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Abstract: Climate forecasting plays an important role for human life in many areas such as water 
management, agriculture, natural hazards including drought and flood, tourism, business, and 
regional investment. Estimating these data is a difficult task as the time series climate parameter 
values vary monthly and seasonally. Therefore, predicting climate parameters based on learning 
and artificial intelligence is important to long-term efficient results in these fields. For this 
purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural 
network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the 
help of this network, the average temperature, relative humidity, and precipitation values, which 
are known as the most effective climate parameters, have been estimated. An improved Particle 
Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the 
LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with 
deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute 
Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed 
adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for 
temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, 
respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than 
proposed non-adaptive LSTM-PSO method. 

Keywords: Climate estimation, Artificial intelligence, Deep neural networks, Long short term 
memory, Data analysis 
Categories: H.3.1, H.3.2, H.3.3, H.3.7, H.5.1 
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1 Introduction  

Climate variables such as precipitation, temperature, and relative humidity affect 
agricultural water management and processes in many climatic zones, whether arid, 
semi-arid or tropical [Alizamir et al. 2020]. Today, the best reliable measure of these 
parameters at a specific location is still derived from meteorological stations on the 
ground [Hasan et al. 2016, Wang et al. 2019]. In most parts of the world, these type of 
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data with significant temporal span is not readily available for years [Buytaert et al. 
2012]. But, in many areas, such as water resources management, flood and drought risk 
assessment, and meteorological forecasting, it is necessary to capture possible climatic 
patterns in variables on-site climatological information with such a temporal coverage 
[Yuce and Esit 2021, Sun et al. 2018, Park et al. 2019, Pumo et al. 2017]. Many of these 
areas are characterized by highly complex hydrological systems that frequently display 
outlier data, such as due to prolonged drought or intense monsoon seasons. Models and 
analysis approaches that are commonly utilized may not accurately describe these 
processes, and they are rarely assessed for appropriateness and robustness [Nkiaka et 
al. 2017]. 

In many parts of the world, especially in developing nations, a lack of 
meteorological data is a key obstacle impeding the growth of knowledge on water 
management and climate change. Climate data that is reliable, long-term, and well-
distributed is critical for guiding policies aimed at mitigating the effects of climate 
variability and change [Van de Giesen et al. 2014]. Climatic change, as well as the 
inherent perturbations in any climate variable induced by natural climate variability, 
can have a substantial impact on precipitation patterns, affecting agriculture, water 
resources, and heightening uncommon events [Ali et al. 2018].  For example, a major 
change in climate variables can have a negative impact on economic growth, especially 
in developing countries [Odusola and Abidoye 2015]. Climate change affects crop 
productivity, which in turn cripples commodity-based economies, particularly those 
from developing countries. According to these factors, developing climate risk 
assessments and appropriate mitigation and adaptation measures necessitates a high 
level of ability to forecast climate extreme weather events, and such tasks can be 
dependent on how well such as precipitation, temperature, and relative humidity 
climate variables, can be predicted ahead of time [Ali et al. 2020]. 

Historical climate variables data can be gathered from various sources to 
complement instrumental records, such as radars [Austin and Seed 2005], satellites, and 
numerical model simulations [Huffman et al. 2010]. Short-term hydrometeorological 
variable time series are provided by satellites and radars, which begin in the 1990s in 
the best-case scenario [Chen et al. 2020, Li et al. 2020]. Reanalysis models [Pfeifroth 
et al. 2013], on the other hand, can supply continuous data for more than 50 years all 
over the world. However, the reanalysis databases have numerous drawbacks, such as 
a significant bias despite their long-time coverage [Wang et al. 2019]. As a result, it is 
critical to reproduce such long-term evolution in hydroclimate variables. 

To address the aforementioned constraints of the various sources of information, 
several researchers have examined alternative strategies for predicting time series of 
historical hydrometeorological variables covering decades in the past [Li et al. 2020]. 
Data-driven models have been effectively utilized to estimate climate variable 
evolutions with historical records. These models can forecast future precipitation 
patterns with non-linear input features. The non-linear input features are important to 
analysis and optimize the climate data. Hung et al. [Hung et al. 2009] used an artificial 
neural network to predict rainfall in Thailand. Lin et al. [Lin et al. 2009] used the 
Support Vector Machines (SVMs) to predict precipitation in Taiwan. Several hybrid 
strategies have recently been used to forecast water demand [Altunkaynak and Nigussie 
2018, Seo et al. 2018, Zubaidi et al. 2020], prediction of long and short-term drought 
prediction [Hassanzadeh et al. 2020, Nasir and Hamdan 2021], low-flow [Nejat et al. 
2020], stream-flow prediction [Ghimire et al. 2021, Cheng et al. 2020] and flood 
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forecasting [Hussain et al. 2021]. Considering the climate system of Turkey, Bayrak et 
al. [Bayrak et al. 2021] estimated the highest monthly average stream-flow in Ergene 
River using Artificial Neural Network (ANN), Multiple Linear Regression (MLR) and 
SVM, Apaydin et al. [Apaydin et al. 2020] utilized Deep Recurrent Neural Network 
(DRNN) designs such as bidirectional long short-term memory (Bi-LSTM), gated 
recurrent unit (GRU), LSTM, and simple recurrent neural networks to simulate daily 
streamflow to the Ermenek hydroelectric dam reservoir, Yakut and Suzulmus [Yakut 
and Süzülmüs 2020] modelled monthly mean air temperature using ANN, adaptive 
neuro-fuzzy inference system and support vector regression methods, and Akdi and 
Unlu [Akdi and Unlü 2021] modelled and forecasted monthly average temperature, and 
monthly average precipitation of Turkey by employing periodogram-based time series 
methodology. 

In this study, we propose a novel Long Short-Term Memory-Particle Swarm 
Optimization (LSTM-PSO) deep learning method using time series and parameter 
values estimated by training the climate parameters of temperature, relative humidity, 
and precipitation. The study data are climatic parameters including temperature, 
relative humidity, and precipitation of Adıyaman and Çankırı provinces of Turkey. 
Previously, no study was conducted with the data obtained from the stations to which 
these two cities were connected. Adıyaman and Çankırı provinces are located in 
different climatic geographies in Turkey. Estimating the climate variables of these two 
provinces with different regional characteristics constitutes the basic basis of this study. 
There are many metaheuristic optimization methods in the literature. However, a 
detailed literature review concludes that a basic and uncomplicated particle swarm 
model is more useful than others. The PSO algorithm was used in this study and an 
algorithm framework was created together with the LSTM deep architecture. In the 
training and testing process of the method, the number of neurons and layers in the 
network are determined by adaptively adjusting the presented LSTM deep network 
architecture according to the data set and parameters used. In addition, the PSO 
algorithm is combined into the proposed scheme in order to optimize the LSTM input 
weights. The proposed deep architecture and optimization-based method is compared 
with other existing LSTM-derived methods in terms of estimation error metric, and its 
performance advantage is revealed. 

The main contributions of this study can be presented briefly as follows. 
• In this study, unlike other studies for Turkey, we present a hybrid approach by 

combining time series-adapted deep architecture and optimization technique 
to predict climate parameters in regions belonging to different meteorological 
basins. 

• In the LSTM deep learning section of this hybrid approach, we further 
reinforce the learning by optimizing the input weight values with the PSO 
method, without memorizing by adding different blocks. 

• We reveal the results of many analyzes by comparing the proposed method 
with different methods in terms of various performance criteria such as Root 
Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean 
Absolute Percentage Error (MAPE). 

The rest of the paper is as follows. In Section 2, the proposed method is presented. 
In this section, firstly, we design an LSTM based recurrent deep neural network. After 
that, we construct the proposed adaptive LSTM-PSO based method. Section 3 presents 
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the experimental analysis and results of the study. In this section, firstly, we mention 
related to the study area and data. After that, we set up the proposed LSTM-PSO deep 
neural network, and model the climate parameters for Çankırı and Adıyaman Case. 
Finally, we conclude the study by talking about future plans in Section 4. 

2 Materials and Method 

In this study, it is presented an approach that uses LSTM deep learning model and PSO 
algorithm together to predict climate parameters. In the proposed LSTM model, the 
number of input neurons and layers, the number of hidden layers and the output layer 
are designed specifically for the study. To optimize the input parameter weight values, 
the proposed approach has been made adaptive and more efficient by using the 
improved PSO method. 
 
2.1      Designing the LSTM Based Recurrent Deep Neural Network 
 
Neurons called neurones or nerve cells are the fundamental units of the brain and 
nervous system. An activation function is a function that is added into an artificial 
neural network in order to help the network learn complex patterns in the data. Deep 
Neural Networks (DNNs) are learning networks inspired by the interaction and 
communication of neurons in the human brain [Sarker 2021]. It realizes learning by 
labeling and processing neural data. They can process real data in the form of digital 
vectors, including images, audio, text or time series [Greff et al. 2017, Kim et al. 2021]. 
DNNs are complex networks consisting of many neurons interacting with each other. 
A DNN is a network architecture that can operate in parallel, which consist of one or 
multiple layers of input, hidden and output layers. In this aspect, it differs from standard 
ANNs. [Hanab et al. 2021, Wang et al. 2021]. The input layer in a DNN is known as 
raw data inputs, similar to optic neurons [Bouktif et al. 2020]. Hidden layers take the 
data from input layer and forward it to the output layer. Figure 1 depicts a conventional 
DNN model. 

 

 
Figure 1: Description of the conventional DNN models  
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2.2      Overview of deep recurrent neural networks 
 
Recurrent Neural Networks (RNNs) are improved version of DNNs, one output of 
which is passed to the input of a feed-forward network, taking into consideration past 
values. The past output is calculated and included in the next input, making data 
learning functional. The output data consists of an iterative series of iterations that 
facilitate learning without memorization [Bouktif et al. 2020]. 
       RNNs, like feed-forward DNNs, do not simply process data inputs and transfer 
them to the next state. At the same time, some parts learned in memory using their 
internal memory are not forgotten. These features have gained importance in 
applications such as handwriting and speech recognition. On the other hand, in other 
DNNs, all data inputs can work independently with one another. In RNNs, 
interdependent data series can be modeled and each produced sample output cannot be 
considered independent from the previous one. The RNNs can also be used with 
convolutional layers in applications such as image processing and object recognition, 
where pixel neighborhood should be taken as a basis [Hoang et al. 2020]. Besides, 
LSTM networks are RNNs in which RNNs have been developed and their layers and 
the way their neurons work are different as the past learned data in the memory is 
prevented from being forgotten, and makes it easier to remember when necessary. In 
addition, the disappearing gradient problem is also eliminated. An LSTM is often used 
to process, classify and estimate time series data with unknown time delays [Pei et al. 
2019, Ravuri et al. 2021]. The LSTM data output is transferred to the input of another 
one, that is, it works as back propagation principle. There are three gates in the internal 
structure of an LSTM network: input, forget and output gates [Sarker 2021, Wang et 
al. 2021]. The structure of an LSTM model architecture is shown in Figure 2. 

 
 

Figure 2: An architecture of the LSTM  
 

Input gate: The input gate determines which values must be given from the input to 
replace the memory in the LSTM. The input gate 𝑖! is defined as Eq. (1). Sigmoid 
function 𝜎 decides which of 0 and 1 will pass. Also, a 𝑡𝑎𝑛ℎ  function shown in Eq. (2) 
with cell state 𝐶! assigns a weight value to the values passed from -1 to 1 to decide 
according to its priority. 
 
                                                   𝑖! = 𝜎(𝑊" . [ℎ!#$, 𝑥!] + 𝑏")                                         (1) 
 
                                               𝐶! = 𝑡𝑎𝑛ℎ(𝑊% . [ℎ!#$, 𝑥!] + 𝑏%)                                      (2) 
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       where 𝐶! and ℎ! are the cell and hidden states, respectively. Also, 𝑊" is weight 
vector for different timesteps. 
 
Forget gate: In the forget gate, it is determined which unlearned data will be forgotten 
from the block. This decision is made by the Sigmoid function. This function evaluates 
both the previous ℎ!#$ state and the content input 𝑥!. It then returns a number between 
0 and 1 for each number in the cell state 𝐶!#$. The expression of the forget gate 𝑓! is 
given as Eq. (3). 
 
                                             𝑓! = 𝜎(𝑊& . [ℎ!#$, 𝑥!] + 𝑏&)                                             (3)                                  
  
Output gate: When determining the output ℎ! of the LSTM, input 𝑥! and memory are 
used to decide the output ℎ!. In this gate, as shown in Fig. 2, the sigmoid function 𝜎 
decides which of 0 and 1 will pass. Also, the 𝑡𝑎𝑛ℎ  function with 𝐶! assigns a weight 
value to the values passed from -1 to 1 to decide according to its priority, it is multiplied 
by the sigmoid output 𝑜𝑢𝑡! as shown in Eq. (5). 
 
                                              𝑜! = 𝜎(𝑊'(! . [ℎ!#$, 𝑥!] + 𝑏'(!)                                             (4)      
 
                                                ℎ! = 𝑜! ∗ 𝑡𝑎𝑛ℎ(𝐶!)                                                           (5)  
 
  

 
 

Figure 3: The block diagram of the proposed scheme 
 

Figure 3 illustrates the block diagram of the proposed scheme. Neurons represented 
by N1, N2, and N3 are designed as input neurons for temperature, relative humidity, 
and precipitation, respectively. The important point here is that the LSTM input weight 
values optimized with PSO are given as input to the LSTM block. In this way, a more 
adaptive time series data transferred to the layers in the LTSM-RNN model are trained 
and tested. Finally, the forecasting analysis results are visualized after training.  
 
2.3    Constructing the proposed adaptive LSTM-PSO based method 
 
Before giving the details of the proposed method, it is useful to present the PSO method. 
PSO is a metaheuristic-optimization method in which the behavior of various birds in 
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nature is artificially tackle to obtain a desired target or optimum value [Gundu and 
Simon 2021]. In a flock, a bird always flies towards a better position in its surroundings. 
Each individual in the PSO is like a bird, following various rules and interacting with 
other individuals around it in order to complete the final task. In a PSO algorithm, each 
individual in the swarm is represented as a particle. The particles follow several simple 
rules and benefit from the experience of neighboring particles or their own during 
swarm updates. They update their position to head to the destination and their speed to 
arrive at the destination just in a given time [Liu et al. 2021]. The velocity and position 
equations of the basic PSO algorithm are given in Eqs. (6) and (7). 
 
           𝑣"(𝑡 + 1) = 𝜔𝑣"(𝑡) + 𝑐$𝑟$(𝑡)(𝑜)(𝑡) − 𝑥"(𝑡))+𝑐*𝑟*(𝑡)(𝑔)(𝑡) − 𝑥"(𝑡))        (6) 
 
                                       𝑥"(𝑡 + 1) = 𝑥"(𝑡) + 𝑣"(𝑡 + 1)                                             (7) 
 
        where 𝑣" and 𝑥" are the velocity and position of the particle 𝑖 at time 𝑡, respectively. 
Also, 𝑐$ and 𝑐* are acceleration constants that are positive numbers used in the 
contribution of cognitive and social components to rate the updates. Random numbers  
𝑟$ and 𝑟* can take various values between 0 and 1. The inertia weight 𝜔 controls the 
inertia of a particle, and measures the effect of the velocity of the previous instant on 
the next displacement. 𝑜)(𝑡) and 𝑔)(𝑡) are the optimal positions calculated by the 
particle itself and all particles in the population, respectively. All particles know the 
population information. Each particle moves towards the global optimal solution and 
aims to find the optimal solution in the population. Before the update, the particle 
decides whether the reached location is better than the known location or the location 
known by someone else. Otherwise, the particles retain the previous optimal values and 
continue to move. The PSO algorithm only terminates when a successful solution is 
found or the iteration count reaches its maximum value.  
 
2.4     Making adaptive the learning factors with improved PSO 
 
The learning factors 𝑐$ and 𝑐*	are mainly used to determine the step size of a particle 
moving to the individual optimal and global optimal positions. In the standard PSO, the 
value of 𝑐$ and 𝑐* is assigned as 2. This cannot meet the requirements of practical 
applications. However, in the first iterations, the value 𝑐$ should change little from large 
to small [Shao et al. 2019]. Because, it is aimed to increase the search speed. As the 
number of iterations progress, it is necessary to increase the value of 𝑐* from small to 
large to improve local search. Therefore, the sine function as in Eqs. (8) and (9) is used 
to adjust the adaptive learning factors. Here, 𝑁+ is the number of epochs. 
 

                                      𝑐$ = 2A1 − sin	(,* ∗
"
-!	
)                                                       (8) 

 

                                       𝑐* = 2Asin	(,* ∗
"
-!	
)                                                             (9) 
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2.5      Adaptive LSTM-PSO based method 
 
For effective climate parameter estimation, it is required to select appropriate input 
data. In this study, we design the LSTM layer and the number of neurons adaptive to 
our study. In the proposed model, 3-𝐿" (𝑥/) -1 is the LSTM learning model with N-1, 
N-2, and N-3 three input neurons, three LSTM layers with 10 hidden units and one 
output neuron for RMSE. In this case, all three input signals are utilized for training. 
The proposed output ℎ! can be expressed as in Eq. (10).  
                                             ℎ! ← 3− 𝐿"	(	𝑥/ 	) 	− 1                                                               (10) 
 

In the proposed learning model, an LSTM model with 3 layers and 10 hidden units 
is proposed, 𝑥/ 	= 10, where 𝑗=1 and 𝐿"= 3, where 𝑖 =1. In this model, the output node 
is set to 1. In input layer, 3 different input nodes are defined as temperature, humidity, 
and precipitation values for climate analysis. 
 

We analysis the model based on the RMSE, MADE, and MAPE metrics in this 
study. The RMSE is usually utilized measuring of the differences between samples or 
all data values forecasted by a model or an estimator and the observed values. The 
RMSE depicts the square root of the second sample moment of the differences between 
forecasted values and observed real values or the quadratic mean of these 
differences. The RMSE of forecasted values 𝑥!0 for 𝑡 times a regression’s dependent 
variable 𝑥! with variables observed over 𝑇 sample times, is computed for 𝑇 different 
samples. The RMSE calculation is given as Eq. (11). The lower the RMSE value, the 
more successful the data estimation is expected. Therefore, when the high performance 
of the proposed models is aimed, the RMSE values should be considerably lowered. 
The number of layers and associated hidden nodes are determined and selected 
according to the LSTM and PSO model. The closer the RMSE, MADE, and MAPE 
values is to 0, the better predictive performance will be.  
 

                                                  𝑅𝑀𝑆𝐸 = A∑ (3"#3"
#)$%

"&'
5

                                                           (11) 
 

MADE avoids the problem that positive and negative errors in estimations dampen 
each other. The calculation of the MADE is presented as given in Eq.(12).     
    
                                                 𝑀𝐴𝐷𝐸 = $

5
∑ |𝑥! − 𝑥!0|5
!6$                                                        (12) 

 
MAPE calculates the deviation between the predicted value and the actual value. 

At the same time, it is based on the correlation between the error and the true value, 
which can better show the accuracy of the prediction result. The calculation of the 
MAPE is presented as given in Eq.(13).        
 
                                                  𝑀𝐴𝑃𝐸 = $77

5
∑ S3"#3"

#

3"
S5

!6$                                                       (13) 
 

While modeling the LSTM network, the number of layers and the number of hidden 
units are chosen adaptively. After the layers and neurons are determined, the number 
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of layers 𝑖 is assigned from 1 to 𝑘. Then the 𝑖 is set to the fixed value where the error 
metrics are minimum. The neuron number 𝑗 is assigned from 1 to 𝑚 for 𝑖 =1. Also,  𝑗 
where RMSE is minimum is set to fixed value. These operations are also valid for 𝑘 −
1 layers. Hence, 𝐿")V𝑥/)W architecture is created according to the fitness functions 
𝐹(RMSE),	𝐹(MADE) and 𝐹(MAPE) given in Eqs. (14)-(16). 
 
                                                𝐹89:; = 𝑅𝑀𝑆𝐸{𝐿"V𝑥/W}                                               (14)    
                                       
         where ∀	𝑖 = 1, 2 …, 𝑘 and 𝑗 = 1, 2, …, 𝑚 
 
                                               𝐹9<=; = 𝑀𝐴𝐷𝐸{𝐿"V𝑥/W}                                                  (15)   
 
                                               𝐹9<>; = 𝑀𝐴𝑃𝐸{𝐿"V𝑥/W}                                                 (16)    
 
        The total fitness function is the sum of these three functions as in Eq.(17). 
 
                                   𝐹?@?AB = 𝛼𝐹89:; + 𝛽𝐹9<=; + 𝛾𝐹9<>;                                              (17) 
 

where 𝛼, 𝛽, and 𝛾 determine the severity of these error parameters, respectively. It 
is assumed that the importance of each error parameter is equal, their values are 0.33, 
0.33 and 0.34 respectively, their sum being 1. 

To use the PSO method in the proposed scheme, we used a particle population with 
the input parameters having the size equal to the number of parameters in the LSTM 
model. We set the population size to 30 based on size, time complexity, and adaptability 
of the problem. The task of each particle in the PSO is to minimize the difference 
between the actual values and the predicted values in the LSTM-PSO model. To reduce 
the probability of the particle moving away from the search area, the velocity value of 
the particle is set in the range of 𝑉C"D and 𝑉CE3. LSTM block cells eliminate the 
possibility of memorization in the data that can occur as a result of long-term learning. 
The number of LSTM cells is defined according to how the proposed model predicts 
the climate parameters. Batch size is an important parameter that affects the training 
efficiency of the LSTM neural network, which determines the number of samples to be 
detected over the deep network before the internal parameters of the LSTM model are 
updated. The data is divided into groups of several small blocks and at the same time 
the neural network is trained for multiple stages due to the fact that these networks work 
faster with mini-groups. On the other hand, with a very small batch size, the parameter 
value becomes harder to estimate and requires more memory space in the LSTM when 
a larger batch size is assigned in the network. 

The pseudocode of the proposed PSO-based LSTM model is given in Algorithm 1. 
According to this algorithm, the output is the minimized error values followed by the 
estimation results of the climate parameters. The best position of a particle in the PSO 
swarm is assigned as the initial value of each weight in the LSTM model. That is, 
optimization of a particle is also intended. In Algorithm 1, at each iteration, the particle 
with the least error is reassigned as the new optimum particle. Climate parameter values 
are entered. We compute the error metrics and 𝐹?@?AB	with Eq.(17). Thus, the 𝐹?@?AB of 
the output neuron is defined as the fitness function. If best values meet the condition in 
fitness function, the algorithm initializes the deep LSTM input weights obtained by 
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PSO. After that, it reads the training data and compare them with real values.  Figure 4 
shows the flowchart of the proposed method based on LSTM-PSO. Climate parameter 
data is given as input and the PSO population is started. After applying of the PSO, the 
climate parameter values are trained. The position and velocity of the PSO particles are 
updated. In the algorithm, observed data are identified. The RMSE, MADE, and MAPE 
values are calculated and checked according to the defined fitness function. Once 
sufficient best solution conditions are met, LSTM input weight values optimized by 
PSO are applied to the deep architecture. If a sufficient number of epochs has been 
reached, the real and forecasted values are displayed as a result of the trained values. 
 
 

 Algorithm 1: Proposed Adaptive LSTM-PSO based Method 
1: Input:	𝑃	// 𝑃 is the number of particles and LSTM arguments 
2: Output: Minimized error values and accordingly forecasted climate parameters 
3: Initialize the population 𝑃 
4: Enter the training climate parameter data 
5: while 𝑗 ≤ 𝑁+ and 𝑗++ do 
6:            for each 	𝑝" 	 ∈ 	𝑃	and do 
7:               Update 𝑣" and 𝑥" using Eqs. (6) and Eq. (7) 
8:               Compute 𝑐$ and 𝑐* using Eqs. (8) and (9) 
9:               Compute	fitness function 𝐹?@?AB with Eq.(17). 
10:                 Select the best 𝑝" position 
11:                   if best values meet the condition then 
12:                        Initialize the deep LSTM input weights obtained by PSO 
13:                        Read the training data and compare with real values 
14:                  else then 
15:                        Go to step 4   
16:                  end if                         
17:          Obtain the errors with adaptive the LSTM input weights  
18:      end for     
19: end while    
20: return error values and forecasted data   
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Figure 4: The flowchart of the LSTM-PSO based method 

3 Experimental Analysis and Results 

To carry out the applications of this study, we performed the following installations. 
This study is closely related to open-source software conditions. We used the Python 
3.8.5 programming language and Jupyter Notebook interface that came with Anaconda 
3 distribution. We used the Numpy, Pandas, Tensorflow and scikit-learn libraries in 
Python coding. Moreover, some python codes were compiled via PyCharm.  
 
3.1 Study area and data 

We focus on the cities of Çankırı and Adıyaman in Turkey for study area. Therefore, 
we give the geographical and meteorological general characteristics of these two cities 
separately. The data used in this study is provided by General Directorate of 
Meteorology of the Ministry of Agriculture and Forestry in Turkey. The dataset 
contains monthly measured temperature, relative humidity, and precipitation data from 
1948 to 2020. Table 1 shows some values of the climate data in the data set. In this 
way, the details are explained with the data set. Data analysis was made in these files 
with the Python language, and the models were trained and tested with the proposed 
algorithm. 

Çankırı is located in the transition of the Central Anatolia Region to the Black Sea 
region in the East-West direction, and its length and width are 130 and 80 km, 
respectively. Its surface area is 7.490 km2 and it constitutes 1% of Turkey's surface 
area. It is located between 40° 30' and 41° north latitudes and 32° 30' and 34° east 
longitudes. While the highest temperature in Çankırı is 41.8 degrees, the lowest 
temperature is -30.7 °C. In winter, snow stays on the ground for up to two months and 
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there are even times when there is frost for more than four months. The hottest months 
are July and August, and the coldest months are January and February.  

Adıyaman city is located in the Middle Euphrates Region. A part of Çelikhan and 
Gerger districts in the north are included in the Eastern Anatolia Region, and a part of 
Gölbaşı and Besni districts in the west are included in the Mediterranean Region. 
Adıyaman is located between 370 25' and 380 11' north latitude, 370 and 390 east 
longitude. The surface area of Adıyaman is 7.14 km2, 7,871 km2 with lakes, and its 
altitude is 669 m. After the formation of the Atatürk Dam, there has been a softening in 
the climate of the province and an increase in humidity. The prevailing winds in the 
province are in the north, northeast and northwest directions. The lowest temperatures 
of the year are between -10°C and -2°C, and it has been observed that the temperature 
does not fall below zero in some years. The minimum temperature averages in winter 
are between 0°C and 10°C. The annual precipitation average is 835 millimeters. The 
location of observed the corresponding stations are displayed in Figure 5. Statistical 
parameters for observed stations are presented in Table 1. In Table 1, 𝐿!, 𝐿F, 𝑀G, 𝑆H, 
𝐶G, 𝐶I, and 𝑅$	denote the latitude, longitude, mean value, standard deviation, coefficient 
of a variance, skewness, and kurtosis, respectively. Table 2 shows the detail information 
of the dataset used in this study. 
 
 

Station Parameter 
First 

record 
year 

Last 
record 
year 

𝑳𝒕 𝑳𝒈 𝑴𝒗  𝑺𝒅 𝑪𝒗 𝑪𝒔 𝑹𝟏 

17080 
Çankırı 

Precipitation 
(mm) 

1948 2020 40.6 33.6 

34.57 27.58 0.80 1.13 0.18 

Temperature 
(°C) 11.31 8.43 0.74 -0.07 0.84 

Relative 
Humidity 
(%) 

66.06 3.64 0.06 -0.43 0.57 

17265 
Adiyaman 

Precipitation 
(mm) 

1963 2020 37.7 38.2 

59.72 68.18 1.14 1.50 0.48 

Temperature 
(°C) 17.32 9.44 0.55 0.07 0.85 

Relative 
Humidity 
(%) 

48.68 16.58 0.34 -0.01 0.75 

 
Table 1: Statistical parameters of observed stations 

 
 

Station Parameter Maximum  Year 
Number of 

Dry 
Months 

7265 Adiyaman 
Precipitation (mm) 369.1 

2019-
December 225 

Temperature (°C) 33.5 2000-July  
Relative Humidity 
(%) 83.2 

2018-
December   
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17080 Çankırı 
Precipitation (mm) 149.5 

2001-
December 160 

Temperature (°C) 27.1 2006-July  
Relative Humidity 
(%) 89.5 

2017-
December   

 
Table 2: The detail information of the dataset used in this study 

 
3.2    Setting up proposed LSTM-PSO deep neural network 
 
We use a function to define the LSTM TensorFlow Keras model with layers. The model 
uses a neuron for the output layer because we are predicting a real-valued number here. 
In the first LSTM block, 64 layers are used, and 32 layers are used in the second and 
third. As activation function, the deep network utilizes the rectified linear unit (ReLU) 
function which can take its own value in the range of 0 to maximum value. Also, the 
model uses the PSO optimizer model. The following observations were obtained as a 
result of various calculations in the proposed PSO-LSTM model. 

• Too small and too long embedding size will not perform well. Note that we 
analyze the monthly data. The embedding size of 12 is good selection 
according to the dataset used. 

• More epoch counts improve the algorithm. However, we set the epoch number 
to 500 in the analysis after a few tries. 

• A batch size of 16 seems optimal and suitable. 
• The predictions are performed for each climate variable but using the same 

model. 

 
Figure 5:  The location of the meteorological stations for Çankırı and Adıyaman 

regions 
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Table 3 shows some of the parameters used in training and testing the data. 
 
Parameter  Description   Value 
num_epochs Number of epochs (𝑁+)   500 
Population size PSO particle size    30 
num_dense Number of neurons in the dense layer followed by the 

LSTM layer 
   
64,32,32 

embedding Time step length as embedding length      8 
num_units Number of units of the LSTM layer   128 
lr Learning rate  0.0005 

    Table 3: The training and testing parameters of the LSTM-PSO deep neural network 
 
3.3   Modeling the climate parameters for Çankırı Case 
 
In this part of the study, we model the average temperature, relative humidity, and 
precipitation data of Çankırı station in Turkey. We used 80% of the total 696 data for 
each climate parameter for training, 10% for testing, and the remaining 10% for 
validation. However, we combined testing and validation in experiments because the 
results were very similar and the analysis parameters were properly optimized. 
 
Temperature data analysis: In this section, the temperature data received from the 
Çankırı station is analyzed. As seen in Figure 6(a), we used the remaining 176 pieces 
of data in the data set to predict the future for testing. After running the proposed 
method, the estimated data model and the predicted temperature data are given in 
Figures 6(b) and 6(c), respectively. After training, the forecasted data is separated by a 
red line for training and testing. From these results, it is understood that with the 
proposed PSO-LSTM model, the actual values and the estimated values produce very 
close results. As seen in Figure 6(d), the RMSE value is approximately 1.12 after 
sufficient iterations. We note that as the number of epochs increases, the RMSE value 
decreases and the prediction performance improves. 
 

 
a) 

 
b) 
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c) 

 
                                   d) 

Figure 6: Experimental results for temperature data for Çankırı City a) plotting of the 
temperature data for training and testing b) forecasted temperature data visualization 
c) the results of temperature data forecasting d) RMSE result for temperature 
     
Relative humidity data analysis: In this section, the relative humidity data received 
from the Çankırı station is analyzed. As seen in Figure 7(a), we used the remaining 176 
pieces of data in the data set to estimate the future trends for testing. After running the 
proposed method, the estimated data model and the predicted relative humidity data are 
given in Figures 7(b) and 7(c), respectively. We understand that with the proposed 
PSO-LSTM model, the real values and the forecasted values produce very close series. 
As seen in Figure 7(d), the RMSE value is approximately 1.03 after sufficient iterations.  
 
 

 
a) 

 
b) 
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c) 

 
                                   d) 

Figure 7:  Experimental results for relative humidity data for Çankırı City a) plotting 
of the relative humidity data for training and testing b) forecasted relative humidity 
data visualization c) the results of relative humidity data forecasting d) RMSE result 

for relative humidity 
 
Precipitation data analysis: In this section, the precipitation data received from the 
Çankırı station is analyzed. As seen in Figure 8(a), we used the rest 176 pieces of data 
in the data set to estimate the future series for testing. After running the proposed 
method, the estimated data model and the predicted precipitation data are given in 
Figures 8(b) and 8(c), respectively. Actually, less performance was obtained in 
precipitation data estimation compared to other climate variables. As seen in Figure 
8(d), the RMSE value is approximately 5.14 after some iterations.  
 

 
a) 

 
b) 
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c) 

 
                                   d) 

Figure 8: Experimental results for precipitation data for Çankırı City a) plotting of 
the precipitation data for training and testing b) forecasted precipitation data 
visualization c) the results of precipitation data forecasting d) RMSE result for 

precipitation 
 
3.4    Modeling the climate parameters for Adıyaman Case 
 
In this part of the study, we model the average temperature, relative humidity, and 
precipitation data of Adıyaman station in Turkey. We used 80% of the total 696 data 
for each climate parameter for training, 10% for testing, and the remaining 10% for 
validation. However, we combined testing and validation in experiments because the 
results were very similar and the analysis parameters were properly optimized. Data 
analyzes for each parameter are given in subsections. 
 
Temperature data analysis: In this section, the temperature data received from the 
Adıyaman station is evaluated. As seen in Fig. 8(b), we use the remaining 140 data 
values in the data set to predict the future for testing. After executing the proposed 
method, the estimated data model and the predicted temperature data are given in Figs. 
8(c) and 8(d), respectively. From these results, it is understood that with the proposed 
LSTM-PSO model, the actual values and the estimated values produce very close 
results. As can be seen from the graph in Fig. 8(c), the predicted temperature data after 
the red line can be representative of future data. As seen in Fig. 8(e), the RMSE value 
is 0.98 after sufficient iterations.  

 
a) 

 
b) 
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c) 

 
                                   d) 

Figure 9: Experimental results for temperature data for Adıyaman City a) plotting of 
the temperature data for training and testing b) forecasted temperature data 

visualization c) the results of temperature data forecasting d) RMSE result for 
temperature 

     
Relative humidity data analysis:     In this section, the relative humidity data received 
from the Adıyaman station is analyzed. Fig. 9(a) gives the model of relative humidity 
data for first 556 values. As seen in Fig. 9(b), we used the remaining 140 data values 
for testing to make future predictions. After running the proposed method, the estimated 
data model and the predicted relative humidity data are given in Figs. 9(c) and 9(d), 
respectively. We understand that with the proposed adaptive LSTM-PSO model, 
successful performance is obtained, and the error rate is very low. We can say that very 
successful estimations have been made in the estimation of relative humidity. As seen 
in Fig. 9(e), the RMSE value is 1.19 after sufficient iterations.  
 

 
a) 

 
b) 
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c) 

 
                                   d) 

Figure 10: Experimental results for relative humidity data for Adıyaman City a) 
plotting of the relative humidity data for training and testing b) forecasted relative 
humidity data visualization c) the results of relative humidity data forecasting d) 

RMSE result for relative humidity 
 
Precipitation data analysis: In this section, the precipitation data received from the 
Adıyaman station is modeled. As seen in Figure 11(a), we used the remaining 140 data 
values for testing to make future estimations. After carried out the proposed method, 
the estimated data model and the predicted precipitation data are given in Figures 11(b) 
and 11(c), respectively. As seen in Figure 11(d), the RMSE value is 4.21 after some 
iterations. Large forecast errors were observed at some data points in the precipitation 
data. However, its performance is higher than other methods compared. 
 

 
a) 

 
b) 
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c) 

 
                                   d) 

Figure 11: Experimental results for precipitation data for Adıyaman City a) plotting 
of the precipitation data for training and testing b) forecasted precipitation data 
visualization c) the results of precipitation data forecasting d) RMSE result for 

precipitation 
       
 
3.5    Performance comparison 
 
The proposed LSTM-PSO models have been compared in performance with simple 
RNN, conventional LSTM, and LSTM-GRU models. The values of the 𝑐$ and 𝑐* 
variables are set to 2. That is, the PSO algorithm is directly applied to LSTM. In the 
adaptive one, since the 𝑐$ and 𝑐*values were determined as a result of the training 
according to the Eqs.(8) and (9), dynamic training was carried out and very successful 
results were obtained. In the proposed non-adaptive LSTM-PSO Table 4 and 5 present 
the performance results according to error metrics for all climatic parameters of Çankırı 
and Adıyaman cities, respectively. From Table 4, we observed that with the proposed 
adaptive LSTM-PSO, the RMSE, MADE, and MAPE values for temperature are 1.12, 
1.08, and 0.26, for relative humidity 1.03, 0.96, and 0.34, for precipitation 5.14, 1.25, 
and 0.54, respectively. That is, when compared to other methods, minimal errors were 
experienced with the proposed methodology. 
 
 
 
 
Climate 
parameters 

 
Error 

metrics 

Models   
Simple 
RNN 

 

LSTM LSTM-
GRU 

Proposed 
non-

adaptive 
   LSTM-  

PSO 
𝑐$= 𝑐* = 2 

Proposed 
adaptive 
 LSTM-

PSO 
𝑐$ and 𝑐* 
adaptive 

Temperature  RMSE 12.67 6.24 6.58 1.25 1.12 
MADE 9.62 3.47 4.69 1.35 1.08 
MAPE 4.36 2.14 1.68 0.44 0.26 

Relative 
humidity 

RMSE 9.63 5.32 5.47 1.39 1.03 
MADE 8.71 3.86 3.56 1.28 0.96 
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MAPE 3.94 1.76 1.34 0.46 0.34 
Precipitation RMSE 8.46 4.91 5.25 5.68 5.14 

MADE 6.35 2.56 1.81 1.53 1.25 
MAPE 3.54 1.28 0.93 0.71 0.54 

Complexity 
of the 
models 

 𝑂 (n)   𝑂(𝑛*)		  𝑂 (𝑛*)   𝑂 (𝑛*)   𝑂 (𝑛*)   

 
 

Table 4: Comparison of the error values in each climate parameter for Çankırı City 
 
 

 
Climate 
parameters 

 
Error 

metrics 

Models   
Simple 
RNN 

 

LSTM LSTM-
GRU 

Proposed 
non-

adaptive 
   LSTM-  

PSO 
𝑐$= 𝑐* = 2 

Proposed 
adaptive 
 LSTM-

PSO 
𝑐$ and 𝑐* 
adaptive 

Temperature  RMSE 6.35 5.24 4.86 1.05 0.98 
MADE 5.21 3.11 3.37 0.72 0.68 
MAPE 3.89 1.88 1.09 0.29 0.13 

Relative 
humidity 

RMSE 7.18 5.49 5.32 1.27 1.19 
MADE 5.42 3.53 3.18 0.86 0.61 
MAPE 2.47 1.45 1.06 0.34 0.19 

Precipitation RMSE 11.61 8.76 8.15 4.67 4.21 
MADE 5.67 4.68 1.52 1.11 0.84 
MAPE 2.09 1.13 0.54 0.34 0.18 

Complexity 
of the 
models 

 𝑂 (n)   𝑂(𝑛*)		  𝑂 (𝑛*)   𝑂 (𝑛*)   𝑂 (𝑛*)   

    
 Table 5: Comparison of the error values in each climate parameter for Adıyaman 

City 
 

We calculated the complexity of the proposed model according to the worst case. The 
Algorithm 1 is run as 1 nested while and 1 for loops. While j≤	𝑁+ and j++ do, this cost 
is 𝑂(𝑁+). 𝑁+  is the number of epochs. The for loop is run n times as for each 	𝑝" 	 ∈
	𝑃	do, 𝑃	 is the number of particles. So, the complexity of the proposed Algorithm 1 is 
𝑂 (𝑁+	𝑥𝑃). The complexity of the algorithm is 𝑂 (𝑛*)  So, the complexity cost of 
Algorithm 2 is low. Also, the iteration time is 7 min and 36 secs, 6 min and 42 secs, 5 
min and 27 secs, 4 min and 56 secs, and 4 min and 21 secs for Simple RNN, 
Conventional   LSTM, LSTM-GRU, Proposed adaptive LSTM-PSO, and Proposed 
non-adaptive LSTM- PSO 𝑐$= 𝑐* = 2, respectively. 

From Table 5, we obtained with the proposed adaptive LSTM-PSO, the RMSE, 
MADE, and MAPE values of 0.98, 0.68, and 0.13 for temperature, 1.19, 0.61, and 0.19 
for relative humidity, 4.21, 0.84, and 0.18 for precipitation, respectively. That is, when 
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compared to other methods, minimal errors were achieved with the proposed 
methodology. From the results, the most successful results for both Çankırı and 
Adıyaman cities were obtained with the proposed method. Moreover, the estimation 
results in Adıyaman data are more encouraging than Çankırı. However, RMSE values 
of over 4% were obtained in the precipitation forecasts for both cities. It is clear that 
further refinement and optimization are required for this climate parameter data. 
Considering the average error rates, the proposed adaptive method achieved 
approximately 10% less error than the proposed non-adaptive, while the error rate was 
40% less than LSTM-GRU, approximately 43% and 49% less than simple RNN, and 
conventional LSTM, respectively. From the results, we conclude that the worst method 
is simple RNN, and the best method is the proposed adaptive LSTM-PSO. In 
precipitation estimation, the proposed non-adaptive LSTM-PSO yielded 0.71 and 0.34 
MAPE for Çankırı and Adıyaman, whereas the proposed adaptive LSTM-PSO obtained 
0.54 and 0.18 MAPE for the two provinces, respectively. 

Finally, the RMSE values obtained are lower than the other LSTM derivatives 
compared, and when deep learning and PSO optimization algorithms are used, it shows 
that there is a minimal difference between the observed values and the predicted values 
when estimating the climate parameters. From these results, it is understood that high 
success is shown in climate parameter estimation with time series. The reason why the 
results were successful and gave the least error is that we designed the LSTM 
architecture in an adaptive structure in accordance with current artificial intelligence 
technologies in the proposed approach, and we optimized the LSTM weight values by 
using the PSO metaheuristic method. We adjusted the hyperparameters and the number 
of neurons in Table 3 very well so that we could obtain better performance results than 
other studies in the literature. The LSTM-PSO hybrid model and the improvement 
techniques used show the superiority of this study over other studies. 

4 Conclusion 

In this paper, we propose an adaptive LSTM-PSO approach to forecast climate 
parameters. In the proposed approach, we used an LSTM deep architecture that is 
sensitive to input parameters and layers. We designed the number of layers and neurons 
in the deep network in an adaptive structure based on the data and parameters. We 
integrated the adaptive PSO algorithm into our work in order to optimize the LSTM 
input values and adapt the output data. In the proposed study, the time series of 
temperature, relative humidity, and precipitation, which are significant parameters for 
climate forecasting in Çankırı and Adıyaman, Turkey. For each parameter, the big data 
actual values and the estimated values are compared with each other in the proposed 
model. The proposed algorithms are modeled and coded using Python programming 
and libraries. In addition, the proposed approach is compared with the standard RNN, 
conventional LSTM, and LSTM-GRU models in terms of Root Mean Square Error 
(RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error 
(MAPE) metrics that reflect the prediction performance well. The proposed methods 
outperformed conventional LSTM models. The proposed adaptive method achieved 
approximately 6.3% less RMSE in temperature data prediction than the proposed non-
adaptive LSTM-PSO. This study used both artificial intelligence technology and 
metaheuristic methods to predict climate data very efficiently. In future works, we plan 
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to forecast natural disasters such as drought, flood, earthquake using improved LSTM 
and other time series-based hybrid DNNs.  
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