articles like in [Soloway and Spohrer, 2013]. Students have prob-
lems understanding the basic concepts of programming, designing algorithms, dividing
functionalities into methods, and finding errors in their programs. As with [Milne and
Rowe, 2002], students also have difficulties with complicated concepts like pointers
and memory management. Another similar study [Piteira and Costa, 2013] shows that
authors use a group of 143 students of the University of Tabuk in basic programming
courses to verify if they have similar problems to the students of different universities in
the world. The study shows that students have the same difficulties as already mentioned.
These common difficulties are: finding errors in programs, understanding abstract con-
cepts (e.g., recursion, pointers, and abstract data types), writing algorithms, methods
usage, and syntax. Furthermore, the students complicated their experiences with the
interpretations of the English language (a complex language for Japanese students) in a
series of concepts used in the proposed problem statements. In the same line of previous
studies, the authors in [McCracken et al., 2001] present a multi-national/institutional
study of programming skill assessments of 216 first-year students from four universities.
According to the study, the skills of students are mainly low, and students need previous
experience (e.g., in high school) to improve these skills.

Teaching introductory programming. In the learning process, we can find different
proposals to start teaching programming. In [Koulouri et al., 2015], the authors claim that
the programming proficiency of novice learners depends on the teaching approach. To
validate, the authors propose three different approaches. The first one replaces Java with
Python, the second one gives students only formative feedback, and the last one teaches
the students how to solve problems before they take a programming course. Finally,
the authors conclude that the early exposure and introduction to solving a problem
is favorable regardless of the programming language used in the course. Unlike the
previous paper, the authors in [Yadin, 2011] discuss three different but mixed approaches
to teaching programming: the use of Python, visualization of program, and the use of
individual assignments. The use of these approaches together helps reduce the number

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 79

of failing students by over 77%. Finally, the authors in [Utting et al., 2013] present
the results of applying different strategies to teach programming. The results show that
previous experience (e.g., in high school) and/or recurrent feedback from teachers help
the learning process.

3.2 Integrated Development Environments

To improve the learning process in novice learners, IDEs should provide a set of spe-
cialized features or customize existing ones [Algaraibeh et al., 2020, Kölling, 1999c].
For example, feedback or error messages that students receive and read when a compila-
tion error appears in an IDE can significantly improve the learning process [Karvelas,
2019, Becker et al., 2018]. These IDEs are sometimes named Integrated Development
and Learning Environment (IDLE). For this reason, it is possible to find studies such
as in [Papadakis and Orfanakis, 2018], which compare the learning process in differ-
ent programming environments that allow students to use visual interfaces to develop
mobile applications. Given that IDEs are an important channel through which students
experience programming [Dumas and Parsons, 1995], this section researches the IDEs
that currently exist that focus on teaching programming in courses with novice students.

Visual Studio Code. The Microsoft company develops source code and multi-platform
IDE: Visual Studio Code [Microsoft, 2022], which has around 2.6 Million monthly active
users. According to the Slack survey 20211, this IDE is the most used by developers.
Although this IDE is not specialized for novice learners, it is so versatile in terms of
extensions and plugins that many users (and professors) use it daily.

Code::Blocks. This open-source IDE is for the programming language C/C++ and
Fortran that works with multiple compilers [Code::Block Team, 2022]. Although the
IDE is not adapted for novice learners, it is designed to be very lightweight, extensible,
and fully configurable, implying that many institutions like PUCV (and users) use the IDE
to teach. It is possible to find a number of studies carried out in Code::Blocks [Drumea,
2012, Delman et al., 2009, Soto and Figueroa, 2018]. In addition, Code::Blocks variants
such as CodeLite2 are available on the internet.

BlueJ. The design of BlueJ IDE [Kölling and Rosenberg, 1996, Kölling, 1999b] for Java,
which is based on three fundamental principles that are simplicity, visualization, and
interaction [Kölling, 1999a]. In addition, BlueJ supports regression testing by integrating
with JUnit, 14 languages (e.g., English). In addition, the IDE uses a Code Pad tool to
instantly evaluate arbitrary expressions and phrases written in Java. In the body of litera-
ture, we can find studies about BlueJ, for example, in [Van Haaster and Hagan, 2004],
the paper reports that the students preferred to use BlueJ instead of SDK of Java. Another
study highlights that BlueJ has been used to carry out heuristic evaluations [Kölling and
McKay, 2016].

Greenfoot.The IDE for Java, whose environment uses “Interactive VisualWorld”, where
actors live and interact in created worlds, to develop games, simulators, and other graphic
programs [Kölling, 2010]. The IDE’s user interface includes project management, auto-
completion, syntax highlighting, and tools commonly used in most IDEs. The Greenfoot
user interface has been designed to be used by beginners, so it focuses on a simple
and ease to use this living world. Additionally, students can upload their projects and

1 https://insights.stackoverflow.com/survey/2021#integrated-development-environment
2 https://codelite.org

https://insights.stackoverflow.com/survey/2021#integrated-development-environment
https://codelite.org

80 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

games to the platform’s official website [Kölling, 2010], which can be used by any user
who accesses it. Additionally, one can use Greenfoot as a first programming system for
adolescents or older students. Greenfoot has also been used in the tests carried out for
the preparation of the heuristic evaluations [Kölling and McKay, 2016].

DrJava. Among its main features are the intuitive user interface and the ability to
interactively interpret Java code. The IDE allows programmers to develop, test, and
debug programs interactively and incrementally. DrJava emphasizes the development of
interactive software, offering a simple interface for writing code and the possibility of
developing programs of a higher level of complexity [Rice University, 2022].

Python IDLE. This IDE is an integrated programming and teaching environment that
is especially recommended for Python novice developers. This is because of the low
complexity and the facilities that the IDE provides for teaching. Among Python IDLE
features, we distinguish: syntax highlighting, multi-window text editing, auto-complete
functions, integrated debugger with the possibility of step by step, breakpoints, and a of
the call stack.

ZinjaI. For C/C++, we find ZinjaI, which was initially developed for educational use.
This IDE currently includes different features for the development of more complex
programs, without neglecting the simplicity of its interface for novice developers. With
these features, a developer can use editing facilities, coding aids, an integrated debugging
system, rapid development, auto-complete, template management, improved compilation
results, integrated debugging, project management and a user interface in different
languages like Spanish [Novara, 2010].

DrRacket. The graphical programming environment offers programmers facilities to
develop in the Racket language. This language allows programmers to create new lan-
guages or dialects and to be used in a variety of environments, such as for teaching in
computer engineering. In fact, this IDE has been developed in Racket. The simplicity
of its interface stands out from this IDE, which is divided into three parts: toolbars (at
the top), a definition panel where a user defines the program and an interactive panel to
evaluate expressions (in the middle), and a programmer can see the status of IDE, such
as the memory usage (at the bottom). DrRacket has been used in over 30 institutions to
how to program3.

Table 5 summarizes and compares the previous IDEs. We can highlight two aspects
in these features: adapted and interactive interface for novice learners.

3.3 Summary of Identified Difficulties and Recommendations

Difficulties and recommendations are useful as a frame reference to elaborate a proposal
of an educational IDE for first-year university students. Based on the previous subsec-
tions (literature and existing IDEs), we next list these difficulties and recommendations
associated with the learning-teaching programming process.

Difficulties:

1. Prepare material and instructions that are adapted to each type of student.

3 https://github.com/racket/racket/wiki/Courses-using-Racket

https://github.com/racket/racket/wiki/Courses-using-Racket

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 81

IDE Language Distinguish Features Impact on Students
Visual Studio Code Multiple

languages
A very extensible and fully config-
urable.

Widely used for users for different multiple
languages (over 2.6 Million monthly active
users)

Code::Blocks C/C++ and For-
tran

A very extensible and fully config-
urable.

Widely used for students (over 46,886,918
downloads)

BlueJ Java Visual interaction of language com-
ponents (e.g., classes)

They preferred this IDE instead of Java
SDK

Greenfoot Java Live and visual interaction of objects Adolescents and older students can use to
develop videogames

DrJava Java Intuitive and interactive interface Widely used for first-year students (over
4,332,375 downloads)

Python IDLE Python Adapted GUI for novice learners It may be widely used because it is included
by the Python distribution (over 20,000,000
downloads)

Zinjai C/C++ Adapted GUI for novice learners Widely used for first-year students that can
speak Spanish (over 736,304 downloads)

DrRacket Racket Intuitive and interactive interface Widely used for novice students in func-
tional languages (over 30 institutes for
teaching)

Table 5: Summary of different IDEs

2. Design programs that solve specific tasks and dividing functionalities into methods.

3. Find errors and problems in pieces of code.

4. Understand abstract concepts like pointers and memory management.

5. Apply mathematics and English knowledge.

6. Work in a group. This aspect may differ from the country culture [Lahtinen et al.,
2005].

7. Apply theoretical concepts in practice.

8. Formulate clear and precise questions about programming.

9. Understand (quickly) compilation errors, particularly syntax errors.

Recommendations:

1. Apply the basic programming concepts together.

2. Explain contents in a practical way and with examples.

3. Teach materials that focus on solving a problem, rather than just representing con-
cepts.

4. Use Parsons-Puzzles [Parsons and Haden, 2006] inspired questions to develop ab-
straction skills.

4 Heuristic and Usability Evaluations of Code::Blocks

This section presents the results obtained from the heuristics and usability tests of
Code::Blocks.

4.1 Heuristic Evaluation

Using postgraduate students (Table 1), a heuristic evaluation was carried out. Themethod-
ology consisted of observing and inspecting the system based on its interface and func-
tionalities. Following the aspects described in [Nielsen, 1995] and shown in Table 2,

82 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

we evaluated thirteen heuristics (Hi): Engagement (H1), Non-Threatening (H2), Min-
imal language redundancy (H3), Learner-appropriate abstractions (H4), Consistency
(H5), Visibility (H6), Secondary notations (H7), Clarity (H8), Human-centering syntax
(H9), Edit-order freedom (H10), Minimal viscosity (H11), Error-avoidance (H12), and
Feedback (H13).

Each tester identified the number of problems per heuristic, whereH2 andH8 showed
the highest number of problems (Figure 2). These thirteen heuristics are related to the
interface of the system, indicating that a new potential IDE, like our proposal, diminishes
or completely eliminates these deficiencies.

2

17

1

0

8

6

1

11

3

0

1

4

6

0

2

4

6

8

10

12

14

16

18

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

P
ro

b
le

m
s

p
e

r
h

e
u

ri
st

ic

Heuristic

Code::Blocks

Figure 2: Number of problems found per heuristic

Although it is impossible to identify all potential issues in Code::Blocks, we can find
the most critical problems that could affect students, thanks to the heuristic evaluation.
After the evaluation, the testers were independently requested to classify the problems in
terms of their severity and frequency: “Catastrophic”, “Major”, “Minor”, “Cosmetic”, and
“Not a Problem”. The classification helps find some relevant aspects that came to light in
the analysis. One of those is the lack of a tutorial to use the different functionalities offered
by the tool, meaning that the best benefit of the IDE cannot be obtained. Furthermore,
without a user guide, it is confusing for users to have so many buttons and tools at
their interface, and that they do not present any information. This IDE has several
positive aspects that can help in learning programming through this environment. These
aspects are icons with tooltip, indicators with colors the lines of code that have been
modified since the last compilation of the program, contextual help display when starting
to write certain functions, and use colors in the text fonts to highlight reserved words.
Moreover, the Code::Blocks IDE also checks symbol balance in the source code (symbols
not closed), auto-completes when parenthesis are open, hints to auto-completion when
typing in the source code, and formatting automatically when writing a set of instructions

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 83

50%50%

Hardly

Easily

(a) Were you able to completethe task set?

75%

25%

Disorientated

Oriented

(b) How oriented did you feel with the tool
during the experiment?

Figure 3: Questions 1 and 2 (Code::Blocks)

inside a pair of braces. However, many beneficial functionalities and the intuitive layout
of the interface are overshadowed by the complexity of the system. It is necessary to
simplify the functionalities that are available in Code::Blocks for novice learners since
the number of pre-installed plugins complicates the task of learning programming with
Code::Blocks.

This heuristic evaluation, which indicates errors and benefits of Code::Blocks, be-
comes an input to define our proposal: Incre-IDLE; which is going to be evaluated using
this kind of evaluation.

4.2 Usability Evaluation

For the usability evaluation, we followed the method used in [Diah et al., 2010], where
the testers first solve a set of tasks and then reply to a questionnaire related to these tasks.
The testers with a novice profile (Table 1) have to develop five simple tasks (Table 3).
After completing the tasks, the students were asked to fill out a form with questions
(Table 4). We evaluated Code::Blocks based on these five questions. Figure 3 shows
how easy it is to complete the task and how oriented a student was during the use of the
IDE. Figures 4 and 5 show how the students considered the interface of Code::Blocks,
the icons, text, and also if they would use the IDE as a tool for learning programming. The
results show the close relationship between the behavior of the students when executing
the tasks and the heuristic evaluations, which is a motivation to develop an IDE that
improves these evaluations.

5 Incre-IDLE: An IDE for First-Year Students

Using difficulties, recommendations, and Code::Blocks evaluations, we have proposed
Incre-IDLE as a functional prototype of an IDE for first-year students.

Incre-IDLE focuses on students of Computer Civil Engineering at PUCV. First,
Incre-IDLE includes some addons such as an administration panel and a website. The
administration panel allows users to report logs and bugs, which are used to send review
communications, news, and administer registered students (who use the application).

84 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

25%

75%

Very Complicated

Complicated

(a) How do you rate
the application interface?

75%

25%

Very Demotivating

Demotivating

(b) How motivated do you feel about the tool
to learn programming?

Figure 4: Questions 3 and 4 (Code::Blocks)

50%50%

Complex

Understandable

Figure 5: Are the texts, concepts, and icons of the environment interface understandable?
Question 5 (Code::Blocks)

The website allows users to download Incre-IDLE itself in addition to additional plugins,
review course announcements, and review tutorials. Figure 6 shows a graphic repre-
sentation that specifies components and actors that interact in our proposal. Second,
the user interface is a fundamental theme for the correct project development. Figure 7
shows components of welcome and editor screens. Note that application messages are in
Spanish because it is the official language in Chile.

5.1 Implementing Incre-IDLE

Various IDEs offer the possibility of extending their functionalities to be able to im-
plement a new personalized tool, such as Eclipse, Atom, Brackets, or Visual Studio
Code4. These IDEs were reviewed to develop Incre-IDLE. As a result, we chose the
Atom because it is a multi-platform open and available source code editor, available
for macOS, Linux, and Windows. Apart from the C language support, the installation
of packages allows developers to expressively customize the text editor, since the vast

4 http://www.eclipse.org, http://atom.io, http://brackets.io, http://code.visualstudio.com. Last
visited: 12/04/2022.

http://www.eclipse.org
http://atom.io
http://brackets.io
http://code.visualstudio.com

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 85

Learn to program

Review releases

Download IDLE
 and plugins

Review releases

Review tutorials

LOGS

Releases

Generate
releases

Review
LOGS &
Bugs

Manage
students

Teacher
and
assistant

Developer
coordinator

subject

Students

IDLE

Web site

Administration
 Panel

Manage teachers
 and assistants

Documentation

contribute
to the

Review
project

projectdocumentation

Figure 6: Outline solution, which shows components and actors that interact in

Incre-IDLE

Inicio de sesión

Incre- IDLE Version 1.X

Archivo Edición Búsqueda Configuraciones Complementos Ayuda

RUT

Contraseña

Ingresar

¿Olvidaste tu contraseña?

Novedades

Incre- IDLE

Crear nuevo archivo

Abrir archivo

Ayuda

Visitar sitio web

Buscando nuevas actualizaciones Hola, Matias ! - Fundamentos de Programación

1

2

3 4

5

6

7

8

1 The application tab indicates its name and the version that is being used

2 Menu contains common options in the different IDE analyzed

3 The icons shown form left to right, correspond to functionalities of: create a new file, open a file, save, go back, go forward, settings, and run

4 The icons correspond to funcionalities of login, news, report a bug, help, and visit the website

5 The main screen shows the application logo, and the most common functionalities to perform

6 The user could see the news that teachers and cours' assistants leave if the user is login, otherwise the panel shows all news

7 Login to the applicantion allow the user to take advantage of some especific funcionalities

8 The user could see the IDLE status as well the user name if the user has already login and is an enrolled student

Figure 7: Incre-IDLE start prototype

86 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

Figure 8: Incre-IDLE news

majority of the Atom core is implemented through these packages. Additional packages
are required to install in order to provide a graphical interface, functionality, and support
for the C language. Finally, we chose Atom because it is frequently being updated by the
community5. All modified packages are available on the Incre-IDLE repository, which
is available for future improvements.

When installing, the default packages were left because this same editor may be used
by students in future courses. The benefits of programming in C language with Atom are,
for example, highlighting in real-time the lines of code that have syntax errors, unlike
Code::Blocks that requires compiling the code previously. Incre-IDLE will Compile and
Execute the written code and display a toolbar at the top of the editor.

Add-ons such as news from the teachers, assistants, and coordinators of the course (see
Figure 8) are administered through an administration panel. This feature helps students
send logs, bugs, and stay informed of the latest news from the course. There are three user
profiles that can access this administration panel. The first is the Course coordinator, who
administers configurations and accounts that can access this administration panel. The
second and third are the Teacher and Teaching Assistant respectively, who administer
news of the subjects that the coordinator has assigned them (Figure 9).

The Incre-IDLEwebsite was developed using Jekyll6, which is a simple static website
generator providing blog features. This simplifies the publication of updates regarding
IDE. This website provides students with the most relevant information about the tool,

5 https://atom.io/releases. Last visited: 14/04/2022.
6 https://jekyllrb.com. Last visited: 13/04/2022.

https://atom.io/releases
https://jekyllrb.com

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 87

Figure 9: News management of the administration panel

such as: the download, tutorials, links of interest, among others. In addition, the website
shows sections for news on each of the active subjects and tutorials on how to develop
new plugins for this IDE.

6 Evaluations of Incre-IDLE

We have proposed Incre-IDLE, an IDE that aims to address the issues found in the
heuristic and usability evaluations of Code::Blocks. To know if Incre-IDLE can help
improve the learning-teaching process in first-year students, we carried out the same kind
of evaluations used in Code::Blocks. As Table 1 shows, we selected different students
for each evaluation, which followed the same participant configuration used for the
Code::Blocks evaluations (Section 4). In addition, we added the interface evaluation to
allow us to measure its graphic/visual design.

6.1 Heuristic Evaluation

Weevaluated Incre-IDLEwith the same heuristics that previously evaluated Code::Blocks.
We analyzed the most critical problems and focused on those to develop Incre-IDLE.
We asked the same testers to classify the issues found in Incre-IDLE.

In Figure 10, we compared the results and noticed that Incre-IDLE simplifies the
functionalities and avoids distractions (H8). Incre-IDLE helped with windows and tips
that are useful for novice learners. Regarding the Consistency heuristic (H5), Incre-IDLE
is very clear in the installer process and has a tutorial on the website to guide the user in
this process. Compared to Code::Blocks, Incre-IDLE encourages students to explore the
IDE and proves how the code works without worrying about breaking the system (Non-
Threatening (H2)). Although Incre-IDLE presents some problems that should be solved

88 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

3

6

1

0

5

4

1

4

2

1 1

2

3

2

17

1

0

8

6

1

11

3

0

1

4

6

0

2

4

6

8

10

12

14

16

18

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

P
ro

b
le

m
s

p
e

r
h

e
u

ri
st

ic

Heuristic

Incre-IDLE Code::Blocks

Figure 10: Problems per heuristics found in Incre-IDLE and Code::Blocks

(e.g., Engagement (H1)), this first version decreases the problems found in Code::Blocks
and helps students to learn to programming.

6.2 Usability Evaluation

Following the usability evaluation used in [Diah et al., 2010], we evaluated Incre-IDLE
to know whether its design helps in the learning process or not. Testers performed the
same tasks used with Code::Blocks (Table 3). The results with the implementation in
Incre-IDLE were very encouraging. This is because the participants achieved 100%
of effectiveness in obtaining the proposed tasks as Table 6 shows. The average time
improved compared to the participants of Code::Blocks. This reduction is directly related
to the simplicity perception of the participants using Incre-IDLE, since the fulfillment of
the proposed tasks were carried out without major inconveniences thanks to the correct
distribution of the elements in the designed interface.

Average

Code::Blocks

Average

Incre-IDLE

Difference Reduction

Percentage

Task 1 1 min. 50 secs. 25 secs. 1 min. 25 secs. -77.3%

Task 2 18 secs. 11 secs. 7 secs. -38.9%

Task 3 1 min. 10 secs. 29 secs. 41 secs. -58.6%

Task 4 1 min. 53 secs. 15 secs. 1 min. 38 secs. -86.7%

Task 5 45 secs. 13 secs. 32 secs. -71.1%

Table 6: Comparison of average time

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 89

67%

33%

Easily

Very Easily

(a) Were you able to complete
the task set?

50%50%

Oriented

Very Oriented

(b) How oriented did you feel with the tool
during the experiment?

Figure 11: Questions 1 and 2 (Incre-IDLE)

17%

83%

Simple

Very Simple

(a) How do you rate
the application interface?

67%

33%

Motivating

Very Motivating

(b) How motivating do you feel the tool to
learn programming?

Figure 12: Questions 3 and 4 (Incre-IDLE)

Testers were also asked to answer a short questionnaire of five questions, expressing
their opinions regarding the tasks that they had to fulfill, and what facilities the evaluated
tool provided them to be able to fulfill them. Figure 11 shows the results of the first and
second questions, which are oriented to the difficulty in using the tool. We can see that
the tasks could be “(very) easily” carried out 100% (Figure 11a). The participants felt
oriented in the use of Incre-IDLE since, at all times, they manifested the simple interface
of Incre-IDLE, and the usefulness of the auxiliary elements that this tool presents (Figure
11b). Figure 12 shows the perception regarding the proper distribution of the elements in
the interface, in addition to reducing the functionalities available to its users. Additionally,
the participants responded that the tool for learning programming is “motivating” (Figure
12b). Finally, the last question of the questionnaire seeks to know if the students think
that the texts, concepts, and icons of the application user interface are understandable. As
regards this last question, Figure 13 shows that the participants were able to understand
the elements that were presented in the application interface.

90 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

33%

67%

Understandable

Very
Understandable

Figure 13: Are the texts, concepts, and icons of the environment interface understandable?
Question 5 (Incre-IDLE)

33%

17%

50%

Very Useful

Useless

Useful

Figure 14: What do you think that news/messages are displayed within the Incre-IDLE
application? (Only for Incre-IDLE - Interface evaluation)

6.3 Interface Evaluation

Incre-IDLE is a functional prototype, which includes features to program, extends the IDE
itself, and associated tools to help in the learning process. We evaluated three aspects of
the prototype: the installation process (starting its use), the Incre-IDLE application itself
(its use), and the administration panel (its administration/maintenance). The testers, first-
year students, were then shown the application interface, button layout, and functionalities.
At the end, the testers were given a series of questions regarding their general perception
of the system to know from their viewpoints, where positive and negative aspects they
found. The survey of the results was presented along with a brief analysis regarding the
installation process, the Incre-IDLE application, and final perception.

6.3.1 Installation and Application

The testers were shown the process that students must go through to install Incre-IDLE.
Favorably, all testers feel that the installation was not complicated and that all the steps to
be taken to complete the installation were understood. However, some testers gave some
additional suggestions such as: “At the end of the installation, the Incre-IDLE website
could be opened with the first steps tutorial” and “the website should also show videos
with the installation process”.

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 91

Students/testers were asked their opinions about news and messages from teachers
that could be viewed within the software application, where Figure 14 shows that the
majority of respondents find this functionality “useful”. However, only one tester found
it “useless”, arguing that messages were not fully understandable. Finally, the testers
were asked if they would change any element, text, or functionality of the IDE:

– Some menus look “useless”, such as Packages and Nuclide.

– In the upper bar of the application, the options are accompanied by letters, for
example, File (F), and the testers do not clearly understand why these options are
shown like this.

– The notification message is not very clear to a novice programmer who has no prior
knowledge of the English language. This message should be translated into Spanish,
and it would be useful to enable an option to review recently opened files.

The testers would recommend this tool to a student just beginning to study program-
ming because:

– The user interface is user-friendly and shows useful information when compiling.

– The homepage of the Incre-IDLE website is a friendly interface because this website
does not intimidate the user and is easy to install, allowing the focus to study C
language directly and not end up getting frustrated trying to work with the IDE.

– An inexperienced and novice user will not suffer from a saturation of elements or an
excess of complex and cumbersome options that tend to be frustrating.

– Incre-IDLE is user-friendly, in addition to many other tools that currently exist on the
market. It is oriented towards freshmen, and our proposal does not show irrelevant
content that could confuse and affect the learning experience.

– Functionalities and the distribution of options are simple and quick to understand.

6.4 Summary

The results of the heuristic evaluation show that testers consider the user interface ad-
equate for novice learners according to the value scale defined in [Nielsen, 1995]. In
addition, the testers consider Incre-IDLE adequate for the needs of novice learners com-
pared to Code::Blocks, which is more for professional users (Figure 10). We exemplify
the previous affirmation using Figure 15, which shows the percentage of the thirteen
aspects in the heuristic evaluation where an IDE had fewer problems (using the heuristic
score) compared to the other IDE. Apart from showing a draw of 30.8% (4 aspects)
between both IDEs, the figure shows that Incre-IDLE have fewer problems (53.8%) than
Code::Blocks (15.4%).

The results of the usability evaluation are successful because the obtained results
affirm that the first-year students satisfactorily accepted the developed prototype (Fig-
ures 11, 12, and 13). Regarding the design, we found that Incre-IDLE has a balance
between the functionalities to avoid visual distractions and does not complicate the use
of the tool. Concretely, we think that Incre-IDLE, in general, has a simple user interface
because 83.3% of the students consider the use of the tool “very simple” while 16.7%

92 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

15.4%

53.8%

30.8%

Code::Blocks

Incre-IDLE

Draw

Figure 15: Percentage of the thirteen aspects in the heuristic evaluation where an IDE had fewer
problems (using the score) compared to the other IDE

claimed it to be just “simple” (Figure 12). Incre-IDLE allows students to reduce per-
formance time for a simple task from 38.9% to 86.7% compared to the time used with
Code::Blocks (Table 6). To illustrate the previous affirmations, Figure 16 summarizes
the usability evaluation between both IDEs using a Likert scale [Albaum, 1997] of five
levels. It is easy to see that Incre-IDLE have better evaluations (near to “best”) than
Code::Blocks.

Regarding the application interface evaluation, the testers found that the Incre-IDLE’s
interface is “very useful” (33%) and “useful” (50%) as Figure 14 shows; however, these
testers proposed a list of changes that could be carried out in Incre-IDLE. The changes
are related to unnecessary extra information that Incre-IDLE shows. Finally, testers
comment that a simple interface for the Incre-IDLE’s web page does not intimidate
novice learners.

6.4.1 Problems to Solve

Although the results are favorable in terms of the usability for Incre-IDLE, there are
some elements that must be solved and improved:

– There is an error trying to create a file if the user has not opened a folder/project. It
is necessary to analyze which solution is adequate for this problem.

– When users try to create a file, the message that is delivered to users is not entirely
understandable by novice learners.

– There is an error console when a program fails to be compiled, which can only be
accessed manually. This console can be quite useful for Incre-IDLE users, so every
time a program is compiled, the error console should be displayed.

– When users compile a program with errors, a notification is displayed in the upper
right of the application. The students have stated that the active time of the notification
is too short, and the message that they want to deliver cannot be read, so the active
time of the notification should be increased.

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 93

33%

50%

83%

33%

67%67%

50%

17%

67%

33%

0% 0% 0% 0% 0%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Q1 Q2 Q3 Q4 Q5

Incre-IDLE

Best evaluation Good evaluation Borderline Bad evaluation Worst evaluation

(a) Incre-IDLE

50%

25%

50%

0% 0% 0% 0% 0%

50%

75% 75%

25%

50%

25%

75%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Q1 Q2 Q3 Q4 Q5

Code::Blocks

Best evaluation Good evaluation Borderline Bad evaluation Worst evaluation

(b) Code::Blocks

Figure 16: Summary of the usability evaluation, five questions, for both IDEs

7 Conclusions and Future Work

This article presents a prototype IDE for first-year students, named Incre-IDLE, which
aims to address different issues in the teaching-learning process of programming courses.
To propose our IDE, we carried out a heuristic evaluation to Code::Blocks (a widely
used IDE). Incre-IDLE considers the difficulties found in Code::Blocks evaluations and
the literature. The requirements and user interface presented in this paper correspond to
the first functional version of Incre-IDLE.

The developed IDE completely focuses on novice learners, considering the students’

94 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

own needs. We expect that in the near future, this project will reach the classrooms of first-
year students as soon as possible, so that they can enjoy a pleasant experience when using
Incre-IDLE. The interface, heuristic, and usability evaluations of the Incre-IDLE allowed
us to observe that the proposed idea can be used by any user without any programming
knowledge. In addition, we think Incre-IDLE allows professors to organize the teaching
courses of these courses between different teachers in an easy way.

Future Work

Throughout the development of the study, we have identified a set of improvements
that a future study might carry out. We classified these improvements into two groups:
evaluation design and feature implementations.

Evaluation Design.We followed one methodology of a set that is available in [Kline
and Seffah, 2005, Kline et al., 2002] to carry out this study. This methodology includes
heuristic and usability evaluations. For the heuristic evaluation, we used the ten us-
ability heuristics for design interfaces [Nielsen, 1995]. For the usability evaluation, we
asked students to resolve five (simple) tasks and reply to a questionnaire. In the current
application of this methodology, we found the following limitations:

– The design of these tasks and questionnaires did not follow a methodology that ex-
plicitly relates each question with to activity of the tasks. In a future study, following
the recommendations of the questionnaire design for research [Creswell, 2014], we
should consider defining a set of study variables to allow researchers to design and
relate the questionnaire and tasks.

– As the study mentions, the testers solve only five simple tasks. A larger number of
tasks can bring benefits to this research. First, make a closer relationship between
the questionnaire’s purpose and tasks. Second, specify different difficulty levels for
tasks, where levels can be related to programming skills of the testers.

All testers that participated were men, implying that this study does not show whether
Incre-IDLE is useful for women. Likewise other researches [Akinola, 2015], it is
valuable to consider evaluations with significant participation of both genders, and
compare them.

Finally, although the studies presented by Soloway and Spohrer might be considered
old [Spohrer and Soloway, 1986, Soloway and Spohrer, 2013], these studies are still
present; for example, in the book “Studying the Novice Programmer” whose first edition
was in 1986, we can find an edition in 2013 [Soloway and Spohrer, 2013]. Hence, we
might adapt and improve our methodology based on the previous authors’ studies.

Feature Implementations. There are still challenges for Incre-IDLE in terms of
implementations. For example, the missing functionalities should be implemented, as
well as improving the complements that are currently used in the first functional prototype,
such as the customization and reduction of auto-completion options of code. Additionally,
it is necessary to update the website with the new functionalities that are included in
Incre-IDLE, as well as to develop, in the administration panel, a monitoring module
(logs and bugs) of the student behavior when Incre-IDLE is in use.

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 95

References

[ACM/IEEE-CS, 2013] ACM/IEEE-CS (2013). Computer Science Curricula 2013. Technical
report, ACM Press and IEEE Computer Society Press.

[Akinola, 2015] Akinola, S. (2015). Computer Programming Skill and Gender Difference: An
Empirical Study. American Journal of Scientific and Industrial Research, 7(1):1–9.

[Albaum, 1997] Albaum, G. (1997). The Likert Scale Revisited. Market Research Society
Journal, 39(2):1–21.

[Algaraibeh et al., 2020] Algaraibeh, S., Dousay, T., and Jeffery, C. (2020). Integrated Learning
Development Environment for Learning and Teaching C/C++ Language to Novice Programmers.
In IEEE Frontiers in Education Conference (FIE), pages 1–5, Uppsala, Sweden.

[Becker et al., 2018] Becker, B., Goslin, K., and Glanville, G. (2018). The Effects of Enhanced
Compiler Error Messages on a Syntax Error Debugging Test. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, pages 640–645, Maryland, USA.

[Code::Block Team, 2022] Code::Block Team (2022). Code::Blocks: A Free IDE for C/C++.
Version 20.03. https://www.codeblocks.org. Visited on 18/07/22.

[Creswell, 2014] Creswell, J. (2014). Research Design: Qualitative, Quantitative and Mixed
Methods Approaches. Sage.

[Delman et al., 2009] Delman, A., Goetz, L., Langsam, Y., and Raphan, T. (2009). Development
of a System for Teaching C/C++ Using Robots and Open Source Software in a CS1 Course. In
Frontiers in Education: Computer Science & Computer Engineering (FECS), pages 141–146, Las
Vegas, USA.

[Diah et al., 2010] Diah, N. M., Ismail, M., Ahmad, S., and Dahari, M. K. M. (2010). Usability
Testing for Educational Computer Game Using Observation Method. In International Conference
on Information Retrieval & Knowledge Management (CAMP), pages 157–161, Mara, Malaysia.

[Drumea, 2012] Drumea, A. (2012). Education in Development of Electronic Modules Using
Free and Open Source Software Tools. Hidraulica, (3-4/2012).

[Dumas and Parsons, 1995] Dumas, J. and Parsons, P. (1995). Discovering theWay Programmers
Think About New Programming Environments. Communications of the ACM, 38(6):45–56.

[Figueroa et al., 2019] Figueroa, I., Jiménez, C., Allende-Cid, H., and Leger, P. (2019). Develop-
ing Usability Heuristics with PROMETHEUS: A Case Study in Virtual Learning Environments.
Computer Standards & Interfaces, 65:132–142.

[Karvelas, 2019] Karvelas, I. (2019). Investigating Novice Programmers’s Interaction with Pro-
gramming Environments. In Proceedings of ACM Conference on Innovation and Technology in
Computer Science Education, pages 336–337, Aberdeen Scotland, United Kingdom.

[Kline and Seffah, 2005] Kline, R. and Seffah, A. (2005). Evaluation of Integrated Software
Development Environments: Challenges and Results from Three Empirical Studies. International
Journal of Human-Computer Studies, 63(6):607–627.

[Kline et al., 2002] Kline, R., Seffah, A., Javahery, H., Donayee, M., and Rilling, J. (2002). Quan-
tifying Developer Experiences via Heuristic and Psychometric Evaluation. In Proceedings IEEE
Symposia on Human Centric Computing Languages and Environments, pages 34–36, Arlington,
USA.

[Ko et al., 2020] Ko, A., Oleson, A., Ryan, N., Register, Y., Xie, B., Tari, M., Davidson, M.,
Druga, S., and Loksa, D. (2020). It is Time for More Critical CS Education. Communications of
the ACM, 63(11):31–33.

[Kölling, 1999a] Kölling, M. (1999a). Teaching Object Orientation with the Blue Environment.
Journal of Object-Oriented Programming, 12(2):14–23.

https://www.codeblocks.org

96 SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ...

[Kölling, 1999b] Kölling, M. (1999b). The Design of an Object-Oriented Environment and
Language for Teaching. PhD thesis, Basser Department of Computer Science, University of
Sydney.

[Kölling, 1999c] Kölling, M. (1999c). The Problem of Teaching Object-Oriented Programming,
Part 2: Environments. Journal of Object-Oriented Programming, 11(9):6–12.

[Kölling, 2010] Kölling, M. (2010). The Greenfoot Programming Environment. ACM Transac-
tions on Computing Education, 10(4):1–21.

[Kölling and McKay, 2016] Kölling, M. and McKay, F. (2016). Heuristic Evaluation for Novice
Programming Systems. ACM Transactions on Computing Education, 16(3):1–30.

[Kölling and Rosenberg, 1996] Kölling, M. and Rosenberg, J. (1996). An Object-Oriented Pro-
gram Development Environment for the First Programming Course. In Proceedings of SIGCSE
Technical Symposium on Computer Science Education, pages 83–87, Philadelphia, USA.

[Koulouri et al., 2015] Koulouri, T., Lauria, S., and Macredie, R. (2015). Teaching Introduc-
tory Programming: A Quantitative Evaluation of Different Approaches. ACM Transactions on
Computing Education, 14(4):1–28.

[Lahtinen et al., 2005] Lahtinen, E., Ala-Mutka, K., and Järvinen, H.-M. (2005). A Study of the
Difficulties of Novice Programmers. In Proceedings of Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, pages 14–18, Caparica, Portugal.

[McCracken et al., 2001] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Ko-
likant, Y. B.-D., Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A Multi-National,
Multi-Institutional Study of Assessment of Programming Skills of First-Year CS Students. In
Working Group Reports from ITiCSE on Innovation and Technology in Computer Science Education,
pages 125–180, Canterbury, United Kingdom.

[Microsoft, 2022] Microsoft (2022). Visual Studio Code: A Free IDE for Multiple Languages.
Version 1.63. https://code.visualstudio.com. Visited on 18/07/22.

[Milne and Rowe, 2002] Milne, I. and Rowe, G. (2002). Difficulties in Learning and Teaching
Programming-Views of Students and Tutors. Education and Information Technologies, 7(1):55–66.

[Nielsen, 1995] Nielsen, J. (1995). Ten Usability Heuristics for User Interface Design.
https://www.nngroup.com/articles/ten-usability-heuristics. Updated: Nov. 15, 2020 and visited on
12/04/2022.

[Novara, 2010] Novara, P. (2010). Fundamentos de Programación –Anexo 1: Introducción a las
Herramientas de Desarrollo. http://zinjai.sourceforge.net/Anexo1.pdf. Visited on 12/04/2022.

[Papadakis and Orfanakis, 2018] Papadakis, S. and Orfanakis, V. (2018). Comparing Novice
Programing Environments for use in Secondary Education: App Inventor for Android vs. Alice.
International Journal of Technology Enhanced Learning, 10(1/2).

[Parsons and Haden, 2006] Parsons, D. and Haden, P. (2006). Parson’s Programming Puzzles: A
Fun and Effective Learning Tool for First Programming Courses. In Proceedings of Australasian
Conference on Computing Education, pages 157–163, Virtual SA Australia.

[Piteira and Costa, 2013] Piteira, M. and Costa, C. (2013). Learning Computer Programming:
Study of Difficulties in Learning Programming. In Proceedings of International Conference on
Information Systems and Design of Communication, pages 15–24, Marioka, Japan.

[Qian and Lehman, 2017] Qian, Y. and Lehman, J. (2017). Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Transactions on Computing
Education, 18(1):1–24.

[Rice University, 2022] Rice University (2022). DrJava: A Lightweight Pedagogic Environment
for Java. Version 20190813. http://www.drjava.org. Visited on 18/07/22.

https://code.visualstudio.com
http://zinjai.sourceforge.net/Anexo1.pdf
http://www.drjava.org

SalinasM., Leger P., Fukuda H., Cardozo N., Duarte V., Figueroa I. ... 97

[Soloway and Spohrer, 2013] Soloway, E. and Spohrer, J. (2013). Studying the Novice Program-
mer. Interacting with Computers Series. Psychology Press.

[Soto and Figueroa, 2018] Soto,M. and Figueroa, I. (2018). Heuristic Evaluation of Code::Blocks
as a Tool for First Year Programming Courses. In 37th International Conference of the Chilean
Computer Science Society (SCCC), pages 1–8, Santiago, Chile.

[Spohrer and Soloway, 1986] Spohrer, J. C. and Soloway, E. (1986). Novice Mistakes: Are the
Folk Wisdoms Correct? Communications of the ACM, 29(7):624–632.

[Utting et al., 2013] Utting, I., Sorva, J., Wilusz, T., Tew, A. E., McCracken, M., Thomas, L.,
Bouvier, D., Frye, R., Paterson, J., Caspersen, M., and Kolikant, Y. B.-D. (2013). A Fresh Look
at Novice Programmers’ Performance and Their Teachers’ Expectations. In Proceedings of the
ITiCSE Working Group Reports Conference on Innovation and Technology in Computer Science
Education-Working Group Reports, pages 15–32, Canterbury England, United Kingdom. ACM
Press.

[Van Haaster and Hagan, 2004] Van Haaster, K. and Hagan, D. (2004). Teaching and Learning
with BlueJ: An Evaluation of a Pedagogical Tool. Issues in Informing Science and Information
Technology, 1:455–470.

[Yadin, 2011] Yadin, A. (2011). Reducing the Dropout Rate in an Introductory Programming
Course. ACM Inroads, 2(4):71–76.

	Introduction
	Methodology
	Profile of Testers
	Evaluations

	First-year Students at Universities: Learning Process and Existing IDEs
	Novice Learners in Programming
	Integrated Development Environments
	Summary of Identified Difficulties and Recommendations

	Heuristic and Usability Evaluations of Code::Blocks
	Heuristic Evaluation
	Usability Evaluation

	Incre-IDLE: An IDE for First-Year Students
	Implementing Incre-IDLE

	Evaluations of Incre-IDLE
	Heuristic Evaluation
	Usability Evaluation
	Interface Evaluation
	Installation and Application

	Summary
	Problems to Solve

	Conclusions and Future Work

