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Abstract: Numerous advanced methods have been applied throughout the years for the use in
Network Intrusion Detection Systems (NIDS). Among these are various Deep Learning models,
which have shown great success for attack classification. Nevertheless, false positive rate and
detection rate of these systems remains a concern. This is mostly because of the low-sample,
imbalanced nature of realistic datasets, which make models challenging to train.
Considering this, we applied a novel semi-supervised EC-GAN method for network flow classifi-
cation of CIC-IDS-2017 dataset. EC-GAN uses synthetic data to aid the training of a supervised
classifier on low-sample data. To achieve this, we modified the original EC-GAN to work with
tabular data. In our approach, WCGAN-GP is used for synthetic tabular data generation, while
a simple deep neural network is used for classification. The conditional nature of WCGAN-GP
diminishes the class imbalance problem, while GAN itself solves the low-sample problem. This
approach was successful in generating believable synthetic data, which was consequently used for
training and testing the EC-GAN.

To obtain our results, we trained a classifier on progressively smaller versions of the CIC-DIS-2017

dataset, first via a novel EC-GAN method and then in the conventional way, without the help of

synthetic data. We then compared these two sets of results with another author’s results using

accuracy, false positive rate, detection rate and macro F1 score as metrics. Our results showed that

supervised classifier trained with EC-GAN can achieve significant results even when trained on as

little as 25% of the original imbalanced dataset.
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1 Introduction

The success of Network Intrusion Detection Systems (NIDS) that rely on machine/deep
learning to detect anomalies depends largely on the data on which the models are trained.
Data for deep supervised model training must be abundant, high-quality, labeled, and
well balanced. Problems arise because such datasets are very difficult and expensive to
create [Azeez et al., 2020].
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With that in mind, the network traffic data that is available for training the NIDS
classifiers is often sparse, low quality, imbalanced or just insufficient for successful
training of a Deep Learning (DL) model. Additional problem relates specifically to
the field of NIDS system, where a low false positive rate is a must. The goal of every
Intrusion Detection System (IDS) is to have as few false alarms as possible, meaning that
they recognize malicious packets only when they do occur. A lot of false positives can
cause real attacks to go unnoticed or for an attack to be overlooked by security operators
[Ho et al., 2012].

The main motivation of this paper stems from these observations, and the following
research question was derived to indicate the purpose of this work and to drive the
research: Is there a classification method available that could be utilised within the field
of network intrusion detection systems that could show competitive results compared to
other existing methods, but on the significantly smaller data-set?

This paper seeks to solve the problem of using small realistic datasets to train clas-
sifiers to be used in NIDS systems, by using the novel External Classifier Generative
Adversarial Networks (EC-GAN) method [Haque, 2021]. This semi-supervised learning
method was recently introduced as a solution for training a fully supervised classifier
by using combination of real and synthetic data for the purpose of model training on a
small, realistic data set [Haque, 2021].

In this paper we present a modified version of EC-GAN model that seeks to aid
the classification of small tabular datasets by employing the Wasserstein Conditional
Generative Adversarial Network with Gradient Penalty (WCGAN-GP) for synthetic
tabular data generation. We conducted an experiment in which we trained two identical
Deep Neural Network (DNN) classifiers on multiple versions of the CIC-IDS-2017
dataset of varying sizes. The first DNN was trained as part of the EC-GAN model with
the aid of synthetic data and the other in a conventional way, without synthetic data.
Finally, the results were evaluated and compared to other results in this field. We showed
that classifier trained as part of the EC-GAN model can achieve results similar to other
results in this field by using as much as 75% less data to do so.

Thus, the main novelty and contribution of this paper is the modified EC-GAN
method that uses WCGAN-GP for creating synthetic tabular data that is then used by
a simple DNN for supervised classification in the field of network intrusion detection
systems, with final goal of improving network traffic in Network Intrusion Detection
Systems.

2 Related Work

The use of artificial intelligence (AI) techniques in NIDS systems has achieved rapid
growth during the past decade. Ahmad et al. as well as Lio and Lang in their review
papers [Ahmad et al., 2021, Liu and Lang, 2019] mention various Machine Learning
(ML) and Deep Learning methods that are used for network attack classification. Models
like Autoencoders (AE), Deep Neural Networks, Decision Trees (DT), Naive Bayes
and Logistic Regression are just some of the algorithms that have been applied to this
problem.

Another type of AI model that has gained popularity in NIDS systems in recent
years is Generative Adversarial Networks (GAN). Because GANs are generative models,
their role in network attack classification is to supplement low-sample data sets with
artificially generated data in order to improve classification results.
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One such example is the AE-CGAN-RF presented by Lee and Park [Lee and Park,
2019] in which they use an Autoencoder network for dimension reduction and feature
extraction, conditional GAN (CGAN) for class oversampling to help combat perfor-
mance degradation caused by data imbalance, and the Random Forest (RF) algorithm
for classification. The authors demonstrated that their proposed model outperforms the
RF model trained on data over sampled using the SMOTE technique as well as the
standalone RF algorithm in terms of precision, recall, and F1 score. Another example
of GANs in NIDS is the SynGAN framework developed by Charlier, Singh, Ormaza-
bal, State and Schulzrinne [Charlier et al., 2019]. The authors successfully generated
believable Distributed Denial of Service (DDoS) attack data based on the NSL-KDD and
CIC-IDS-2017 datasets using the Wasserstein GAN with Gradient Penalty (WGAN-GP)
for synthetic data generation.

While classifiers trained with the help of GANs show promising results, those trained
without the use of synthetic data should not be overlooked. Toupas et al. [Toupas et al.,
2019] presented one such model in which they used a DNN with 8 hidden layers, uniform
initialization on input and output layers and SMOTEENN oversampling method on the
training set to achieve outstanding results.

Botnet attack detection problem within the field of industrial Internet of Things was
tackled in [Alharbi et al., 2021], where authors used Local-Global best Bat Algorithm
for Neural Networks (LGBA-NN) in order to ”select both feature subsets and hyper-
parameters for efficient detection of botnet attacks”. Authors have tested the proposed
LGBA-NN algorithm on an N-BaIoT data set and showed promising results over other
recent approaches such as weight optimization using Particle Swarm Optimization and
BA-NN. The approach did not tackle the problem of small data sets, however.

Authors in [Woźniak et al., 2020] argue that the trained classifier efficiency increases
with the amount of information in the dataset, employing the RNN-LSTM (recurrent neu-
ral network Long short-term memory) classifier with the use of the NAdam optimization
algorithm and presenting the results of 99.9957% efficiency in numerical experiments.

Amodified bio-inspiredmeta-heuristic algorithm -GreyWolf Optimization algorithm
(GWO) -was presented in [Alzaqebah et al., 2022] and argued that it enhances the efficacy
of the intrusion detection systems in detecting both normal and anomalous network traffic.
Authors have used UNSWNB-15 dataset with the Extreme LearningMachine (ELM), and
used the modified GWO to tune the ELM’s parameters. The primary goal of their paper
was detection of generic attacks in network traffic, mainly because of the restrictions of
the dataset attack types. Among other promising results presented within the paper which
show improved performances over existing methods, the method has also apparently
minimized the crossover error rate and false positive rate to less than 30%.

A research field of image recognition was fused into the filed of NIDS in [Toldinas
et al., 2021], where authors propose an approach using multistage deep learning image
recognition, evaluating the approach on UNSW-NB15 (showing 99.8% accuracy in the
detection of the generic attack) and BOUN DDos datasets (showing 99.7% accuracy
in the detection of the DDos attack and 99.7% accuracy in the detection of the normal
traffic).

Although the last few overviewed research papers show promising results on the
performance metrics within the NIDS field, they do not explicitly tackle the problem of
the sparse datasets, which is the main research problem of this paper.
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3 External Classifier GAN (EC-GAN)

The Generative Adversarial Network with an External Classifier, abbreviated as EC-
GAN, is a semi-supervised model that combines an unsupervised GAN with a supervised
classifier to aid in the classification of low sample datasets. In the original paper [Haque,
2021], the authors explain that they propose EC-GAN as a way to improve classification
utilizing GAN-generated images in restricted, fully supervised regimes. To achieve this,
the authors used a three-network model consisting of a generator, a discriminator, and a
classifier.

This three-network GAN architecture is not unique and can be found in models such
as Triple-GAN [Li et al., 2017], where authors added a third network to the GAN, a
classifier, claiming that overall network performance suffers when the discriminator is
given the task of both discrimination and classification. The EC-GAN differs from the
Triple-GAN in a fundamental way, author explains, as Triple-GAN uses a classifier to
supplement GAN training while EC-GAN uses GAN to supplement classifier training
[Haque, 2021].

The author explains their motivation by stating that there are many datasets with an
abundance of unlabeled data but there are also datasets where even unlabeled data is
difficult to come by. They use the acquisition of chest x-ray data as an example of a slow
process that requires multiple trained experts to obtain a single data point, stating that
such scenarios result in low-sample datasets that limit the effectiveness of deep-learning
algorithms. They claim that datasets like these can benefit from any new data, including
artificial data, and states that their method aims to improve classification in these specific
tasks [Haque, 2021].

The architecture of the EC-GAN model is depicted in Figure 1. The EC-GAN model
works in a way so that in every training iteration, the generator constructs fake images
from the random input vector of normalized values, much like in the Vanilla GAN
implementation. Generated images are then forwarded to the discriminator which tries to
discern whether the image is from the real dataset or was faked by the generator, learning
in the process to distinguish false from real images. In the same training iteration, the
classifier weights are updated by feeding it both real data from the sparse dataset and fake
images from the generator. The fake images have been assigned labels by pseudo-labeling
process which is necessary as artificially generated images have no labels, and labels are
required for the training of a supervised classifier. The generator and the discriminator
have their weights updated the same way they would have in the conventional GAN
implementation.

Given how the generator improves at creating fake images over time, it is natural for
it to produce lower-quality images during the initial training stages. This could pose a
problem for classifier training, seeing how it is trained on artificial data form the start of
the training process. To control the influence of pseudo-labeled data on the effectiveness
of the model the author introduces additional hyperparameters λ and t. The adversarial
weight λ, is a hyperparameter introduced to decrease the weight (influence) of fake data
on classifier training. Without this parameter, real and fake data would have an equal
impact on classifier weights update in a given training iteration, which is undesirable.
The second hyperparameter, confidence threshold (t), represents the minimum level of
confidence that the classifier must produce for the pseudo-labeling process to take place.
That is, if the largest value from the classifier Softmax output is lower than the confidence
threshold, then this prediction will not be used in pseudo-labeling process.

The author proposed an intuitive new loss function that takes into account the si-
multaneous training of the classifier on two sets of data by utilizing newly introduced
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Figure 1: Original External Classifier GAN architecture [Haque, 2021]

hyperparameters. This loss function is what differentiates the EC-GAN from other GAN
implementations in addition to the external classifier architecture.

LC(x, y, z) = CE(C(x), y) + λCE(C(G(z)), argmax(C(G(z))) > t)

In the loss function shown above, the x is the real data, y is the real data label, z is
the fake data, λ is the adversarial weight, CE is the cross-entropy function, C(x) is the
result of the real data classification, C(G(z)) is the result of the fake data classification,
and finally t represents the confidence threshold. The classifier loss function is actually
the sum of the conventional cross-entropy (CE) functions calculated for real and fake
data. By combining the two CE functions the classifier weights are updated on both fake
and real data in single training iteration.

4 Proposed solution

As mentioned in the previous section, the original EC-GAN implementation focused
on its use in image classification. For this purpose, the original author used ResNet18
convolutional neural network (CNN) as the classifier and the Deep Convolutional GAN
(DCGAN) to generate artificial images. Both of these algorithms are based on CNNs and
specialize in image processing. Seeing how our goal is to aid network traffic classification,
some modifications needed to be made to the original EC-GAN. Network traffic data
is tabular data, where each row represents a captured data point described by several
attributes (columns).

To use the EC-GAN for network traffic classification, we had to replace the original
paper’s algorithms with ones more suitable to work with tabular data. Our guiding
thought here was that, when boiled down, the EC-GAN is just any GAN with an external
classifier that uses the new loss function for updating classifier weights. Having said that,
we propose the use of a GAN that is better suited for synthetic tabular data generation
together with a classifier that is better suited for tabular data. For this purpose, we decided
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to use the WCGAN-GP as our GAN and a Deep Neural Network (DNN) with three
hidden layers as our classifier.

4.1 WCGAN-GP

The creation of synthetic tabular data is still relatively unexplored area of application
for GANs, with few examples of successful implementations, particularly in the field of
NIDS systems. However, several existing papers that have succeeded in this task have
shown good results. One such paper was presented by Walia, Tierney and McKeever in
2020 [Walia et al., 2020] in which they used WCGAN-GP to create synthetic tabular
data. The authors compared their GAN-generated data sets to those generated using
traditional oversampling methods like SMOTE. The results show that the data generated
by WCGAN-GP are comparable to real-world data and perform significantly better than
data generated by the SMOTE technique [Walia et al., 2020]. Based on the successes of
Walia, Tierney and McKeever, as well as the authors of the SynGAN paper [Charlier
et al., 2019], we decided to use the WCGAN-GP as an algorithm for synthetic tabular
data generation in this research. As possible alternative to WCGAN-GP we considered
TGAN [Xu and Veeramachaneni, 2018] and [Xu et al., 2019], which are two well-known
solutions for tabular data generation.

Conditional Wasserstein GAN with gradient penalty (WCGAN-GP) is an improved
version of the original WGAN developed by [Arjovsky et al., 2017]. The Wasserstein
GAN with gradient penalty (WGAN-GP) was developed by [Gulrajani et al., 2017] and
solves the problem of training stability that the original WGAN was suffering from.
Since then, WGAN-GP was further upgraded, made into a conditional WGAN-GP [Yu
et al., 2019] and used by other authors for, among other things, creation of synthetic
tabular data [Charlier et al., 2019, Walia et al., 2020].

As mentioned, WCGAN-GP falls under a special type of GAN called - conditional
GAN (CGAN). The distinctive feature of CGAN is that they allow targeted generation
of data by providing the generator with class labels alongside random input vector. This
is important because it opens a possibility to command the CGAN generator which data
class to create from a random vector instead of it generating data classes at random [Mirza
and Osindero, 2014]. Furthermore, Wasserstein in the name of this algorithm denotes
Wasserstein’s loss function that is used by this model’s discriminator instead of the usual
Minimax loss function [Arjovsky et al., 2017]. In the original paper, Arjovsky, Chintala,
and Bottu [Arjovsky et al., 2017] state that using this algorithm achieves training stability
and solves the problem of mode collapse which plagued earlier GAN models, as well as
making it easier to find errors and optimal hyperparameters.

The architecture of this algorithm can be seen in Figure 2. It is important to note
that in the Wasserstein GAN literature, the model discriminator is referred to as a critic
instead of a discriminator, but still performs the same role. Figure 2 shows the building
blocks of the WCGAN algorithm, that is fairly similar in structure to the vanilla GAN
implementation, with few notable differences.

The training process can also be compared to the one of vanilla GAN, the main
differences being that WCGAN-GP generator takes two inputs instead of one, the critic
uses Wasserstein loss function instead of the conventional Minimax function and an
additional hyperparameter n_critic is introduced.

The two generator inputs are the random noise vector Z and a class label L.
Based on these, the generator creates a batch of synthetic data which is then judged

by a critic for its validity. The critic is fed batches of real data and fake data in an
alternating fashion giving a binary output as a result. Important thing to mention is that
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the WCGAN-GP critic is trained n_critic times more than the generator. Meaning that if
n_critic is set to equal 5, the critic will be trained five times in this training iteration and
the generator just once. In a revised WGAN paper [Gulrajani et al., 2017], authors state
that the algorithm gives better results if the critic is trained several times more than the
generator.

Figure 2: Conditional Wasserstein GAN with gradient penalty (WCGAN-GP)

architecture

4.2 Modified EC-GAN

We propose a modification of the original EC-GAN algorithm for the task of aiding
classification in low-sample tabular datasets. Our proposed model uses WCGAN-GP for
generating believable synthetic tabular data and a simple DNN for the classification task.
Proposed models’ architecture can be seen in Figure 3. The overall setup is similar as in
the original EC-GAN with classifier being fed real data and synthetic data generated by
WCGAN-GP.

The training process for the modified EC-GAN starts the same as the training of the
WCGAN-GP itself, by feeding the random noise vector and random class label into the
generator. After the critic is trained, the batch of synthetic data is passed to the classifier,
as well as the batch of real data. The classifier is then trained on both real and fake data
using the new EC-GAN loss function to update its weights.

By using a conditional GAN for creating synthetic data we overcame the need for
pseudo-labelling process that was used in the original paper to determine the label of
newly generated image. Our method uses the same label for WCGAN-GP input and
classifier training. Our reasoning is that since the WCGAN-GP is expected to generate
data based on a combination of input noise and input label, we can use that label later as
ground truth in classifier training. This way when training the classifier on fake data, we
pass it synthetic data made by WCGAN-GP and measure its success against the same
label that was used as a seed to create that data in the step before.
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Figure 3: A proposed EC-GAN architecture

Table 1 shows the architecture and hyperparameter values for the WCGAN-GP im-
plementation of this research. The generator and the critic are both deep neural networks
made in such a way so that the critic’s number of hidden-layer neurons is decreasing,
while the generator’s is increasing, as it was done by Walia et al. in [Walia et al., 2020].
The n_critic hyperparameter mentioned before is set to 5, this value is taken from the
improved WGAN paper [Gulrajani et al., 2017].

Architecture of the DNN classifier used in our EC-GAN implementation can be seen
in Table 2. There are a few reasons why we decided to use the DNN as the classifier
for our EC-GAN model. The first reason is the excellent results obtained by Toupas et
al. [Toupas et al., 2019] in their work involving the application of DNN to the NIDS
problem. Second reason is that the DNN models are easy to train, especially when they
are not too deep. Model’s architecture is quite simple, it consists of three hidden layers
where the number of neurons is increasing towards the middle and decreasing towards
the output. The ReLU function was used for hidden layer activation while the Softmax
function was used as an output layer activation function.

Most of the hyperparameters found in these tables were obtained by extensive experi-
mentation and by trial and error until the optimal value was found. Hyperparameter values
specific to the EC-GAN method, the adversarial weight and the confidence threshold
remain the same as stated in the original paper [Haque, 2021] (0.1 and 0.2 respectively).
During the research phase, different values of these parameters were tested, but the best
results were still obtained using the original values.

5 Methodology

In this section, we used our proposed modified EC-GAN1 to train the classifier on the
CIC-IDS-2017 dataset and then evaluated our results against another same-size DNN

1 Code available at https://github.com/marzekan/EC-GAN_NIDS

https://github.com/marzekan/EC-GAN_NIDS
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Critic Generator

Input: Dataset dimension Input: 32 (random noise)

1024, Leaky ReLU (alpha=0.2) 256, Leaky ReLU (alpha=0.2), Dropout(0.3)

512, Leaky ReLU (alpha=0.2) 512, Leaky ReLU (alpha=0.2), Dropout(0.3)

256, Leaky ReLU (alpha=0.2) 1024, Leaky ReLU (alpha=0.2), Dropout(0.3)

Output - 1, Linear activation Output - Dataset dimension, Linear activation

Other hyperparameters:

Learning rate: 0.0005

Optimizer: Adam (beta_1=0.05, beta_2=0.9)

Batch size: 128

Epochs: 10

n_critic: 5

Table 1: Architecture and hyperparameters of WCGAN-GP

Architecture

Input: Dataset dimension

128, ReLU, Dropout(0.3)

256, ReLU, Dropout(0.3)

128, ReLU, Dropout(0.3)

Output: 15 - class count, Softmax

Optimizer: Adamax

Table 2: Architecture and hyperparameters of DNN model

trained without the aid of synthetic data, as well as against the results obtained by Toupas
et al. [Toupas et al., 2019].

We implemented our modified EC-GAN in Python 3.8 using the TensorFlow 2.5 and
Keras API and the model was trained on NVIDIA GeForce RTX 2070 graphics card.

5.1 Dataset analysis and pre-processing

We trained our model on the CIC-IDS-2017 dataset [CIC, 2017], which is often used
in this field for training supervised classifiers. Beside CIC-IDS-2017 there are other
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datasets used for this purpose such as KDD CUP 99 and NSL-KDD but these were
mostly replaced by CIC-IDS-2017 in more recent papers. In recent years the newer CIC-
IDS-2018 dataset has been developed which is an improvement over the CIC-IDS-2017.
Nevertheless, we decided to use the older CIC-IDS-2017 because of its widespread
use in existing literature as well as to show that the EC-GAN model can be trained on
imbalanced and low-sample tabular data.

CIC-IDS-2017 named after the Canadian Institute for Cybersecurity, was developed
with the goal of creating complete, modern set of data in the field of intrusion detection
systems [CIC, 2017]. The data set consists of network traffic data aggregated over the
period of one working week during which 14 different attacks were simulated. The set
also contains a base neutral class called BENIGN, which represents benign, or normal
traffic, during which no attack occurs. The malicious traffic and benign traffic together
produce 15 different data classes. Seeing how all of the data is assigned into classes, this
data set is a labeled data set meant for supervised learning tasks.

From Table 3 it is clear that the largest class - BENIGN, makes as much as 80% of
all the data. While the smallest class - Heartbleed, makes up less than one-thousandth
of a percent of the entire set. This imbalance in class sizes makes this dataset suitable
for testing the EC-GAN model seeing how it was conceived to deal with low-sample,
imbalanced, realistic datsets.

Count Ratio (%)

BENIGN 2271320 80.31

DoS_Hulk 230124 8.13

PortScan 158804 5.61

DDoS 128025 4.52

DoS_GoldenEye 10293 0.36

FTPPatator 7935 0.28

SSHPatator 5896 0.20

DoS_slowloris 5796 0.20

DoS_Slowhttptest 5499 0.19

Bot 1956 0.06

Web_Attack_Brute_Force 1507 0.05

Web_Attack_XSS 652 0.02

Infiltration 36 0.001

Web_Attack_Sql_Injection 21 0.0007

Heartbleed 11 0.0003

Table 3: Class sizes and their ratio in CIC-IDS-2017

To make our data suitable for training we needed to perform some pre-processing
steps, the flowchart of which can be found in Figure 4. Our process begins with data
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cleaning, where we removed rows containing missing values, as well as NULL and
infinite values. When put together, these instances account for 1358 rows which makes
up for less than 0.05% of total data. This figure being so small, we decided that it was
acceptable to remove these rows from the data, rather than dealing with them in some
other way.

Figure 4: Data preprocessing with PCA-based feature reduction workflow

After the data was cleaned, the next step was to pre-process the data further in
preparation for neural network training. Second step after data cleaning was to standardize
the data, so that that it would have a mean of 0 and a standard deviation from the mean
of 1. This step is done in preparation for the next step which is Principal Component
Analysis (PCA). By performing PCA, the feature count was reduced from the original
78, not counting the label, to 31. This reduction in data dimensionality should greatly
decrease the training complexity. Final step of pre-processing was data normalization
which scales the data to a fixed range usually from 0 to 1. Data normalization was
necessary because PCA produces data which is not on the scale of 0 to 1 and such data
is beneficial for neural network training. These specific training steps were selected after
a trial-and-error period where different combinations of pre-processing steps were tested
until satisfactory results were obtained. Data processed this way was used for training
both WCGAN-GP and DNN.

5.2 Experiment Design

This section details the process we used to obtain our results, the flowchart of which
can be seen in Figure 5. First step was data pre-processing which was discussed in the
previous section, after that the data needed to further be prepared for conducting the
experiment by creating smaller versions of the original dataset. The idea behind this
experiment is to train EC-GAN and a standalone classifier on same sets of progressively
smaller version of CIC-IDS-2017 datasets and compare the evaluation results in the end.
By doing this we hoped to show how a conventional standalone classifier acts when
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trained on smaller and smaller datasets, versus how the same classifier trained with the
help of synthetic data acts in the same situation. Synthetic data, in this case, was created
as the part of the EC-GAN model.

Figure 5: Flow chart of the conducted experiment on downsizing the CIC-IDS-2017

dataset

Downsizing of the original dataset was done as shown in Figure 6. The goal was
to create four versions of the CIC-IDS-2017 dataset, each being progressively smaller
than the previous one. It was decided these versions would contain 100%, 50%, 25%
and 10% of the original dataset. The downsizing method we used was to take a ration
of each class and downsize it by randomly deleting the percentage of data point from
it. This means that in the dataset version that represents 50% of the dataset, each class
was downsized to 50% of the original size, so that the ratio between labels would stay
the same. This method ensures that each version of the dataset contains all data classes.
There was one exception that we had to make in our downsizing method and that is to not
downsize the classes that have less than 2000 members. This accounts for five classes
(Bot, Web Attack Brute Force, Web Attack XSS, Infiltration, Web Attack SQL Injection,
Heartbleed) that were not downsized because they already had a very low sample count.
The number of 2000 was chosen arbitrarily as the limit for the downsizing method and
was based on subjective number of samples that each class in the dataset had. By not
downsizing the low-member classes we preserved all of their members for training, but
we also disturbed the class ratios which could affect the classification results. We believe
that this action would not affect the results, seeing how low-member classes still have a
minuscule ratio when compared to other more sizeable classes in the dataset.

Next step in our experiment was to train the EC-GAN classifier and the standalone
classifier on all four versions of the dataset. When all models completed training, we
made an evaluation of each one of them and compared their results across four important
metrics: accuracy, detection rate, false positive rate and F1 measure. These metrics are,
among others, the standard for testing hypotheses in statistics and are often used to
evaluate classification algorithms [Tharwat, 2021].

The evaluation of each one of the models was performed on test data (testing set),
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Figure 6: Data set reduction workflow (downsizing of the original dataset)

which makes up 25% of the total set used for training and testing. It is important to
emphasize that the test data are also supplemented with synthetic data, but only after
the training itself. The reason for this was the very low number of samples in some
classes of the training set. Unlike the training process, where synthetic data is generated
in parallel with classifier training, synthetic data for model evaluation was generated
before testing. To create synthetic data we used the same WCGAN-GP generator that
was used in EC-GAN model training.

For testing purposes, ten thousand instances of each class except the BENIGN class
were created, because it already makes up over 80% of the data set. The synthetically
generated data were then mixed with the real test set and an evaluation was performed.
Figure 7 provides an illustration for the better understanding of how synthetic data was
used in models’ evaluation.

5.3 Results

Because of the imbalanced nature of this dataset, it was important to evaluate the model’s
performance by additional metrics alongside accuracy, such as the F1 score. Table 4
depicts the evaluation results for each class through the metrics for classifier evaluation -
precision, recall and F1-score.

Table 5 presents the evaluation results of the EC-GAN classifier and a standalone
classifier as well as the results presented by Toupas et al. [Toupas et al., 2019]. The
EC-GAN classifier achieved better results across all metrics than the conventionally
trained classifier without the aid of synthetic data. Best results were achieved by EC-GAN
classifier model that was trained on 25% of the original dataset. This fact proves the
benefit of the EC-GAN model for classification in situations where not much data is
available. The model with highest accuracy of all is the one presented by Toupas et al.,
reaching 99.95% accuracy. Their results also show a remarkably low false alarm rate,
that the EC-GAN classifier also managed to reach. The metrics in which the EC-GAN
classifier leads are F1 measure and detection rate. The results of this work are successful
and show that using the EC-GAN method, a supervised classifier can be trained even
when the original data set is very small.
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Figure 7: Supplementing training and testing sets with synthetic data

Precision Recall F1-score

BENIGN .9903 .9868 .9885

Bot .9935 .9823 .9879

DDoS .9987 .9981 .9984

DoS_GoldenEye .9971 .9971 .9971

DoS_Hulk .9759 .9937 .9847

DoS_Slowhttptest .9912 .9988 .9950

DoS_slowloris .9971 .9973 .9972

FTPPatator .9986 .9993 .9990

Heartbleed 1.000 1.000 1.000

Infiltration 1.000 .9988 .9994

PortScan .9487 .9750 .9617

SSHPatator .9947 .9986 .9966

Web_Attack_Brute_Force .9993 .9666 .9827

Web_Attack_Sql_Injection 1.000 .9993 .9996

Web_Attack_XSS 1.000 .9851 .9920

Table 4: Evaluation results showing precision, recall and F1 score for each dataset class

The evaluation of the work was performed on a set of test data (testing set), which
makes up 25% of the total set used for training and testing of models. It is important to
emphasize that the test data are also supplemented with synthetic data, but only after
the training itself. The reason for this is the same as with model training - some classes
simply number too few members to be viable for training, let alone training and testing
purposes. If we take into account that some classes have only a dozen members, most
of whom (75%) are used to train models, it is clear why it is necessary to supplement
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the testing set. Unlike the training process, where synthetic data is generated in parallel
with classifier training, in the testing process synthetic data is generated before testing.
To create synthetic data, same generator from the WCGAN-GP model that was used in
EC-GAN model training was used.

DNN

(usual method)

DNN

(EC-GAN)

DNN

[Toupas et al., 2019]

(%) CIC-IDS-2017 10% 25% 50% 100% 10% 25% 50% 100%

Accuracy .9771 .9806 .9844 .9852 .9897 .9895 .9876 .9995

Macro F1 score .7266 .7247 .6351 .6289 .9924 .9995 .9901 .9410

False positive rate .0004 .0001 .0006 .0002 .0007 .0005 .0010 .0005

Detection rate .9255 .9414 .8985 .9218 .9933 .9897 .9852 .9562

Table 5: Evaluation results of two classifiers (EC-GAN and usual method) compared
with Toupas et. al. [Toupas et al., 2019]

6 Conclusion

In this paper we presented our modified version of the novel semi-supervised EC-GAN
model that is used for aiding classification of low-sample supervised tabular datasets. The
EC-GAN model developed in this paper was made with the goal of improving network
traffic in Network Intrusion Detection Systems (NIDS). Our main contribution is the
presented modified EC-GAN that uses WCGAN-GP for creating synthetic tabular data
that is then used by a simple DNN for supervised classification. We have chosen GAN
as our starting point since similar methods like SMOTE [Chawla et al., 2002] have been
shown to be less effective (see [Lee and Park, 2021] for example).

We conducted an experiment which involves four versions of the original CIC-
IDS-2017 dataset, each being progressively smaller than the other. We then trained the
EC-GAN model and a standalone DNN classifier on all four versions of the dataset to
see how each of them would act when trained on smaller and smaller datasets. In the
end we presented our results by comparing the two classifiers with results obtained by
another paper using a DNN classifier for NIDS classification. The results have shown
that the EC-GAN classifier trained on the 25% of the original dataset outperforms other
classifiers in the F1 metric with the value of 0.9995, while matching the best false positive
rate of .0005. We have shown that the EC-GAN classifier achieves better results when
trained on small datasets then the conventional DNN classifier, and that it matches the
results obtained by other authors in this field. Like any other DL model, our proposed
methodology is still affected by the input data, meaning that it is limited by the same
issues that it is trying to solve. Another limitation is that the introduction of GAN to
classifier training has increased the training complexity, more so since GANs are harder
and more expensive to train than the average standalone classifier model. In future work
we believe it would be beneficial to try out other GANs for creating synthetic tabular
data in the same EC-GAN scenario described in this paper, as well as to try and use other
classifier architectures.
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