
Journal of Universal Computer Science, vol. 28, no. 10 (2022), 1030-1057
submitted: 8/5/2022, accepted: 30/8/2022, appeared: 28/10/2022 CC BY-ND 4.0

FPGA Implementation of Fast Binary Multiplication
Based on Customized Basic Cells

Abd Al-Rahman Al-Nounou
(Department of Computer Engineering,

Jordan University of Science and Technology, Irbid, Jordan
https://orcid.org/0000-0003-2213-9540, Amalnounou15@cit.just.edu.jo)

Osama Al-Khaleel
(Department of Computer Engineering,

Jordan University of Science and Technology, Irbid, Jordan
https://orcid.org/0000-0003-0585-2619, oda@just.edu.jo)

Fadi Obeidat
(Cadence Design Systems, Austin, Texas, USA

https://orcid.org/0000-0002-8731-0989, fobeidat@cadence.com)

Mohammad Al-Khaleel
(Department of Mathematics, Khalifa University, Abu Dhabi, UAE
Department of Mathematics, Yarmouk University, Irbid, Jordan

https://orcid.org/0000-0001-6266-373X, mohammad.alkhaleel@ku.ac.ae)

Abstract: Multiplication is considered one of the most time-consuming and a key operation in
wide variety of embedded applications. Speeding up this operation has a significant impact on the
overall performance of these applications. A vast number of multiplication approaches are found
in the literature where the goal is always to achieve a higher performance. One of these approaches
relies on using smaller multiplier blocks which are built based on direct Boolean algebra equations
to build large multipliers. In this work, we present a methodology for designing binary multipliers
where different sizes customized partial products generation (CPPG) cells are designed and used
as smaller building blocks. The sizes of the designed CPPG cells are 2×2, 3×3, 4×4, 5×5, and
6×6. We use these cells to build 8×8, 16×16, 32×32, 64×64, and 128×128 binary multipliers.
All of the CPPG cells and the binary multipliers are described using the VHDL language, tested,
and implemented using XILINX ISE 14.6 tools targeting different FPGA families. The imple-
mentation results show that the best performance is achieved when cell 3×3 is used and Virtex-7
FPGA is targeted. The binary multipliers that are designed using the proposed CPPG cells achieve
better performance when compared with the binary multipliers presented in the literature. As an
application that utilizes the proposed multiplier, a Multiply-Accumulate (MAC) unit is designed
and implemented in Spartan-3E. The implementation results of the MAC unit demonstrate the
effectiveness of the proposed multiplier.

Keywords: Binary multiplier, Parallel Multiplier, Customized Cells, FPGA, VHDL
Categories: B.2.4, B.6.0
DOI: 10.3897/jucs.86282

https://orcid.org/0000-0003-2213-9540
https://orcid.org/0000-0003-0585-2619
https://orcid.org/0000-0002-8731-0989
https://orcid.org/0000-0001-6266-373X

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1031

1 Introduction

Binarymultipliers play a significant role inmicroprocessor systems [Karthikeyan and Ja-
gadeeswari, 2021][Kamrani andHeikalabad, 2021][Balasubramanian et al., 2021]. They
are considered one of the critical components when it comes to performance in var-
ious kinds of Embedded Components, Digital Signals Processors, and Logical Units
that execute different applications such as image processing, arithmetic, and filtering.
Therefore, several research studies have been done to enhance the multiplication op-
eration in order to improve the speed, the power consumption [Khaleqi Qaleh Jooq
et al., 2021][Mounica et al., 2021], as well as the area [Sakthimohan and Deny, 2021].
Likewise, the pace of modern equipment has been increased, so the demand for high-
performance systems has been rocketed [Seferlis et al., 2021]. As a result, any FP-
GAs vendors provide special Logic Cores for adders and multipliers. They use mem-
ory blocks and carry chains to enhance the performance of the multiplication operation
[Véstias, 2021]. The multiplier blocks which are embedded in the FPGA families are
fixed in the size. Therefore, bigger multipliers are built using a different number of these
blocks as shown in [Langhammer and Pasca, 2021, Singh et al., 2021]. There are three
main steps to perform the conventional multiplication operation as presented in [Mao
et al., 2021][Hasan and Kort, 2007]. These steps are the partial products generation, the
partial products reduction, and finally, the partial products summation to obtain the final
product. For example, the authors in [BN and HG, 2021] show that the basic array mul-
tiplier for twoN -bit binary numbers is designed such that each bit in the multiplicand is
multiplied by each bit in the multiplier to generateN2 1-bit wide partial products. This
requiresN2 AND gates. Full adders are then used in a two-dimensional structure to add
the partial products. However, fewer and larger size partial products can be obtained
by processing more than one bit from the multiplicand and the multiplier at a time. For
instance, processing two bits from the multiplicand and the multiplier results in having
N2

4 4-bit wide partial products. Similarly, the resulting partial products are to be added
to generate the final product. However, larger adders are needed as the partial products
are wider in this case.

Generally, binary multipliers are categorized into two main categories: parallel and
serial (iterative) multipliers. In both cases, the optimization of the partial products gen-
eration and the summation of the partial products have a big impact on the performance
of the multiplier [Rafiee et al., 2021]. Partial products can be generated serially or in
parallel by using AND gates at the bit level or by using customized partial products gen-
eration (CPPG) cells at higher levels. The partial products summation phase is directly
related to the way how they are generated. The array and tree addition schemes are used
for the parallel generation case. While serial addition or accumulation fits with the serial
generation case.

Much larger hardware is required in the parallel multipliers in order to reduce the
multiplication latency. To generate the 1-bit wide or the n-bit wide partial products con-
currently in the parallel multipliers, many AND gates or CPPG cells are required. In this
case, a parallel addition structure, that uses many adders, can be used to obtain the final
product [Christilda and Milton, 2021][Lee and Burgess, 2003][Beuchat and Tisserand,
2002] in a shorter time compared to the iterative multipliers.

This work designs high-speed and low-area binary multipliers to be used in any
application where the multiplication operations have a big impact on the overall perfor-
mance of the application. Different size customized partial products generation (CPPG)
cells are proposed to be used as building blocks in the binary multipliers. These CPPG

1032 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

cells are designed following the traditional logic design and Boolean algebra. The im-
pact of these cells on the performance is studied by using them in designing different
size binary multipliers and testing their performance.

Our proposed multipliers are exact multipliers that produce exact results. They are
not approximate multipliers. Approximate multipliers are smaller and faster than exact
multipliers. However, they produce inexact results. Therefore, they are suitable for only
applications that do not require exact results. If the approximate multiplier gives results
far away from the exact ones, an application that uses this multiplier will not give the ex-
pected output. Thus, the efficiency of an approximate multiplier that is being used in an
application must be verified such that the application still works properly and correctly.
This is not the case with the exact multipliers, which can be used in any application, and
the expected output of the application is still achieved.

The rest of this paper is organized as follows: Section 2 provides a summary of some
related works in the literature. Section 3 provides a detailed explanation of the design
methodology of the CPPG cells and how they are used to design binary multipliers.
The experimental results and the comparisons are presented and discussed in Section 4.
Finally, the conclusions are provided in Section 5.

2 Background and literature review

Many research studies in the literature address the binary multiplication operation and
its implementation. Some of these studies focus on improving the multiplication process
by the enhancement of the partial products generation only. On the other hand, there are
several research studies that improve the multiplication process by enhancing the partial
products generation and the partial products summation.

In [Asati and Chandrashekhar, 2009], the authors explore a new structure for multi-
plying two binary numbers using a hierarchical design approach. They design a (16×16)
unsignedmultiplier which is considered an array of arraymultiplier that has better perfor-
mance than the array multiplier. This category of the multiplier is built based on smaller
multiplication cells. A (2×2) multiplication cell is designed using the traditional combi-
national logic circuit design approach where truth table and Karnaugh map are used to
generate optimized Boolean equations that model the design. The (2×2) multiplication
cell is then used to design a (4×4) that is used to design an (8×8) multiplication cell.
Finally, the (8×8) multiplication cell is used to design a (16×16) binary multiplier. The
design is implemented using CMOS technology and is compared with the 16-bit Booth
encodedWallace tree multiplier, which is implemented in [Fadavi-Ardekani, 1993]. The
design shows an improvement in terms of latency and power consumption with a dou-
bled number of transistors. However, they do not investigate arbitrary or bigger multi-
pliers other than the (16×16) multiplier.

The authors in [Das and Rahaman, 2010], pursue the same technique that is fol-
lowed in [Asati and Chandrashekhar, 2009]. They use the 2×2 multiplier cell to design
signed numbers binary multiplier. The partial products are added using parallel addition
and the design is compared with the Baugh Wooley multiplier which is implemented
in [Baugh and Wooley, 1973]. The proposed methodology provides better performance
with larger area and higher power dissipation. Also, their proposed design expends more
power rather than the Baugh Wooley multiplier. Similarly, they do not generalize their
method for larger multipliers. Only 16×16 multiplier is investigated as in [Asati and
Chandrashekhar, 2009].

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1033

A 128×128 multiplier is proposed in [Nagaraju and Reddy, 2014]. The authors in-
vest the technique of ancient mathematics to implement and enhance their multiplier.
They design the 128×128 multiplier by using 64×64multiplier blocks, which are built
from 3.96 ns 4×4 Vedic multiplier blocks. Better performance is achieved in compari-
son to the conventional multipliers.

An energy-efficient radix-16 Booth multiplier is proposed in [Mounica et al., 2021].
The design is used for both signed and unsigned numbers. The delay and energy are
improved by optimizing the partial product generation unit. Two architectures of the
multiplier are presented. One is non-pipelined and the other is pipelined. The signed,
unsigned and combined (signed/unsigned) versions of the multiplier are investigated.

A sequential 8× 8 multiplier is presented in [Hameed and Kathem, 2021]. An itera-
tive addition approach is defined such that the number of iterative additions, required to
generate the final product, is reduced. All of the intermediate shift operations, required
in the conventional serial multiplication, are replaced by only one shift operation applied
to the final result. Both of the proposed and conventional multipliers are implemented
and compared in terms of time delay.

The work in [Fonseca et al., 2005] puts more effort to enhance the performance of
binary multiplication using carry-save addition array structure presented in [Kim et al.,
1998]. On the other hand, the authors use a type of 2×2 cell to generate the partial prod-
ucts and they build a hybrid multiplier. Their approach is based on the 2’s complement
encoding. Signed and unsigned operands are investigated. The authors compare their
results with the modified Booth multiplier in terms of power, area, and delay. They use
the Altera Quartus II and target the Altera Stratix FPGA family. The power consumption
is reduced by 25% with area and delay penalty.

A radix-4multiplexer-based array binarymultiplier is presented in [Al-Khaleel et al.,
2006]. The multiplier is used in designing a scalable and large moduli multiplier for
public-key cryptographic systems. The authors target Virtex-4 FPGA family. To fit up
to 512-bit modular multiplications on a single FPGA device, the authors use a novel
partitioning and pipeline folding scheme.

A new architecture for the 8-bit Radix-4 modified Booth multiplier is presented in
[Rafiq et al., 2021]. The proposed multiplier runs at a frequency of 500 MHz with low
power and delay. A new encoder is used to reduce the first partial product array circuitry.
The proposed multiplier is synthesized using Cadence Virtuoso and 90nm process tech-
nology.

The authors in [Singh and Singh, 2016a] utilize thework in [Singh and Singh, 2016b]
to implement a 16×16 Vedic multiplier based on investing the architecture of the Brent
Kung adder. The authors design a 2×2 Vedic multiplier and use it to build a 4×4 Vedic
multiplier. Then, they used the 4×4 Vedic multiplier to design an 8×8 Vedic multiplier.
Finally, they use four blocks of the 8×8 Vedic multiplier to design their 16×16 Vedic
multiplier. They compare their work with Vedic multiplier using MUX-based adder.

A (64-bit) Vedic multiplier is presented in [Karthik et al., 2021]. The authors use
half adders for adding the partial products. They achieve better performance in area and
delay in comparison with the Array and Booth multipliers.

The authors in [Atre and Alshewimy, 2017] utilize both Wallace Tree and Modified
Booth’s Algorithm structure for designing different size multipliers. The sizes of the
operands are 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit.Wallace Tree decreases the number
of sequential summation steps to achieve better speed. They achieve an improvement in
the time delay with some area penalty.

A technique of building a larger multiplier from smaller blocks is used in [Jais and
Palsodkar, 2016]. A 64-bit Vedic multiplier is designed starting based on a 2-bit Vedic

1034 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

multiplier. The authors target three different FPGA families: Spartan-6, Virtex-5, and
Virtex-6. Verilog HDL is used to describe the designs and the results are compared with
three familiar multipliers: Karatsuba, Vedic-Karatsuba, and Optimized Vedic multiplier.

Parallel computation of the partial products is investigated in [Naqvi, 2017] to design
a 64-bit Vedic multiplier. The Carry-save adder and concatenation technique are used to
enhance the performance of this multiplier. Three different FPGA devices (Spartan-3,
Virtex-5, and Virtex-6) are targeted and a comparison between the proposed multiplier
and four related works is made.

A carry-save adder is used instead of a parallel adder to design a modified Vedic
multiplier for binary numbers in [Akhter and Chaturvedi, 2019]. The authors use four
(8×8-bit) Vedic multiplier blocks and 16-bit carry-save addition to build their 16×16
bit modified multiplier.

An 8-bit Vedic multiplier by using Urdhva Tiryaghyam sutra is proposed in [Chan-
drashekara and Rohith, 2019]. Amodified carry-save adder is used in the addition phase.
The work is compared against the array, the Wallace Tree, and the Booth multipliers.
The proposed design shows better area and delay results compared with similar works
in literature.

An approximate multiplier, which is efficiently deployed on FPGAs, is presented in
[Van Toan and Lee, 2020]. The main goal is to achieve low power, small area, and high
speed; while maintaining acceptable accuracy such that an application that utilizes the
multiplier still gives proper output. An image processing application is used to verify
the effectiveness and applicability of the multiplier.

The authors of [Moss et al., 2019] present a two-speed, radix-4, serial-parallel mul-
tiplier. The latency of their design depends on the multiplier value. This is because their
multiplier is basically a modified radix-4 Booth multiplier that adds only the nonzero
Booth encodings and skips over the zero operations. VerilogHDL and Intel Cyclone-
V FPGA are used to implement the proposed multiplier. The implementation results,
depending on the input set, show better performance over the standard parallel Booth
multiplier in terms of area-time.

After a careful study of the related work presented in the literature, one can conclude
that some works design a 2×2 multiplication cell using the traditional logic design and
Boolean algebra. The 2×2 cell is used in these works to generate the partial products in a
binary multiplier. Some works use such cell to design larger cells like 4×4 and 8×8 and
then use them to design larger multipliers. However, up to the knowledge of the authors,
no work in literature builds cells larger than 2×2 using the traditional logic design and
Boolean algebra and uses them in designing large binary multipliers. Especially, when
it comes to larger bit-width multipliers such as the 128×128 multiplier. Therefore, in
this work, different sizes of customized partial products generation (CPPG) cells are
designed using the traditional logic design and Boolean algebra. The CPPG cells are
then used in designing 8×8, 16×16, 32×32, 64×64, and 128×128 binary multipliers.
VHDL description for each CPPG cell and for each multiplier is developed. The VHDL
is portable and can be implemented in any FPGA or ASIC platform. However, since
we only have access to Xilinx platform, our implementations are done in Xilinx FPGAs
using Xilinx CAD tools.

3 The proposed binary multipliers

In the proposed methodology, five customized partial products generation cells (CPPG)
are designed using the traditional digital logic design approach, which is used in [Al-

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1035

Khaleel et al., 2011a], [Al-Khaleel et al., 2011b], [Al-Khaleel et al., 2013], and [Al-
Khaleel et al., 2015] to obtain optimized Boolean equations. The optimization guaran-
tees a minimal number of product terms and a minimal number of literals within each
term. The number of the product terms affects the number of the AND gates, the num-
ber of the OR gates, and the size of the OR gates. While the number of literals within
each term affects the size of the AND gates. The sizes of the proposed CPPG cells are
2× 2, 3× 3, 4× 4, 5× 5, and 6× 6. A r× r CPPG cell is used to multiply r bits from
the multiplier by r bits from the multiplicand to generate one partial product of 2r bits.
Multiple instances of each cell are used to concurrently generate the partial products in
the binary multiplier. The generated partial products are then added to generate the final
product. The cells are used to design binary multipliers with different operand sizes.

3.1 Using the 2×2 CPPG cell to design n×mMultiplier

The optimized Boolean functions for the 2× 2 CPPG cell are given in Equation 1. This
cell multiplies the 2-bit numbers (a1a0 and b1b0) and produces the 4-bit partial product
c3c2c1c0.

c3 = a1a0b1b0,

c2 = a1b1b̄0 ∨ a1ā0b1b0,

c1 = ā1a0b1 ∨ a1b̄1b0 ∨ a1ā0b1b0 ∨ a0b1b̄0,

c0 = a0b0.

(1)

To generalize the approach for any multiplier size, the sizes of the operands of the multi-
plier A and B are considered to be n-bit andm-bit, respectively. Both n andmmust be
multiple of 2 integers in this case. If this condition is not valid, then zeros can be padded
to the left of the number such that the sizes of the operands are multiple of 2. A can be
represented as shown by Equation 2.

A = (An−1An−2An−3An−4 . . . A3A2A1A0)2. (2)

Furthermore, A can be decomposed as given in Equation 3.

A = (An−1An−2 00 . . . 00︸ ︷︷ ︸
(n−2)zeros

)2 + (00An−3An−4 00 . . . 00︸ ︷︷ ︸
(n−4)zeros

)2

+ · · ·+ (00 . . . 00︸ ︷︷ ︸
(n−4)zeros

A3A200)2 + (00 . . . 00︸ ︷︷ ︸
(n−2)zeros

A1A0)2.
(3)

Replace the k zeros on the right side of each term with 2k to get Equation 4.

A = 2n−2(An−1An−2)2+2n−4(An−3An−4)2+ · · ·+22(A3A2)2+20(A1A0)2. (4)

Let X k
2

= (Ak+1Ak)2; k = 0, 2, 4, . . . , n − 2. Then A can be expressed as in
Equation 5.

A = 2n−2Xn
2 −1 + 2n−4Xn

2 −2 + · · ·+ 22X1 + 20X0 =

n
2 −1∑
i=0

22iXi. (5)

1036 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

Similarly,B can be represented and decomposed as given by Equations 6 and 7, respec-
tively.

B = (Bm−1Bm−2Bm−3Bm−4 . . . B3B2B1B0)2, (6)

B = (Bm−1Bm−2 00 . . . 00︸ ︷︷ ︸
(m−2)zeros

)2 + (00Bm−3Bm−4 00 . . . 00︸ ︷︷ ︸
(m−4)zeros

)2

+ · · ·+ (00 . . . 00︸ ︷︷ ︸
(m−4)zeros

B3B200)2 + (00 . . . 00︸ ︷︷ ︸
(m−2)zeros

B1B0)2.
(7)

Replace the k zeros on the right side of each term with 2k to get Equation 8.

B = 2m−2(Bm−1Bm−2)2 + 2m−4(Bm−3Bm−4)2 + · · ·+ 22(B3B2)2

+ 20(B1B0)2.
(8)

Let Y k
2
= (Bk+1Bk)2; k = 0, 2, 4, . . . ,m − 2. Then B can be expressed by Equation

9.

B = 2m−2Ym
2 −1 + 2m−4Ym

2 −2 + · · ·+ 22Y1 + 20Y0 =

m
2 −1∑
j=0

22jYj . (9)

Hence, the final product C can be obtained by Equation 10.

C = A×B

=

n
2 −1∑
i=0

22iXi ×
m
2 −1∑
j=0

22jYj

=

n
2 −1∑
i=0

m
2 −1∑
j=0

22iXi × 22jYj =

n
2 −1∑
i=0

m
2 −1∑
j=0

22(i+j)XiYj .

(10)

XiYj represents the partial product number n
2 i + j, which is represented as PPn

2 i+j .
Therefore, C can be represented in terms of the partial products as in Equation 11.

C =

n
2 −1∑
i=0

m
2 −1∑
j=0

22(i+j)PPn
2 i+j . (11)

The total number of the partial products before shifting is n
2 × m

2 = mn
22 . These partial

products are PPni
2 +j for (i, j) = (0, 0), (0, 1), . . . , (0, m

2 − 1), (1, 0), (1, 1), . . . , (n2 −
1, 0), (n2 −1, 1), . . . , (n2 −1, m

2 −1). As illustrated in Figure1, which presents the struc-
ture of an 8× 8 multiplier using the 2×2 CPPG cell, each of these none shifted partial
products is generated using one 2×2 CPPG cell in Level0 of the structure. Therefore,
the total number of the 2×2 CPPG cells that are required to generate the none shifted
partial products is mn

22 . These none shifted partial products are shifted and then added in
the addition stage according to Equation 11. The shifted partial products are the outputs
from Level0 of the structure. They are obtained using Equation 12 where the super-
script l represents the level that outputs the shifted partial products, which is in this case

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1037

Level0 (i.e. l = 0).

PP l
n
2 i+j = 22(i+j)PPn

2 i+j ,

for l = 0 and (i, j) = (0, 0), (0, 1), . . . , (0, m
2 − 1), (1, 0), (1, 1), . . . ,

(n2 − 1, 0), (n2 − 1, 1), . . . , (n2 − 1, m
2 − 1).

(12)

Y
2

X
0

Y
3

X
1

Y
0

X
1

Y
1

X
1

Y
2

X
1

Y
3

X
2

Y
0

X
2

Y
1

X
2

Y
2

X
2

Y
3

X
3

Y
0

X
3

Y
1

X
3

Y
2

X
3

Y
3

0
2

4
6

2
4

6
6

8
10

6
8

10
12

416
14

12
14

12
10

10
10

8
6

8
6

4

P
P

0
1

P
P

0
2

P
P

0
3

P
P

0
4

P
P

0
5

P
P

0
6

P
P

0
7

P
P

0
8

P
P

0
9

P
P

0
10

P
P

0
11

P
P

0
12

P
P

0
13

P
P

0
14

P
P

0
15

P
P

15
P

P
14

P
P

13
P

P
12

P
P

11
P

P
10

P
P

9
P

P
8

P
P

7
P

P
6

P
P

5
P

P
4

P
P

0
P

P
1

P
P

2
P

P
3

2
2

4

2
2

4

4
8

8
12

10

P
P

1
0

P
P

1
1

P
P

1
2

P
P

1
3

P
P

1
4

P
P

1
5

P
P

1
6

16P
P

1
7

P
P

2
0

P
P

2
1

P
P

2
2

16P
P

2
3

16

16

P
P

3
1

P
P

3
0

P
P

4
0

P
P

0
0 2

2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2

4

2
2Level1

Level2

Level3

: C
P

P
G

 C
ell

: A
ddition and S

hifting U
nit

Level4

Level0

6
10

8
12

10
14

12

10
12

14

12

X
0

Y
0

X
0

Y
1

X
0

Figure 1: The structure of an 8× 8 multiplier using the 2×2 CPPG cell.

1038 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

For the addition phase, the tree structure is adopted to enhance the speed as illus-
trated in Figure 1. The shifted partial products from Level0 are inputs to the first level
(Level1) of the addition phase. The total number of inputs to Level1must be powers of
2. Therefore, if the number of the shifted partial products is not powers of 2, additional
partial products with 0 values must be padded with the shifted partial products to form
the inputs to Level1. The number of the additional partial productsD is given by Equa-
tion 13. This means that the total number of inputs to Level1 is mn

22 +D. It should be
pointed out that padding the 0 values additional partial products do not affect the per-
formance or the area of the design as the design tools trim out any none used hardware.
For example, if an adder is instantiated within the VHDL code and it happens that the
inputs to the adder have 0 values, then the tool trims out this adder and it will not be part
of the final design. The goal of having the number of the inputs to Level1 powers of 2
is to maintain a regular structure that facilitates generic VHDL coding.

D = 2⌈(log2
mn
22

)⌉ − mn

22
(13)

All of the shifted partial products from Level0 and the additional padded partial
products are added in the first level (Level1) of the addition phase such that each two
consecutive partial products are added using one binary adder. That isPP 0

1 is addedwith
PP 0

0 , PP 0
3 is added with PP 0

2 , and so on. In general, PP 0
2t is added with PP 0

2t+1 for
t = 0, 1, 2, . . . , (mn

22 +D)/2− 1. There are (mn
22 +D)/2 output results from Level1

of the addition phase, which are the inputs to Level2. Hence, there are (mn
22 + D)/4

output results from Level2 of the addition phase, which are the inputs to Level3 and so
on. In general, for a given level l in the addition stage, there are (mn

22 +D)/2l−1 inputs
and (mn

22 + D)/2l outputs. This means that the number of adders in a given level l is
(mn

22 +D)/2l. The outputs of a given level l in the addition phase are obtained based on
equation 14.

PP l
t = (PP l−1

(2t+1) + PP l−1
2t), for t = 0, 1, 2, 3, . . . , (

mn

22
+D)/2l − 1. (14)

In the last level (l = L), there are two results to be added. Hence, for the last level,
it can be stated that ((mn

22 +D)/2L−1 = 2). It can be easily shown that solving for L,
which is an integer that represents the number of the levels in the addition phase, one
gets L = log2(

mn
22 +D).

3.2 Using the 3×3 CPPG cell to design n×m multiplier

The optimized Boolean functions for the 3 × 3 CPPG cell are obtained in a similar
way to that used for the 2× 2 CPPG cell. They are presented in Equation 15. This cell
multiplies the 3-bit numbers (a2a1a0 and b2b1b0) and produces the 6-bit partial product
c5c4c3c2c1c0.

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1039

c5 = a2a1a0b2b0 ∨ a2a0b2b1b0 ∨ a2a1b2b1,

c4 = a2ā1a0b2b̄1b0 ∨ a2ā1ā0b2b1b0 ∨ ā2a1a0b2b1 ∨ a2a1b̄2b1b0,

∨ a2ā0b2b̄1b0 ∨ a2ā1b2b1b̄0 ∨ a2a1a0b1b0 ∨ a2b2b̄1b̄0,

c3 = ā2a1a0b̄2b1b0 ∨ a2ā1a0b2b̄1b0 ∨ ā2a1b2b̄1 ∨ a2ā1ā0b2b1b0 ∨ a2ā1b2b1b̄0,

∨ a2ā1b̄2b1b0 ∨ ā2a1ā0b2 ∨ a2b̄2b1b̄0 ∨ a1b2b̄1b̄0 ∨ a1ā0b2b0 ∨ a2a0b1b̄0,

c2 = a2ā1ā0b2b1b0 ∨ a2ā0b2b̄1b0 ∨ a2ā1b̄2b1b0 ∨ ā2a1ā0b1 ∨ a2b̄2b̄1b0,

∨ ā1a0b2b̄0 ∨ a1b̄2b1b̄0 ∨ a1ā0b1b̄0 ∨ a0b2b̄1b̄0 ∨ a2a0b̄2b0 ∨ ā2a0b2b0,

c1 = ā1a0b1 ∨ a1ā0b0 ∨ a1b̄1b0 ∨ a0b1b̄0,

c0 = a0b0.

(15)

For generality, the sizes of the operandsA andB are assumed to be n-bit andm-bit,
respectively. Both n andm should be multiple of 3 integers in this case. If this condition
is not valid, then again, zeros are padded to the left of the number to make the size of
the operands multiple of 3. A can be represented as given by Equation 16.

A = (An−1An−2An−3 . . . A2A1A0)2. (16)

Moreover, A can be decomposed as shown in Equation 17.

A = (An−1An−2An−3 000 . . . 000︸ ︷︷ ︸
(n−3)zeros

)2 + (000An−4An−5An−6 000 . . . 000︸ ︷︷ ︸
(n−6)zeros

)2

+ · · ·+ (000 . . . 000︸ ︷︷ ︸
(n−6)zeros

A5A4A3000)2 + (000 . . . 000︸ ︷︷ ︸
(n−3)zeros

A2A1A0)2.
(17)

Replacing the k zeros on the right side of each term with 2k implies Equation 18.

A = 2n−3(An−1An−2An−3)2 + 2n−6(An−4An−5An−6)2 + · · ·+ 23(A5A4A3)2

+ 20(A2A1A0)2.
(18)

AssumeX k
3
= (Ak+2Ak+1Ak)2; k = 0, 3, 6, . . . , n− 3, then A can be expressed as in

Equation 19.

A = 2n−3Xn
3 −1 + 2n−6Xn

3 −2 + · · ·+ 23X1 + 20X0 =

n
3 −1∑
i=0

23iXi. (19)

Similarly, B can be represented and decomposed as given by Equations 20 and 21, re-
spectively.

B = (Bm−1Bm−2Bm−3 . . . B2B1B0)2, (20)

1040 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

and

B = (Bm−1Bm−2Bm−3 000 . . . 000︸ ︷︷ ︸
(m−3)zeros

)2 + (000Bm−4Bm−5Bm−6 000 . . . 000︸ ︷︷ ︸
(m−6)zeros

)2

+ · · ·+ (000 . . . 000︸ ︷︷ ︸
(m−6)zeros

B5B4B3000)2 + (000 . . . 000︸ ︷︷ ︸
(m−3)zeros

B2B1B0)2.

(21)

Replacing the k zeros on the right side of each term with 2k leads to Equation 22.

B = 2m−3(Bm−1Bm−2Bm−3)2 + 2m−6(Bm−4Bm−5Bm−6)2

+ · · ·+ 23(B5B4B3)2 + 20(B2B1B0)2.
(22)

Assume Y k
3
= (Bk+2Bk+1Bk)2; k = 0, 3, 6, . . . ,m − 3 then B can be expressed by

Equation 23.

B = 2m−3Ym
3 −1 + 2m−6Ym

3 −2 + · · ·+ 23Y1 + 20Y0 =

m
3 −1∑
j=0

23jYj . (23)

Hence, the final product C can be obtained by Equation 24.

C = A×B =

n
3 −1∑
i=0

23iXi ×
m
3 −1∑
j=0

23jYj =

n
3 −1∑
i=0

m
3 −1∑
j=0

23iXi × 23jYj

=

n
3 −1∑
i=0

m
3 −1∑
j=0

23(i+j)XiYj .

(24)

XiYj represents the partial product number n
3 i + j, which is represented as PPn

3 i+j .
Therefore, C can be represented in terms of the partial products as in Equation 25.

C =

n
3 −1∑
i=0

m
3 −1∑
j=0

23(i+j)PPni
3 +j . (25)

In this case, the total number of the partial products before shifting is n
3 × m

3 = mn
32 .

These partial products are:
PPn

3 i+j for (i, j) = (0, 0), (0, 1), . . . , (0, m
3 − 1), (1, 0), (1, 1), . . . , (n3 − 1, 0), (n3 −

1, 1), . . . , (n3 − 1, m
3 − 1).

Again, the process is illustrated in Figure 2 where the structure of an 8 × 8 multiplier
using the the 3×3 CPPG cell is presented. Since 8 is not multiple of 3, a 0 is padded
to the left of the most significant bit of multiplier and to the left of the most significant
bit of the multiplicand. As a result both n andm become 9-bit in size. Each of the none
shifted partial products is generated using one 3×3 CPPG cell inLevel0 of the structure.
Therefore, the total number of the 3×3 CPPG cells that are required to generate the none
shifted partial products is mn

32 . These none shifted partial products are shifted and then
added in the addition stage according to Equation 25. The shifted partial products are

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1041

the outputs from Level0 of the structure. They are obtained using Equation 26 where
the superscript l represents the level that outputs the shifted partial products, which is
in this case Level0 (i.e. l = 0).

PP l
n
3 i+j = 23(i+j)PPn

3 i+j ,

for l = 0 and (i, j) = (0, 0), (0, 1), . . . , (0, m
3 − 1), (1, 0), (1, 1), . . . ,

(n3 − 1, 0), (n3 − 1, 1), . . . , (n3 − 1, m
3 − 1).

(26)

The number of the shifted partial products from Level0 is 9 which is not powers of
2. Therefore, additional partial products with 0 values must be padded with the shifted
partial products to form the inputs to Level1. The number of the additional partial prod-
uctsD is given by Equation 27. In this caseD = 7. This means that the total number of
inputs to Level1 is mn

32 +D = 16.

D = 2⌈(log2
mn
32

)⌉ − mn

32
(27)

Again, all of the shifted partial products from Level0 and the additional padded
partial products are added in the first level (Level1) of the addition phase such that each
two consecutive partial products are added using one binary adder. That is PP 0

1 is added
with PP 0

0 , PP 0
3 is added with PP 0

2 , and so on. In general, PP 0
2t is added with PP 0

2t+1

for t = 0, 1, 2, . . . , (mn
32 +D)/2−1. There are (mn

32 +D)/2 output results fromLevel1
of the addition phase, which are the inputs to Level2. Hence, there are (mn

32 + D)/4
output results from Level2 of the addition phase, which are the inputs to Level3 and so
on. In general, for a given level l in the addition stage, there are (mn

32 +D)/2l−1 inputs
and (mn

32 + D)/2l outputs. This means that the number of adders in a given level l is
(mn

32 +D)/2l. The outputs of a given level l in the addition phase are obtained based on
equation 28.

PP l
t = (PP l−1

(2t+1) + PP l−1
2t), for t = 0, 1, 2, 3, . . . , (

mn

32
+D)/2l − 1. (28)

In the last level (l = L), there are two results to be added. Hence, for the last level,
it can be stated that ((mn

32 +D)/2L−1 = 2). It can be easily shown that solving for L,
which is an integer that represents the number of the levels in the addition phase, one
gets L = log2(

mn
32 +D).

It should be emphasized again that all of the extra unnecessary hardware, due to the
padded 0’s to the operands or the padded 0 values additional partial products, is trimmed
out, by the CAD tool, in the final design. The final design after the tool trims out the
unnecessary hardware is shown in Figure 3

We follow the same previous techniques for designing binary multipliers using 4×4,
5×5 and 6×6 CPPG cells1.

The aforementioned technique is generalized in Algorithm 1 for any CPPG cell size
r × r and arbitrary operands sizes n andm.
1 The VHDL code for each of the CPPG cells is posted at [Al-Nounou, 2022] for the community.

1042 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

Algorithm 1 Using r × r CPPG cell to design n×mMultiplier.
Input: Operand A, Operand B, n : size of A,m : size of B, r : size of CPPG cell
Output: C = A×B
Require: n,m multiple of r, otherwise, zeros padded to the left of the number

1: if A = An−1An−2An−3An−4 . . . A3A2A1A0 then
2: A = 2n−rAn−1An−2An−3 . . . An−r+2An−r+1An−r

+2n−2rAn−r−1An−r−2An−r−3 . . . An−2r+2An−2r+1An−2r

+ · · ·+ 22rA3r−1A3r−2A3r−3 . . . A2r+2A2r+1A2r

+2rA2r−1A2r−2A2r−3 . . . Ar+2Ar+1Ar

+20Ar−1Ar−2Ar−3 . . . A2A1A0

3: end if
4: if B = Bm−1Bm−2Bm−3Am−4 . . . B3A2B1B0 then
5: B = 2m−rBm−1Bm−2Bm−3 . . . Bm−r+2Bm−r+1Bm−r

+2m−2rBm−r−1Bm−r−2Bm−r−3 . . . Bm−2r+2Bm−2r+1Bm−2r

+ · · ·+ 22rB3r−1B3r−2B3r−3 . . . B2r+2B2r+1B2r

+2rB2r−1B2r−2B2r−3 . . . Br+2Br+1Br

+20Br−1Br−2Br−3 . . . B2B1B0

6: end if
7: for s = 1, 2, 3, . . . , n

r − 2, n
r − 1, n

r do
8: k = n− rs
9: X k

r
= Ak+r−1Ak+r−2Ak+r−3 . . . Ak+2Ak+1Ak

10: A =
∑n

r −1
i=0 2riXi

11: end for
12: for s = 1, 2, 3, . . . , m

r − 2, m
r − 1, m

r do
13: k = m− rs
14: Y k

r
= Bk+r−1Bk+r−2Bk+r−3 . . . Bk+1Bk+1Bk

15: B =
∑m

r −1
j=0 2rjYj

16: end for
17: D = 2⌈(log2

mn
r2

)⌉ − mn
r2

18: for i = 0 to n
r − 1 do

19: for j = 0 to m
r − 1 do

20: PPni
r +j = XiYj

21: PP 0
n
2 i+j = 22(i+j)PPn

2 i+j

22: end for
23: end for
24: Pad D additional partial products of 0 values to the shifted partial products.
25: L = log2(

mn
r2 +D)

26: for l = 1 to L do
27: for t = 0 to (mn

r2 +D)/2l − 1 do
28: PP l

t = (PP l−1
(2t+1) + PP l−1

2t)
29: end for
30: end for
31: C = PPL

0 ((m+ n)− 1 downto 0)

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1043

X
2

Y
1

X
2

Y
2

0
3

6
3

6
9

6

P
P

0
1

P
P

0
2

P
P

0
3

P
P

0
4

P
P

0
5

P
P

0
6

P
P

0
7

P
P

0
8

P
P

8
P

P
7

P
P

6
P

P
5

P
P

4
P

P
0

P
P

1
P

P
2

P
P

3

12
9

P
P

1
0

P
P

1
1

P
P

1
2

P
P

1
3

P
P

1
4

P
P

1
5

P
P

1
6

P
P

1
7

P
P

2
0

P
P

2
1

P
P

2
2

P
P

2
3

P
P

3
1

P
P

3
0

P
P

4
0

P
P

0
0 X

0
Y

0
X

0
Y

1
X

0
Y

2
X

1
Y

0
Y

1

3
3

6

3
3

6

3
3

6

3
3

6

3
3

6

3
3

6

3
3

6

Level1

Level2

Level3

: C
P

P
G

 C
ell

: A
ddition and S

hifting U
nit

Level4

Level0

0
0

0
0

0
0

0

3
3

6

3
3

618
15

12
15

12
9

9
6

12

9
12

15
15

18

18
16

12

16

6
6

6

6

18

18

X
1

X
1

Y
2

X
2

Y
0

Figure 2: The structure of an 8× 8 multiplier using the 3×3 CPPG cell.

4 Results and discussions

The proposed CPPG cell presented in Section 3 are used to design 8×8, 16×16, 32×32,
64×64, and 128×128 binary multipliers. All of the proposed CPPG cells and the de-
signed binary multipliers are described and functionally verified using VHDL and Xil-
inx ISE 14.6 simulation tools. In addition, the proposed CPPG cells and the designed

1044 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

X2Y0X2Y1X2Y2

0363696

PP01PP02PP03PP04PP05PP06PP07PP08

PP8 PP7 PP6 PP5 PP4 PP0PP1PP2PP3

12 9

PP10PP11PP12PP13

PP20PP21

PP30

PP40

PP00

X0Y0X0Y1X0Y2X1Y0Y1

33

6

33

6

33

5

33

6

33

6

33

5

33

5

: CPPG Cell

: Addition and Shifting Unit

33

5

33

4

16 14 11 14 12 9 9 611

9111414

15 12

15

16

Level0

Level1

Level2

Level3

Level4

X1X1Y2

Figure 3: The structure of an 8× 8 multiplier using the 3×3 CPPG cell after the tool
trims out unnecessary hardware.

binary multipliers are synthesized and implemented using Xilinx ISE 14.6 synthesis and
implementation tools. Different FPGA families and devices are targeted.

4.1 Implementation of the proposed CPPG cells

The proposed CPPG cells are implemented using different FPGA families. The imple-
mentation results are listed in Table 1. As expected, the area and delay increase with the
size of the cell. Generally, the best delay is achieved when the Virtex-7 FPGA family is
targeted. The delay results are reported after the synthesis process of the tool. The im-
plementation results for the 128×128 and 64×64 binary multipliers using the different
CPPG cells targeting the Virtex-7 FPGA family are listed in Table 2. While, those for
the 32×32 and 16×16 binary multipliers are listed in Table 3.

It can be observed that, for all investigatedmultipliers, the best area is achievedwhen
utilizing the 3×3 CPPG cell. While, the best delay for the 128×128, the 64×64, and the
32×32 multipliers is achieved when utilizing the 4×4 CPPG cell. For the 16×16 multi-
plier, the best delay is achieved when utilizing the 5×5 CPPG cell. The second best area
for the 128×128 and the 64×64 multipliers is achieved with the 4×4 CPPG cell. While
the second best area for the 32×32 and the 16×16 multipliers is achieved with the 2×2
CPPG cell. The second best delay for the 128×128, the 64×64, and the 32×32 multi-
pliers is achieved when utilizing the 2×2 CPPG cell. On the other hand, the second best
delay for the 16×16 multiplier is achieved with the 4×4 CPPG cell. Utilizing the 6×6

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1045

FPGA Metric CPPG cell size
2×2 3×3 4×4 5×5 6×6

Virtex-5
Area (Slice LUTs) 4 6 32 199 785
Area (Slices) 2 2 11 74 344
Delay (ns) 3.885 4.129 5.595 6.996 9.778

Virtex-6
Area (Slice LUTs) 2 5 39 134 463
Area (Slices) 1 2 19 54 156
Delay (ns) 0.989 1.13 2.953 3.57 4.913

Virtex-7
Area (Slice LUTs) 2 5 39 135 458
Area (Slices) 1 3 21 54 154
Delay (ns) 0.921 1.023 2.595 3.217 4.73

Table 1: Implementation results for the proposed CPPG cells over different FPGA
families

128×128 64×64
CPPG
cell

Area
(LUTs)

Area
(Slices)

Delay
(ns)

Area
(LUTs)

Area
(Slices)

Delay
(ns)

2×2 137947 39278 15.388 19457 6113 11.952
3×3 71356 20031 16.608 12126 4214 12.448
4×4 80293 28733 15.081 16247 5674 11.673
5×5 114471 39157 17 20616 7265 13.325
6×6 235362 74207 15.853 42178 15181 12.985

Table 2: Implementation results for the 128×128 and 64×64 binary multipliers using
the proposed CPPG cells and targeting the Virtex-7 FPGA family.

32×32 16×16

CPPG cell Area
(LUTs)

Area
(Slices)

Delay
(ns)

Area
(LUTs)

Area
(Slices)

Delay
(ns)

2×2 3135 1044 9.232 675 314 7.056
3×3 2267 808 9.475 508 243 7.821
4×4 3567 1184 8.865 807 364 7.023
5×5 4762 1673 9.456 1172 419 6.82
6×6 10249 3557 10.089 2300 716 7.304

Table 3: Implementation results for the 32×32 and 16×16 binary multipliers using the
proposed CPPG cells and targeting the Virtex-7 FPGA family.

CPPG cell reduces the number of partial products and the complexity of the addition
phase. Theoretically, this would result in better performance. Unexpectedly, the imple-
mentation results show that the worst performance is achieved whenever the 6×6 CPPG
cell is used. The huge complexity of the Boolean equations of the 6×6 CPPG cell can
be a justification for this drawback in performance. It happens that the 3×3 CPPG cell
provides an acceptable reduction in the number of partial products while maintaining
low hardware complexity.

1046 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

4.2 Comparisons with works in literature

The proposed binary multipliers in this work are compared with different works pre-
sented in the literature. For a fair comparison, the size of the proposed binary multipli-
ers is chosen to be equal to the size of the binary multipliers presented in the literature.
In addition, the implementation environment is chosen to be the same as that used in
the work from the literature. That is, the FPGA family used to implement the proposed
binary multiplier is chosen to be the same FPGA family that is used to implement the
binary multipliers presented in the literature. Each work from the literature that is to be
used for the comparison purpose is represented with a symbol according to Table 4.

Symbol Work
Wa [Akhter and Chaturvedi, 2019]
Wb [Sharma, 2015]
Wc [Mani et al., 2015]
Wd [Atre and Alshewimy, 2017]
We [Chaudhary and Kularia, 2016]
Wf [Bais and khan Ali, 2016]
Wg [Solanki et al., 2021]
Wh [Chandrashekara and Rohith, 2019]
Wi [Van Toan and Lee, 2020]
Wj [Naqvi, 2017]
Wk [Jais and Palsodkar, 2016]
Wl [Wallace, 1964]
Wm [Waters and Swartzlander, 2010]
Wn [Asif and Kong, 2015a]
Wo [Asif and Kong, 2015b]
Wp [Saha et al., 2018]
Wq [Fritz and Fam, 2017]
Wr [Murugeswari and Mohideen, 2014]

Table 4: Symbols that are used to represent some works from the literature.

Table 5 lists the comparison results for operand sizes of 4 and 8. While, Table 6 lists
the comparison results for operand sizes of 16, 32, 64, and 128. The results reported for
our designs are based on utilizing the 2× 2 CPPG cell. In these two tables, if a result is
not reported for a reference then we use ’not reported’ (NR) in the corresponding cell.
Generally, the proposed multipliers outperform those presented in the literature in terms
of delay with an area penalty in some cases.

Based on Tables 5 and 6, the proposed 16 × 16 multiplier, over Virtex-4 FPGA,
achieves 21.8% reduction in delay and 47.9% reduction in area comparing to its coun-
terpart in [Atre and Alshewimy, 2017]. It is also clear that over Spartan-3E FPGA, it
beats the 16 × 16 multiplier of [Solanki et al., 2021] in terms of delay with 18% extra
area penalty. The authors in [Solanki et al., 2021] mention that the minimum periods
in their 8 × 8 and 16 × 16 multipliers are 9.29 and 10.27 ns, respectively. The cycles
needed to output the product are 16 and 32 cycles, respectively. Hence, the delay of their

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1047

Operand
size Work FPGA Area

(Slices)
Area
(LUTs)

Delay
(ns)

4

Wa Virtex-4 NR 30 8.54
Proposed 43 84 7.557
Wa

Spartan-3
NR 30 15.42

Proposed 42 83 13.382
Wb (WT)

Spartan-3E

22 39 18.534
Wb (Dadda) 23 39 17.864
Proposed 15 27 12.738
Wa Spartan-6 NR 24 10.43
Proposed 14 39 8.568
Wc (WT)

Artix-7
NR 26 11.109

Wc (IWT) NR 22 8.437
Proposed NR 25 4.706

8

Wd (Radix-32)
Virtex-4

254 NR 15.37
Wa NR 153 13.87
Proposed 76 137 12.247
Wa

Spartan-3

NR 153 28.73
We 105 192 28.669
Wf (WT) 97 181 28.601
Proposed 75 137 20.694
Wg

Spartan-3E

NR 161 148.64
Wb (WT) 116 205 34.629
Wb (Dadda) 124 218 30.75
Proposed 75 127 16.595
Wa

Spartan-6

NR 125 18.46
Wh (Booth) NR 216 25.86
Wh (Array) NR 130 23.106
Wh (WT) NR 145 16.478
Wh (Vedic) NR 128 14.219
Wi (LUT-Based) NR 204 5.15
Wi (DSP-Based) NR 371 6.25
Proposed 57 122 11.208
Wc (WT)

Artix-7
NR 205 26.501

Wc (IWT) NR 128 11.314
Proposed NR 144 6.281

Table 5: Comparisons with different works presented in literature for operand sizes of
4 and 8.

designs is computed as (16×9.29 = 148.64ns for the 8× 8multiplier) and (32×10.27 =
328.64ns for the 16× 16 multiplier). In fact, their major concern is low-power design.

The proposed multipliers in [Van Toan and Lee, 2020] are approximate multipliers
that do not provide exact results as produced by the proposed multipliers in this work.
These approximate multipliers can be used in applications where exact results are not

1048 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

Operand
size Work FPGA Area

(Slices)
Area

(LUT’s)
Delay
(ns)

16

Wd (Radix-32) Virtex-4 726 NR 20.35
Proposed 378 667 15.913
Wf (WT) Spartan-3 444 819 51.090
Proposed 373 672 32.174
Wg Spartan-3E NR 473 328.64
Proposed 377 578 22.234
Wi (LUT-Based)

Spartan-6
NR 923 7.46

Wi (DSP-Based) NR 372 6.40
Proposed 323 673 17.26

32

Wd (Radix-32) Virtex-4 2400 NR 27.95
Proposed 1877 3135 20.242
Wf (WT) Spartan-3 2021 3765 88.114
Proposed 1593 2896 41.397
Wi (LUT-Based)

Spartan-6
NR 3499 11.30

Wi (DSP-Based) NR 1496 18.04
Proposed 1179 3152 21.31

64

Wd (Radix-32)

Virtex-4

8770 NR 46.11
We (Array) 4653 9110 1525.592
We (Booth) 8097 16192 138.25
We (Vedic) 1817 2289 29.967
Proposed 8458 13773 24.442
Wj

Virtex-5
NR 8185 21.243

Wk NR 2622 21.985
Proposed 4305 11210 17.176
Wk

Virtex-6
NR 2622 15.77

Wj NR 8185 12.717
Proposed 5944 19482 12.137
Wk Spartan-6 NR 2622 24.932
Proposed 6627 19551 22.328

128 Wd (Radix-32) Virtex-4 31960 NR 59.98
Proposed 44517 63724 32.184

Table 6: Comparisons with different works presented in literature for operand sizes of
16, 32, 64, and 128.

mandatory for the application to produce the expected output. However, the authors use
the core generator of the Xilinx Tools to generate two IP cores for comparison purposes.
The first one is a LUT-Based exact multiplier and the second one is a DSP-Based exact
multiplier.

For the LUT-Based core, the area is reported in terms of the number of LUTs and
the number of CARRY4 embedded components, which consists of four 2×1-MUXs
and four XOR gates. Therefore, the area of each CARRY4 embedded component can
be estimated to be 8 LUTs. As a result, the area of the LUT-Based core is the number

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1049

of the reported LUTs plus the number of reported CARRY4 components multiplied by
8. For example, for the 16 × 16 LUT-Based multiplier, the authors reported that the
area is (299 LUTs + 78 CARRY 4). This means that the estimated area in LUTs is
(299 + 78× 8 = 923 LUTs).

For the DSP-Based core, the area is reported in terms of the number of LUTs and
the number of utilized DSP embedded components. The DSPs in Xilinx FPGAs are
known to be 18× 18 in size. The estimated area of a DSP component in terms of LUTs
can be easily extracted from the Core Generator tool itself. It is founded that the area
for an 18 × 18 DSP core is 364 LUTs. As a result, the area of the DSP-Based core
is the number of the reported LUTs plus the number of the reported DSP components
multiplied by 364. For example, for the 16 × 16 LUT-Based multiplier, the authors
reported that the area is (8 LUTs + 1 DSP). This means that the estimated area in
LUTs is (8 + 1× 364 = 372 LUTs).

From Tables 5 and 6, it is clear that the proposed multipliers in this work achieves
smaller area comparing to the LUT-Based 8×8, the 16×16, and the 32×32multipliers
presented in [Van Toan and Lee, 2020]. The proposed 8×8multiplier is smaller in area
than the 8× 8 DSP-Based multiplier of [Van Toan and Lee, 2020]. While, the 16× 16,
and the 32×32DSP-Based multipliers of [Van Toan and Lee, 2020] are smaller than the
proposed ones. When it comes to the delay, it looks that the multipliers of [Van Toan and
Lee, 2020] are faster for all operand sizes. However, while investigating the area of the
18×18 DSP, we noticed that the authors in [Van Toan and Lee, 2020] have reported the
delay of their designs after registering the inputs and the output. This means that their
delay is the minimum period of the design and it is not a combinational path delay that
involves the delay of the IO buffers as in our case. The IO buffers delay is the routing
delay from the FPGA pins to the ports of the design. This delay varies according to
where the tool places the design inside the FPGA. When registering the inputs and the
output of our 8 × 8 multiplier, we get a minimum period of 7.877ns over Spartan-6
FPGA. Also, if we exclude the IO buffer delay, then the delays of our combinational
8 × 8, 16 × 16, and the 32 × 32 multipliers over Spartan-6 FPGA become 6.94 ns,
10.89 ns, and 14.52 ns, respectively. Moreover, Two points should be raised here. The
first one is that the multipliers of [Van Toan and Lee, 2020] are generated IP cores that
are part of the CAD tool itself and these IP cores can be generated for operand size of
up to a maximum 64 × 64 and not more than that, which limits the scalability of the
multiplication in [Van Toan and Lee, 2020]. While the proposed approach in this work
is scalable and is not limited to any operand size. The second point is that using these
embedded IP cores limits the portability of the HDL code to Xilinx FPGA platforms.
While in the proposed approach, the HDL can be implemented in any FPGA or ASIC
platform.

Over Spartan-3E FPGA and comparing to the 4× 4Wallace Tree (WT) and Dadda
multipliers of [Sharma, 2015], the proposed multiplier achieves 31.2% and 28.69% im-
provement in speed, respectively. The area is also reduced by 31.8% and 34.7%, respec-
tively. For the size of 8× 8 over Spartan-3E FPGA, the proposed multiplier also shows
better results in terms of area and speed compared to those WT and Dadda multipliers
of [Sharma, 2015]. In fact, there is 35.3% and 39.5% reduction in the area with 52% and
46% reduction in delay, respectively.

Furthermore, the proposed 8 × 8 multiplier over Spartan-6 FPGA achieves 56.6%,
51.4%, and 31.9% improvement in speed compared to the Booth, Array, and WT mul-
tipliers of [Chandrashekara and Rohith, 2019], respectively. In this case, the area of the
proposed multiplier is reduced by 43.5% compared to the Booth multipliers and slightly
reduced compared to the Array and WT multipliers.

1050 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

The proposed 8 × 8 multiplier, over Artix-7 FPGA, achieves 44.4% reduction in
delay with only 11.1% increase in the area compared to the Improved Wallace Tree
(IWT) multiplier of [Mani et al., 2015]

Over Spartan-3, the proposed 16 × 16 multiplier outperforms its counterpart WT
multiplier in [Bais and khan Ali, 2016] in terms of area and speed. It is 1.58 times faster
and 1.19 times smaller. On the other hand, the proposed 32×32multiplier is 2.12 times
faster and 1.26 smaller compared with the 32× 32WTmultiplier in [Bais and khan Ali,
2016].

The 64 × 64 Booth and Array multipliers in [Chaudhary and Kularia, 2016] are
also compared with the proposed multiplier over Virtex-4 FPGA. The results show that
the proposed multipliers achieve much better speed with a considerable area penalty,
especially in the case of the Array multiplier.

The proposed 64 × 64 multiplier shows minor speed improvement over the multi-
plier in [Naqvi, 2017] when targeting Virtex-6 FPGA. However, over Virtex-5 FPGA,
it shows 19.14% speed improvement with 26.98% extra area.

Targeting Virtex-4 FPGA, a 46.3% speed improvement is achieved by the proposed
128×128multiplier over the multiplier in [Atre and Alshewimy, 2017]. However, there
is a 28.2% area penalty in this case.

The Area-Time product for the results in Tables 5 and 6 are calculated and listed in
Tables 7 and 8. Although the proposedmultipliers show improvement in speed compared
to other similar works presented in the literature, one finds in some cases that the Area-
Time product for the proposed multipliers is higher than its counterpart presented in the
literature. This is due to the fact that in these cases, the proposed multiplier achieves
better speed with a considerable extra area penalty.

4.3 Power comparison
The proposed 8 × 8 multiplier is implemented in Spartan-3E FPGA and compared,

in terms of power, with other 8× 8 multipliers from literature. In order to get the power
analysis from the tool, the proposed 8× 8 multiplier is implemented such that the inputs
and the outputs are registered. The inputs are registered with 8-bit parallel in parallel out
(PIPO) registers. The output is also registered with a PIPO register. However, the register
at the output is 16-bit input and 8-bit output. This means that to get the final product out,
two cycles are needed. The power results of the proposed multiplier and for other works
from literature are listed in Table 9 where (CBWT) refers to Counter-Based Wallace
Tree and (RCWT) refers to Reduced Complexity Wallace Tree. The results of other
multipliers are taken from [Solanki et al., 2021].

The proposed 8 × 8 multiplier outperforms all other multipliers in terms of power
with an acceptable increase in clock cycle delay in some cases. For example, there is
25.39% reduction in power compared to [Solanki et al., 2021] with only 14.06% in-
crease in clock cycle delay. It can be figured out that although the proposed 8 × 8
multiplier shows a small improvement in power compared to [Wallace, 1964], it shows
20.65% reduction in area. In fact, the proposed 8 × 8 multiplier outperforms all other
multipliers, listed in Table 9, in terms of area.
4.4 Utilizing the proposed multiplier in a MAC Unit
TheMultiply-Accumulate (MAC) unit is a basic and essential digital component in most
microprocessors and Digital Signal Processors (DSPs). The MAC unit is used to effi-
ciently accelerate the computations of FIR or FFT/IFFT, which are required by data-
intensive applications such as filters, orthogonal frequency-division multiplexing algo-
rithms, and channel estimators[Hoang et al., 2010]. As shown by Figure 4, the main

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1051

Operand
size Work FPGA A×T

(Slices.ns)
A×T

(LUTs.ns)

4

Wa Virtex-4 NA 256
Proposed 325 635
Wa Spartan-3 NA 463
Proposed 562 1111
Wb (WT)

Spartan-3E
408 723

Wb (Dadda) 411 697
Proposed 191 344
Wa Spartan-6 NA 250
Proposed 120 334
Wc (WT)

Artix-7
NA 289

Wc (IWT) NA 186
Proposed NA 118

8

Wd (Radix-32)
Virtex-4

3904 NA
Wa NA 2122
Proposed 931 1678
Wa

Spartan-3

NA 4396
We 3010 5504
Wf (WT) 2774 5177
Proposed 1552 2835
Wg

Spartan-3E

NA 23931
Wb (WT) 4017 7099
Wb (Dadda) 3813 6704
Proposed 1245 2108
Wa

Spartan-6

NA 2308
Wh (Booth) NA 5586
Wh (Array) NA 3004
Wh (WT) NA 2389
Wh (Vedic) NA 1820
Wi (LUT-Based) NA 1051
Wi (DSP-Based) NA 2319
Proposed 639 1367
Wc (WT)

Artix-7
NA 5433

Wc (IWT) NA 1448
Proposed NA 904

Table 7: Comparisons of Area-Time product with different works presented in
literature for operand sizes of 4 and 8.

components of a MAC unit are Multiplier, Adder, and Accumulator. The Efficiency of
the multiplier highly affects the overall performance of the MAC. The proposed mul-
tiplier is utilized in designing an 8-bit MAC unit to demonstrate its efficiency. Once
the MAC finishes computation, the result is output in 2 cycles (8 bits/cycle). A VHDL
code description for the MAC unit is developed and the design is implemented target-

1052 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

Operand
size Work FPGA A×T

(Slices.ns)
A×T

(LUTs.ns)

16

Wd (Radix-32) Virtex-4 14774 NA
Proposed 6015 10614
Wf (WT) Spartan-3 22684 41843
Proposed 12001 21621
Wg Spartan-3E NA 155447
Proposed 8382 12851
Wi (LUT-Based)

Spartan-6
NA 6886

Wi (DSP-Based) NA 2381
Proposed 5575 11616

32

Wd (Radix-32) Virtex-4 67080 NA
Proposed 37994 63459
Wf (WT) Spartan-3 178078 331749
Proposed 65945 119886
Wi (LUT-Based)

Spartan-6
NA 39539

Wi (DSP-Based) NA 26988
Proposed 25124 67169

64

Wd (Radix-32)

Virtex-4

404385 NA
We (Array) 7098580 13898143
We (Booth) 1119410 2238544
We (Vedic) 54450 68594
Proposed 206730 336640
Wj

Virtex-5
NA 173874

Wk NA 57645
Proposed 73943 192543
Wk

Virtex-6
NA 41349

Wj NA 104089
Proposed 72142 236453
Wk Spartan-6 NA 65372
Proposed 147968 436535

128 Wd (Radix-32) Virtex-4 1916961 NA
Proposed 1432735 2050893

Table 8: Comparisons of Area-Time product with different works presented in the
literature for operand sizes of 16, 32, 64, and 128.

ing Spartan-3E FPGA. The implementation results are listed in Table 10 and compared
against the results of different MAC units, which are based on different multiplier de-
signs from the literature. The implementation results show that the MAC unit of this
work outperforms the different MAC units in terms of area and power, and power-delay
product. For example, the MAC with the proposed multiplier achieves 18.3% reduction
in power, 32.2% reduction in area, and 36.3% improvement in power-delay product com-
pared to the MAC in [Solanki et al., 2021]. Hence, the proposed multiplier improves the
efficiency of the MAC unit.

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1053

Multiplier Power
(mW)

Dynamic
power
(mW)

Mini.
period
(ns)

Maxi.
Freq.
(MHz)

Area
(LUTs)

Power
delay
product
(pJ)

Wl (WT) 70.93 37.06 10.14 98.57 184 719.23
Wm (RCWT) 117.23 35.80 11.87 84.23 184 1391.63
Wn (CBWT) 123.72 42.20 12.70 78.69 190 1571.24
Wo 88.67 7.59 9.57 104.42 164 848.57
Wp 88.35 7.28 9.47 105.52 162 836.67
Wq 88.16 7.09 11.83 84.48 169 1042.93
Wr 88.21 7.14 9.53 104.93 165 840.64
Wg 87.12 6.06 9.29 107.55 161 809.34
Proposed 65.00 3.10 10.81 92.52 146 702.52

Table 9: Comparison of power for 8 × 8 multipliers over Spartan-3E FPGA.

M
ul

tip
lie

r

A
dd

er

A
cc

um
ul

at
orOperand1

Operand2

8

8

16
16

16

16 Output8

Figure 4: A block diagram for the MAC unit.

Multiplier Power
(mW)

Dynamic
power
(mw)

Minimum
period
(ns)

Area
(LUTs)

Power
delay
product
(pJ)

Wl (WT) 126.72 45.16 11.73 236 1486.42
Wm (RCW) 126.55 45.00 12.23 240 1547.7
Wn (CBW) 129.63 48.04 12.60 238 1633.33
Wo 93.91 12.77 14.82 242 1391.74
Wp 93.81 12.66 14.82 242 1390.26
Wq 90.97 9.86 14.83 230 1349.08
Wr 93.39 12.25 14.82 242 1384.03
Wg 87.44 6.38 14.82 242 1295.86
Proposed 71.00 38.00 11.62 164 825.02

Table 10: Comparison of 8-bit MAC using different multipliers over Spartan-3E FPGA.

5 Conclusions

Customized partial products generation (CPPG) cells are designed and used as building
blocks for binary multipliers. Different size binary multipliers have been designed using
these cells. All of the cells and the binary multipliers are described using VHDL. The

1054 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

functionality of the cells and the binary multiplier is verified using Xilinx ISE 14.6
tools. Moreover, the cells and the multipliers are synthesized and implemented targeting
different Xilinx FPGA families. Although larger size cells reduce the number of partial
products, the hardware complexity of the cells increases in a way that negatively affects
the performance of the multiplier. Over Virtex-7 FPGA family, the best area is achieved
when using the 3×3 cell for all multipliers. While, the best delay for the 128×128, the
64×64, and the 32×32 multipliers is achieved when utilizing the 4×4 CPPG cell. For
the 16×16 multiplier, the best delay is achieved when utilizing the 5×5 CPPG cell. The
proposed multipliers have comparable performance results with those presented in the
literature in terms of area, delay, and power. The efficiency of the proposed multiplier is
verified by utilizing it in designing an 8-bit MAC unit, which shows better performance
than similar MAC units in literature when implemented in Spartan-3E FPGA.

Acknowledgements

Osama Al-Khaleel acknowledges the support from AMD-XILINX University Program
to Jordan University of Science and Technology (JUST).

References

[Akhter and Chaturvedi, 2019] Akhter, S. and Chaturvedi, S. (2019). Modified binary multiplier
circuit based on vedic mathematics. In 2019 6th International Conference on Signal Processing
and Integrated Networks (SPIN), pages 234–237.

[Al-Khaleel et al., 2011a] Al-Khaleel, O., Al-Khaleel, M., Al-QudahJ, Z., Papachristou, C. A.,
Mhaidat, K., and Wolff, F. G. (2011a). Fast binary/decimal adder/subtractor with a novel
correction-free bcd addition. In 2011 18th IEEE International Conference on Electronics, Cir-
cuits, and Systems, pages 455–459.

[Al-Khaleel et al., 2015] Al-Khaleel, O., Al-Qudah, Z., Al-Khaleel, M., Bani-Hani, R., Pa-
pachristou, C., andWolff, F. (2015). Efficient hardware implementations of binary-to-bcd conver-
sion schemes for decimal multiplication. Journal of Circuits, Systems and Computers, 24(2):1–21.

[Al-Khaleel et al., 2013] Al-Khaleel, O., Al-Qudah, Z., Al-Khaleel, M., and Papachristou, C.
(2013). High performance fpga-based decimal-to-binary conversion schemes for decimal arith-
metic. Microprocessors and Microsystems, 37(3):287–298.

[Al-Khaleel et al., 2011b] Al-Khaleel, O., Al-Qudah, Z., Al-Khaleel, M., Papachristou, C. A.,
and Wolff, F. G. (2011b). Fast and compact binary-to-bcd conversion circuits for decimal mul-
tiplication. In 2011 IEEE 29th International Conference on Computer Design (ICCD), pages
226–231.

[Al-Khaleel et al., 2006] Al-Khaleel, O., Papachristou, C., Wolff, F., and Pekmestzi, K. (2006).
Fpga-based design of a large moduli multiplier for public-key cryptographic systems. In 2006
International Conference on Computer Design, pages 314–319.

[Al-Nounou, 2022] Al-Nounou, A. A.-R. (2022). VHDL code for the CPPG cells. http://www.
just.edu.jo/~oda/research/comp_arith/binary/multipliers/alnounou/CPPG_Cells/.

[Asati and Chandrashekhar, 2009] Asati, A. and Chandrashekhar (2009). A high-speed, hierar-
chical 16x16 array of array multiplier design. 2009 International Multimedia, Signal Processing
and Communication Technologies, IMPACT 2009, pages 161–164.

[Asif and Kong, 2015a] Asif, S. and Kong, Y. (2015a). Analysis of different architectures of
counter based wallace multipliers. In 2015 Tenth International Conference on Computer Engi-
neering Systems (ICCES), pages 139–144.

http://www.just.edu.jo/~oda/research/comp_arith/binary/multipliers/alnounou/CPPG_Cells/
http://www.just.edu.jo/~oda/research/comp_arith/binary/multipliers/alnounou/CPPG_Cells/

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1055

[Asif and Kong, 2015b] Asif, S. and Kong, Y. (2015b). Design of an algorithmic wallace multi-
plier using high speed counters. In 2015 Tenth International Conference on Computer Engineer-
ing Systems (ICCES), pages 133–138.

[Atre and Alshewimy, 2017] Atre, S. G. M. E. and Alshewimy, M. A. M. (2017). Design and
implementation of new delay-efficient/configurable multiplier using fpga. In 2017 12th Interna-
tional Conference on Computer Engineering and Systems (ICCES), pages 8–13.

[Bais and khan Ali, 2016] Bais, K. and khan Ali, Z. (2016). Design of a high-speed wallace tree
multiplier. International Journal of Engineering Sciences & Research Technology , 5(6):476–480.

[Balasubramanian et al., 2021] Balasubramanian, P., Nayar, R., and Maskell, D. L. (2021). Ap-
proximate array multipliers. Electronics, 10(5):630.

[Baugh and Wooley, 1973] Baugh, C. andWooley, B. (1973). A two’s complement parallel array
multiplication algorithm. IEEE Transactions on Computers, C-22(12):1045–1047.

[Beuchat and Tisserand, 2002] Beuchat, J.-L. and Tisserand, A. (2002). Small multiplier-based
multiplication and division operators for virtex-ii devices. In International Conference on Field
Programmable Logic and Applications, pages 513–522. Springer.

[BN and HG, 2021] BN, M. K. and HG, R. (2021). Array multiplier and cia based fir filter for
dsp applications. International Research Journal on Advanced Science Hub, 3:52–59.

[Chandrashekara and Rohith, 2019] Chandrashekara, M. N. and Rohith, S. (2019). Design of 8
bit vedic multiplier using urdhva tiryagbhyam sutra with modified carry save adder. In 2019 4th
International Conference on Recent Trends on Electronics, Information, Communication Technol-
ogy (RTEICT), pages 116–120.

[Chaudhary and Kularia, 2016] Chaudhary, I. and Kularia, D. (2016). Design of 64 bit high
speed vedic multiplier. 5:4090–4096.

[Christilda and Milton, 2021] Christilda, V. D. and Milton, A. (2021). Speed, power and area
efficient 2d fir digital filter using vedic multiplier with predictor and reusable logic. Analog
Integrated Circuits and Signal Processing, pages 1–11.

[Das and Rahaman, 2010] Das, D. and Rahaman, H. (2010). A novel signed array multiplier. In
2010 International Conference on Advances in Computer Engineering, pages 19–23.

[Fadavi-Ardekani, 1993] Fadavi-Ardekani, J. (1993). Mxn booth encoded multiplier generator
using optimized wallace trees. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 1(2):120–125.

[Fonseca et al., 2005] Fonseca, M., da Costa, E., Bampi, S., and Monteiro, J. (2005). Design
of a radix-2m hybrid array multiplier using carry save adder format. In Proceedings of the 18th
Annual Symposium on Integrated Circuits and System Design, SBCCI ’05, page 172–177, New
York, NY, USA. Association for Computing Machinery.

[Fritz and Fam, 2017] Fritz, C. and Fam, A. T. (2017). Fast binary counters based on symmetric
stacking. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10):2971–
2975.

[Hameed and Kathem, 2021] Hameed, A. S. and Kathem, M. J. (2021). Design and implemen-
tation of a fast sequential multiplier based on iterative addition architecture. IOP Conference
Series: Materials Science and Engineering, 1076(1):012040.

[Hasan and Kort, 2007] Hasan, O. and Kort, S. (2007). Automated formal synthesis of wallace
tree multipliers. In 2007 50th Midwest Symposium on Circuits and Systems, pages 293–296.
IEEE.

1056 Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ...

[Hoang et al., 2010] Hoang, T. T., Själander, M., and Larsson-Edefors, P. (2010). A high-speed,
energy-efficient two-cycle multiply-accumulate (mac) architecture and its application to a double-
throughput mac unit. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(12):3073–
3081.

[Jais and Palsodkar, 2016] Jais, A. and Palsodkar, P. (2016). Design and implementation of 64
bit multiplier using vedic algorithm. In 2016 International Conference on Communication and
Signal Processing (ICCSP), pages 0775–0779. IEEE.

[Kamrani and Heikalabad, 2021] Kamrani, H. and Heikalabad, S. R. (2021). Design and imple-
mentation of multiplication algorithm in quantum-dot cellular automata with energy dissipation
analysis. The Journal of Supercomputing, 77(6):5779–5805.

[Karthik et al., 2021] Karthik, T. S., Manasa, K., and Raju, Y. S. (2021). Design and implemen-
tation of 64 bit high speed vedic multiplier. INTERNATIONAL JOURNAL OF ADVANCE
SCIENTIFIC RESEARCH AND ENGINEERING TRENDS, 6:37–42.

[Karthikeyan and Jagadeeswari, 2021] Karthikeyan, S. and Jagadeeswari, M. (2021). Perfor-
mance improvement of elliptic curve cryptography system using low power, high speed 16 x
16 vedic multiplier based on reversible logic. Journal of Ambient Intelligence and Humanized
Computing, 12(3):4161–4170.

[Khaleqi Qaleh Jooq et al., 2021] Khaleqi Qaleh Jooq, M., Ahmadinejad, M., and Moaiyeri,
M. H. (2021). Ultraefficient imprecise multipliers based on innovative 4: 2 approximate com-
pressors. International Journal of Circuit Theory and Applications, 49(1):169–184.

[Kim et al., 1998] Kim, T., Jao, W., and Tjiang, S. (1998). Arithmetic optimization using carry-
save-adders. In Proceedings of the 35th Annual Design Automation Conference, DAC ’98, page
433–438, New York, NY, USA. Association for Computing Machinery.

[Langhammer and Pasca, 2021] Langhammer, M. and Pasca, B. (2021). Folded integer multipli-
cation for fpgas. In The 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 160–170.

[Lee and Burgess, 2003] Lee, B. and Burgess, N. (2003). Improved small multiplier based mul-
tiplication, squaring and division. In 11th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2003. FCCM 2003., pages 91–97. IEEE.

[Mani et al., 2015] Mani, K. R., Tessly, T., Alphy, M., Anju, R., and Riboy, C. (2015). Fpga
implementation of an efficient high speed wallace tree multiplier. In International Conference on
Emerging Trends in Technology and Applied Sciences (ICETTAS 2015), pages 9–14.

[Mao et al., 2021] Mao,W., Li, K., Xie, X., Zhao, S., Li, H., and Yu, H. (2021). A reconfigurable
multiple-precision floating-point dot product unit for high-performance computing. In 2021 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), pages 1793–1798. IEEE.

[Moss et al., 2019] Moss, D. J. M., Boland, D., and Leong, P. H. W. (2019). A two-speed, radix-
4, serial–parallel multiplier. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27(4):769–777.

[Mounica et al., 2021] Mounica, Y., Kumar, K. N., Veeramachaneni, S., et al. (2021). Energy
efficient signed and unsigned radix 16 booth multiplier design. Computers & Electrical Engineer-
ing, 90:106892.

[Murugeswari and Mohideen, 2014] Murugeswari, S. and Mohideen, S. K. (2014). Design of
area efficient and low power multipliers using multiplexer based full adder. In Second Inter-
national Conference on Current Trends In Engineering and Technology - ICCTET 2014, pages
388–392.

[Nagaraju and Reddy, 2014] Nagaraju, G. and Reddy, G. V. S. (2014). Design and implemen-
tation of 128 x 128 bit multiplier by ancient mathematics. International Journal of Engineering
Research & Technology (IJERT), 03:1363–1366.

Al-Nounou A.A., Al-Khaleel O., Obeidat F., Al-Khaleel M.: FPGA Implementation ... 1057

[Naqvi, 2017] Naqvi, S. Z. H. (2017). Design and simulation of enhanced 64-bit vedic multiplier.
In 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies
(AEECT), pages 1–4.

[Rafiee et al., 2021] Rafiee,M., Pesaran, F., Sadeghi, A., and Shiri, N. (2021). An efficient multi-
plier by pass transistor logic partial product and a modified hybrid full adder for image processing
applications. Microelectronics Journal, page 105287.

[Rafiq et al., 2021] Rafiq, A., Chaudhry, S. M., Awan, K. S., and Usman, M. (2021). An effi-
cient architecture of modified booth multiplier using hybrid adder. In 2021 International Bhurban
Conference on Applied Sciences and Technologies (IBCAST), pages 648–656.

[Saha et al., 2018] Saha, A., Pal, R., Naik, A. G., and Pal, D. (2018). Novel cmos multi-bit
counter for speed-power optimization in multiplier design. AEU - International Journal of Elec-
tronics and Communications, 95:189–198.

[Sakthimohan and Deny, 2021] Sakthimohan,M. and Deny, J. (2021). An efficient design of 8x8
wallace tree multiplier using 2 and 3-bit adders. In Proceedings of International Conference on
Sustainable Expert Systems: ICSES 2020, volume 176, page 23. Springer Nature.

[Seferlis et al., 2021] Seferlis, P., Varbanov, P. S., Papadopoulos, A. I., Chin, H. H., and Klemeš,
J. J. (2021). Sustainable design, integration, and operation for energy high-performance process
systems. Energy, page 120158.

[Sharma, 2015] Sharma, A. (2015). Fpga implementation of a high speed multiplier employ-
ing carry lookahead adders in reduction phase. International Journal of Computer Applications,
116(17):27–31.

[Singh and Singh, 2016a] Singh, N. and Singh, M. (2016a). Design and implementation of 16
x 16 high speed vedic multiplier using brent kung adder. International Journal of Science and
Research (IJSR), 5:239–242.

[Singh and Singh, 2016b] Singh, N. and Singh, M. (2016b). Performance evaluation of 8-bit
vedic multiplier with brent kung adder. International Journal of Current Engineering and Tech-
nology, 6(6):2086–2090.

[Singh et al., 2021] Singh, N., Verma, G., and Khare, V. (2021). Power estimation and validation
of embedded multiplier based on ann and regression technique. Journal of Circuits, Systems and
Computers, page 2250086.

[Solanki et al., 2021] Solanki, V., Darji, A. D., and Singapuri, H. (2021). Design of low-power
wallace tree multiplier architecture using modular approach. Circuits, Systems, and Signal Pro-
cessing, 40(9):4407–4427.

[Van Toan and Lee, 2020] Van Toan, N. and Lee, J.-G. (2020). Fpga-based multi-level approxi-
mate multipliers for high-performance error-resilient applications. IEEE Access, 8:25481–25497.

[Véstias, 2021] Véstias, M. P. (2021). Field-programmable gate array. In Encyclopedia of In-
formation Science and Technology, Fifth Edition, pages 257–270. IGI Global.

[Wallace, 1964] Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, EC-13(1):14–17.

[Waters and Swartzlander, 2010] Waters, R. S. and Swartzlander, E. E. (2010). A reduced com-
plexity wallace multiplier reduction. IEEE Transactions on Computers, 59(8):1134–1137.

	Introduction
	Background and literature review
	The proposed binary multipliers
	Using the 22 CPPG cell to design nm Multiplier
	Using the 33 CPPG cell to design nm multiplier

	Results and discussions
	Implementation of the proposed CPPG cells
	Comparisons with works in literature
	Power comparison
	Utilizing the proposed multiplier in a MAC Unit

	Conclusions

