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Abstract: A bordered box repetition-free word is a finite word w where any given factor of the

form asa, with a ∈ Σ and s ∈ Σ∗, occurs at most once. Four existing search algorithms are

adapted to search for long bordered box repetition-free words over a given alphabet, giving an

empirical result on the upper bound of the length of these words. Two algorithms use a tree-based

search space, whilst the other two use a graph-based search space. For larger alphabets, the search

space rapidly becomes intractable for the tree-based algorithms. In the case of the graph-based

algorithms, we show a unique graph representation of bordered boxes that makes it possible to

find long bordered box repetition-free words over a larger alphabet. The effectiveness of the four

search algorithms are compared, and their respective worst case time complexities are compared

against their performance in practice.

Keywords: Combinatorial generation, Combinatorics on words, Repetition, Upper bound
Categories: G.2.1, H.3.3

DOI: 10.3897/jucs.87330

1 Introduction

Combinatorics of words is the study of symbols and the sequences formed by these
symbols [Lothaire 1997, Berstel and Karhumäki 2003, Berstel and Perrin 2007]. Early
work [Thue 1906, Thue 1912] included the study of square-free words, which is a word
with no two adjacent identical factors. More generally, a square can be seen as a pattern
to be avoided. This led to a large body of work which addresses the avoidance of certain
patterns in words and to the realization that some patterns are unavoidable [Bean et al.
1979, Zimin 1982, Baena-Garcia et al. 2010]. In contrast, less emphasis fell on the study
of words that do not contain repeating factors – that is, the situation where specified
factors may occur in a word, but only once.
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An initial investigation into words that contain only one occurrence of a specified
pattern, is that of Martin [Martin 1934]. He considered permutations of length k over
an alphabet with n symbols that do not repeat in a word, and gave a greedy algorithm
to generate a finite word w where no permutation of length k repeats. Note that Martin
focused, as is the case in this article, on the generation of finite words. More recently,
Carpi and De Luca [Carpi and De Luca 2001] studied repetitiveness (rather than non-
repetitiveness) in finite words, where a box is the shortest non-repeating prefix or suffix
of a word w. That is, a box is a factor of the form asb, where a, b are symbols from the
alphabet, whilst s is a factor which occurs at least twice in w preceeded by different
symbols and followed by different symbols. Again, the issue is to generate finite words,
given the boxes.

In this article, we focus on the case where factors are bordered by the same symbol,
rather than different symbols [Habeck 2022]. That is, we consider factors of the form axa
rather than axb, with x any string from the alphabet. In addition, we concern ourselves
rather with words that contain no repetitions of the form axa. We call these factors
bordered boxes, or bboxes for short. The reader should note that bboxes are explicitly
allowed to overlap, similar to the factors in De Bruijn words [Annexstein 1997].

A combinatorial generation algorithm of words over an alphabet with n symbols,
which would contain no repeating bbox factors of any length, is not straightforward.
We first develop some theoretical results, which we then utilize to adapt existing search
algorithms so that these algorithms can find words with no bbox repetitions.

In these search algorithms, the search space can be represented as either a tree
or a graph. Depth-first search (DFS) can then be utilized to find words that are bbox
repetition-free. Clearly, to iterate over all possible tree nodes or paths in a graph is
not computationally feasible. However, we show a graph construction which makes it
possible to find long bbox repetition-free words via DFS in practice. We associate the
vertices of the graph with specific bboxes of certain lengths, which in turn result in the
indegree and the outdegree of the vertices to decrease as the length of the bboxes increase.
DFS can then be modified to exploit this property. The order in which the vertices
are explored is chosen so that the vertices associated with longer bboxes are explored
first, preserving more unexplored edges within the graph. This simple modification
dramatically reduces the run-time of the graph based search algorithm and enables the
algorithm to find long bbox repetition-free words.

The novelty of this paper therefore does not lie in the search algorithms per se, but
rather in their use in this specific problem. In addition, we compare the various search
algorithms with one another quantitatively as well as qualitatively in the context of the
problem at hand.

In the next section, we give the necessary definitions for bboxes, and the relevant
combinatorial properties of bboxes. In Section 3 we elaborate on the maximum length
of a bbox repetition-free word for any alphabet of size n. The generation-by-search
algorithms that were developed are presented in Section 4, and the empirical results
follow in Section 5.

2 Background Definitions and Properties

We assume that the reader has a general background in combinatorial generation, such
as in [Charalambides 2002, Ruskey 2003, Stanley 1986] and others.

An alphabet is a finite set Σ of symbols, and Σ∗ is the Kleene closure of Σ. The
number of symbols in Σ is indicated by |Σ|. For clarity, if Σ contains n symbols, we
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also write Σn or Σ∗
n. A word w is a sequence of symbols from Σ; that is, w ∈ Σ∗. In

this work, only finite words are considered. The length |w| of a word w is the number of
symbols in w. A word x ∈ Σ∗ is a factor of w if w = uxv for some words u, v ∈ Σ∗.

Given a word w, a factor x of w is called a bbox if the first and last symbols of x are
identical. That is, factor x = x1x2 · · ·xm is a bbox if x1 = xm. It is assumed that the
shortest possible bbox is a word of length two, when x is of the form x = aa, for a ∈ Σ.
Therefore, neither the empty string nor single symbols are considered to be bboxes. A
bbox is called an inner bbox if it does not contain another bbox. That is, for a bbox
x = as1s2 · · · ska, it holds that x is an inner bbox if si 6= a for 1 ≤ i ≤ k, and si 6= sj
for 1 ≤ i, j ≤ k, for i 6= j. Note that, for a bbox of length greater than two, this means
that none of its cyclic shifts are bordered, as all the symbols si are unique and different
from the border characters a. On the other hand, if bbox x contains another bbox, it is
called an outer bbox.

A word w is a bbox repetition-free (BRF) word if every bbox in w is unique. A word
w is a maximal bbox repetition-free (MRF) word if it is bbox repetition-free, and no
symbol can be added at the end of w without causing a repeating bbox. A word w is a
longest maximal bbox repetition-free (LMRF) word if w is MRF and it has the longest
possible length for a given n; that is, for anyMRF word v overΣ∗

n, it holds that |w| ≥ |v|.

Example 1. Let n = 2 and Σ = {a, b}. The word w = abaabba contains amongst
others bboxes aba, abaa, aa, baab and bb. Here, aba, aa and bb are inner bboxes, while
abaa and baab are outer bboxes. Also, w is bbox repetition-free, but is not MRF, as the
word wb is bbox repetition-free.

A few obvious but useful properties of inner bboxes follow directly from the defini-
tions.

P1: Let w ∈ Σ∗
n be an inner bbox. Then w is of the form asa, with a ∈ Σn and s ∈ Σ∗

n.
It must then hold that 2 ≤ |w| ≤ n+ 1, because the maximum length of s can only
be n − 1 if all the symbols in s are unique and are not a. If the symbols are not
unique, then w cannot be an inner bbox.

P2: Let w′ be any outer bbox in a word w; that is, w′ = a . . . bxb . . . a. If the outer bbox
w′ repeats, then its associated inner bbox bxb must also repeat – this implies that in
the search for repetitions, one need only consider the repetitions of inner bboxes to
decide whether a word w is BRF.

A brute force search for repetitions of bboxes needs to find all repetitions of bboxes of
any length. However, by property P2, the search space can be reduced by only checking
for repetitions of inner bboxes.

Given the total number of unique inner bboxes, and their respective lengths, a first
upper bound on the length of an LMRFword can be calculated as the sum of the lengths of
all possible inner bboxes. The number of inner bboxes of length k over an alphabet Σn is

given by J(n, k) = n!
(n−k+1)! . This follows directly, as for any inner bbox t = asa with

|t| = k, s is some permutation of k − 2 unique symbols, where 2 ≤ k ≤ n+ 1. Hence,
the total number of all inner bboxes over Σn is then the sum over all k, which is simply

J(n) = Σn
i=1

n!
(n−i)! . Expressed recursively, J(n) = n(J(n− 1) + 1). The sum K(n)

of the lengths of all inner bboxes is therefore the sum of the number of all inner bboxes

of length k, times k. Therefore,K(n) = Σn
j=1

(n−j+2)n!
(j−1)! = n(K(n− 1) + 1) + J(n).



Grobler T., HabeckM., Van Zijl L., Geldenhuys J.: Search Algorithms for the Combinatorial … 103

Since inner bboxes can overlap, the bound K(n) will not necessarily be tight. If
one considers any BRF, and look at any factor with two successive inner bboxes, it
is possible that there is no overlap between the two inner bboxes. For example, the
factor · · · aabcc · · · contains the successive inner bboxes aa and cc, which are separated
by the symbol b. On the other hand, the factor · · · abcab · · · contains two successive
inner bboxes of length four (abca and bcab), but the length of the factor is five and not
eight, because abca and bcab overlap by three symbols (bca). Since we are interested in
generating the longest possible MRF over a given alphabet, it is of interest to know what
the longest factor is that can be formed by any two successive inner bboxes. Lemma 1
establishes this maximum length.

Lemma 1. The longest BRF word w ∈ Σ∗
n which can be formed by two successive inner

bboxes b1 and b2, has length n+ 2.

Proof. Let w ∈ Σ∗
n be a BRF word which consists of two successive inner bboxes b1

and b2. Without loss of generality, one can write b1 = s1v1s1 = s1s2 · · · sm−1s1, where
s1 6= si 6= sj , for 2 ≤ i, j ≤ m − 1 (for i 6= j), since b1 is an inner bbox. Similarly,
b2 = shv2sh = sh · · · sksh, where sh 6= si 6= sj , for h+1 ≤ i, j ≤ k (for i 6= j), since
b2 is an inner bbox.

First consider the case where b1 and b2 show no overlap:

w =

b1

s1s2 · · · sm−1s1sm · · · sj
b2

· · · sksj

None of the symbols sm up to sk can occur in b1, as that would form a new inner
bbox which would contradict the requirement that b2 is the first inner bbox that occurs
after b1. Therefore, sm up to sk are unique, and the maximum value of k is the number
of symbols in the alphabet, so that k ≤ n.

Simple arithmetic shows that |b1| = m, and |b2| = k − j + 2 ≤ n − j + 2. The
number of non-overlapping symbols between b1 and b2 is (j −m + 1) − 1 = j −m.
Therefore, |w| = m+ k − j + 2 + j −m = k + 2 ≤ n+ 2 as is required.

For the second case, where b1 and b2 overlap, the argument is similar. Let

w =

b1

s1s2 · · · sj
b2

· · · sm−1s1smsm+1 · · · sksj

where 1 ≤ j ≤ m− 1. Again, |b1| = m, and |b2| = k− j+2 ≤ n− j+2. The number
of overlapping symbols is now (m−1− j+1)+1 = m− j+1. The result follows.

Lemma 1 is referred to as the n + 2-rule throughout the remainder of this article.
Note that the value given in Lemma 1 is a maximum value, and is not necessarily reached
for any two successive inner bboxes b1 and b2. Nevertheless, for any inner bbox b1, there
does exist an inner bbox b2 such that b1 followed by b2 adheres to the n+ 2-rule. For
algorithmic purposes, the n+ 2-rule is called an extension of inner bbox b1 to b2. This
leads to Lemmas 2 and 3 below, which narrow down these extensions of inner bboxes.

Example 2. Consider Σ3 = {a, b, c}. The inner bbox aba can be extended by inner bbox
bacb, to form the string abacb of length n+ 2. On the other hand, if inner bbox aba is
extended by bab, then the resulting string abab has length less than n+ 2.
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Lemma 2. Let w ∈ Σ∗
n be an inner bbox. Then w can be extended by a suffix p ∈ Σ∗

n,
with |wp| ≤ n+ 1, so that the only bbox in wp is w.

Proof. Let w = s1s2 · · · sm−1s1, with |w| = m. From property P1, it follows that
m ≤ n+1. Ifm = n+1, let p = ε, and the lemma holds trivially. Ifm < n+1, choose
p to be any permutation ofΣn\{s1, . . . , sm−1} so that |p| = k, where 0 < k < n−m+1.
Clearly, wp still only contains the bbox w, as none of the symbols in w is used in p.
Moreover, |wp| = m+ k ≤ m+ (n−m) + 1 = n+ 1.

Corollary 1. Let w ∈ Σ∗
n be an inner bbox. Then w can be extended to the left by a

prefix p ∈ Σ∗
n, with |pw| ≤ n+ 1, so that the only bbox in pw is w.

Example 3. LetΣ3 = {a, b, c}, and consider an inner bbox w = aba. Then prepending a
prefix c tow gives the word caba. Here, |cw| = 4 = n+1, and cw is bbox repetition-free.
Note that Corollary 1 does not allow the use of any symbols other than c in the prefix.

Lemma 2 is easily extended to hold for any BRF word wq, with q the last inner bbox
at the end of the word.

Lemma 3. Let w ∈ Σ∗
n be bbox repetition-free, so that w = tbk, where bk denotes the

last inner bbox contained in w. Then wp will remain bbox repetition-free if w is extended
with a suffix p as in Lemma 2 above, with |bkp| ≤ n+ 1.

Proof. From Lemma 2, there exists a suffix p such that bkp will not contain any other
bbox than bk, with |bkp| ≤ n + 1. Any symbol contained in p will create at least one
outer bbox x when appended to w, but since w is BRF, this outer bbox cannot cause a
repetition.

As a direct corollary, the same result holds for a prefix prepended to a BRF word.
Given the n+ 2-rule and the idea of extensions of an inner bbox, one can capture

the length of words with the properties required for the search algorithms.

Theorem1. If w ∈ Σ∗
n such that w

1. is bbox repetition-free,

2. contains all inner bboxes over Σn,

3. consists of consecutive inner bboxes that adhere to the n+ 2 rule, and

4. has been extended as per Lemma 3,

then |w| is equal to

B(n) = (n+ 2)[J(n)− 1]−K(n) + 2(n+ 1). (1)

Proof. Assume that w contains k inner bboxes over Σn. Let the overlap lengths between
successive inner bboxes be o1, o2, . . . , ok−1 such that bbox bi and bbox bi+1 share oi
symbols. The word w will be of the following form:

w = p

b1 b3 ···b2 b4 bk

o1 o2 ··· ok−1

w1 ·····························································wzq,
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where p and q, respectively, denote the bbox-free prefix and suffix used to extend w in
accordance with Lemma 3. The length of |w| is the sum of the lengths of all the inner
bboxes, minus the sum of the lengths of the overlaps between the inner bboxes, plus the
lengths of the prefix p and the suffix q:

|w| =
k∑

i=1

|bi| −
k−1∑
i=1

oi + |p|+ |q|.

All consecutive inner bboxes adhere to the n+ 2 rule, and hence

|w| =
k∑

i=1

|bi| −
k−1∑
i=1

oi + |p|+ |q|

=

k−1∑
i=1

(|bi| − oi) + |p|+ |bkq|

=

k−1∑
i=1

(n+ 2− |bi+1|) + |p|+ |bkq|

= (k − 1)(n+ 2)−
k∑

j=2

|bj |+ |p|+ |bkq|

= (k − 1)(n+ 2)−
k∑

j=1

|bj |+ |pb1|+ |bkq|

= (n+ 2)[J(n)− 1]−K(n) + 2(n+ 1)

Note that Lemma 3 and Theorem 1 do not provide existence proofs. The only guar-
antee is that, if w exists, then its length would be bounded by Equation 1.

From an algorithmic point of view, it is helpful to note that B(n) can be expressed
recursively as B(n) = n · (B(n − 1) + 2). The relationship amongst B(n) and J(n)
follow directly, as B(n) = 2J(n).

Finally, note a restriction on the suffix of an LMRF word.

Theorem2. If w ∈ Σ∗
n is MRF, then w ends with a permutation of the symbols of Σn.

Proof. Let w be an MRF word with |w| = k, where

w = w1w2 · · ·wi · · ·wj · · ·wk−1wk,

and j = k − n+ 1 (that is, wj to wk are the last n symbols in w). The proof is by
contradiction. Assume that the last n symbols in w is not a permution of the symbols in
Σn. Then there is at least one symbol a ∈ Σ which does not appear in wj · · ·wk. But
a must appear in w, since w is MRF. Suppose that the last occurrence of a in w is at
symbol wi such that i < j, with 1 ≤ i, j ≤ k. Then, by the pigeonhole principle, at least
one of the symbols in wj · · ·wk must repeat, thus forming one or more bboxes. Pick any
of these bboxes and call it z.
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Now consider appending a to w:

w′ = w1 · · ·wi

y

awi−1 · · ·
z

wj · · · wk−1wk a

Since w is MRF, w′ now contains a repeating bbox y which appears earlier in w′

and therefore also in w. But that means that z also appears at least twice in w and w
is not bbox repetition-free and not MRF. This is a contradiction, and therefore a must
appear in the last n symbols of w. This is true for all symbols of Σn. Therefore, every
symbol of Σn occurs somewhere in the last n symbols of w and the last n symbols form
a permutation of Σn.

Corollary 2. If w is LMRF, then w starts and ends with a permutation of the symbols of
Σn.

3 Properties of LMRFWords

Recall that the sum of the lengths of all inner bboxes over Σ∗
n provides an upper bound

on the length of an LMRF word, but due to bboxes that overlap, this bound is not tight.
This section demonstrates that these overlaps between inner bboxes display a noticeable
pattern. Consider the example below.

Example 4. Let Σ3 = {a, b, c} and

w = abca cbc abacabbcaabcbacbabccabc . (2)

An exhaustive enumeration of all MRFs over Σ3 shows that w is indeed LMRF. Now
consider all the inner bboxes in w, with their corresponding overlaps. For example, the
first three inner bboxes in w are abca, cac and cbc. Here, abca and cac overlap by two
positions, and cac and cbc overlap by one position. Use the notation b1(−k)b2 to refer
to the overlap when the inner bbox b1 ∈ Σ∗

n is extended by b2 ∈ Σ∗
n, by letting the last k

symbols from b1 overlap with the first k symbols of b2. Similarly, b1(+k)b2 indicates
that b1 extended with b2 has no overlap, and k symbols appear between b1 and b2, where
those k symbols are not already present in b1 and b2. Rewriting w into its constituent
inner bboxes in this fashion, gives

w = abca(−2)cac(−1)cbc(−2)bcab(−2)aba(−1)aca(0)bb(+1)aa(0)bcb(−2)
cbac(−3)bacb(−3)acba(−2)bab(0)cc(−1)cabc .

By inspection, w contains all inner bboxes over Σ3. Moreover, the length of any
b1(−k)b2 and b1(+k)b2 is equal to n + 2 (in this case, n + 2 = 5). In other words,
b1(−k)b2 and b1(+k)b2 have been extended maximally and as such adhere to the n+
2-rule (see Lemma 1). These two observations (henceforth referred to as the LMRF
assertions) can be used to compute the length of the example LMRF in Equation 2, by
employing Theorem 1, with n = 3:
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|w| =
(n+2)[J(n)−1]

[4− 2 + 3] + [3− 1 + 3] + · · ·+ [2− 1 + 4]−
K(n)

(4 + 3 + 3 + · · ·+ 2 + 4)

+

2(n+1)

(4 + 4)

=

5·14=70

5 + 5 + · · ·+ 5−
48

(4 + 3 + 3 + · · ·+ 2 + 4)+

8

(4 + 4)

= 30. (3)

An empirical verification was performed over arbitrarily generated LMRFs, up to
n = 4. It demonstrated that if w ∈ Σ∗

n is LMRF, then it contains all inner bboxes
over Σn, and all factors in w of the form b1(−k)b2 or b1(+k)b2 have a length of n+ 2.
These LMRFs were generated without employing the LMRF assertions in the generation
process. It is therefore conjectured that

Conjecture 1. If w ∈ Σ∗
n is LMRF, then |w| is equal to

B(n) = (n+ 2)[J(n)− 1]−K(n) + 2(n+ 1).

Given the properties of MRF words developed above, we turn our attention to specific
search algorithms for LMRF words.

4 Generating LMRFWords

Four search algorithms to find LMRF words over Σn are presented in this section. The
first two algorithms are adaptations of standard tree-based search algorithms, whilst the
latter two have been developed based on a graph representation of inner bboxes.

4.1 Backtracking

The simplest way to search for MRF words is to employ a backtracking algorithm. That
is, use a recursive depth-first search algorithm that systematically finds longer BRF
words. The pseudo-code for this backtracking algorithm is depicted in Algorithm 1. The
algorithm starts with the word w, which is initially empty. It then appends a symbol
a ∈ Σn to w to form w′. If w′ is a bbox repetition-free word, the recursive search
continues (the process starts anew and w′ becomes the new initial starting string). If w′ is
not BRF, an alternative character from Σn is appended. If there are no more characters in
Σn left to append, the algorithm terminates (after exploring all possible subtrees through
backtracking).

Example 5. Algorithm 1 generates the search tree depicted in Figure 1 when n = 2.
Every path in this tree is a valid MRF word. The path that generates the LMRF baabbaba
is highlighted in bold.
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Figure 1: A tree of all possible valid BRFs, starting with symbol b, over Σ = {a, b}.

Algorithm 1: Backtracking algorithm for generating BRF words
w ← ε
Function explore(w):

for a ∈ Σ do

w′ = w + a
if valid(w′) then

explore(w′)

record(w′)
end

end

The backtracking algorithm is simple to implement, but resource intensive. It is
enumerative and not a search algorithm per se. Hence, as expected, even with many
programming optimisations, the backtracking implementation was inefficient. It could
not find an LMRF for n > 3 in reasonable time. For n = 4, it found an MRF of length
98, which is shorter than the known LMRF length of 128.

A more sophisticated search algorithm can be produced by adapting the well-known
Monte Carlo tree search algorithm. Where the backtracking algorithm generates all
LMRFs over a given alphabet, the Monte Carlo tree search approach attempts to find an
example of one LMRF, by selecting favorable branches to traverse in the decision tree.
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4.2 Monte Carlo tree search

Monte Carlo tree search (MCTS) is often used in game theory to find optimal moves in a
two-player game [Nijssen 2013]. Finding LMRF words can be viewed as a deterministic
single player game, where the goal of the game is to stay alive as long as possible. The
game starts with an empty word w. During each move of the game, a player can append
one symbol from Σn to w. If the player adds a symbol that causes a repeating bbox, the
game ends. If the word generated by the player is LMRF, the player wins, or else the
player loses. The progress of the game is tracked by a tree, where each node represents a
move by the player.

To use MCTS to search for LMRF words, consider an existing BRF word w. Then
each node in the tree represents the addition of another alphabet symbol in the construction
of w, so that the word w can be constructed by traversing the tree from the root node
to the current node. To make a move in the game from a currently selected node, all its
children are created (the expansion phase). Then random walks are initiated from each
child, to investigate possible paths in the tree (the simulation phase). A score is kept in
each node (see below), and when the simulation is done, all the node scores are updated
backwards up to the root node (the backpropagation phase). The scores are then used to
select a new node based on the scores (the selection phase), and the process repeats.

The success of MCTS in searching for LMRF words depends to a large degree on
the score calculated for each node – one wants to select nodes with the biggest chance of
leading to an LMRF word. The upper confidence bounds applied to trees (UCT) scoring
method [Browne et al. 2012] was adapted for use in our experiments. For every node i,
let Si be the total length of all the BRF words found by random walks initiated from node
i or any of its subsequent children, and let vi represent the total number of simulations
that were initiated from node i or any of its subsequent child nodes. A win rate Xi can

then be calculated as Si

vi·B(n) , with the value ofB(n) as given in Theorem 1. The quantity

Xi, therefore, represents the average normalized search depth reachable from node i.
The calculation of the UCT score for any node i, with parent node s, is then given by

UCTi = Xi + C

√
ln vs
vi

, (4)

where C is a hyper-parameter which determines to what degree the search algorithm
is allowed to explore poorly explored subtrees (vi and per implication vs have already
been explored). Thus, the UCT score uses Xi for exploitation; this value is high for
nodes from which one can reach deeper search depths (that is, generate longer MRFs),
while the second term in UCTi corresponds to exploration; it is high for nodes from
which few simulations were conducted.

As MCTS is a stochastic algorithm, multiple experiments were run. Surprisingly,
MCTS was able to find an LMRF for n = 4, but not for n = 5.

To find a better search algorithm, the inner bboxes for a given value of n were
organised into a graph, and two search algorithms were developed, based on the traversal
of the graph. Both search algorithms make use of the LMRF assertions, as developed in
Section 3. All LMRFs generated by these two approaches were tested and were in fact
bbox repetetition free.

4.3 Node search

A graph G = (V,E) consists of a set of vertices V and a set of edges E, where an edge
(v1, v2) connects vertices v1 and v2. A path in G is a sequence of edges. A Hamiltonian
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path in G is any sequence of edges of G which passes through all the vertices in V
exactly once [Diestel 2017]. Given alphabet Σn, consider the graphGn = (V,E), where
V is the set of all possible inner bboxes over Σn, and (b1, b2) ∈ E if and only if b2 is a
maximal inner bbox extension of b1. That is, b1 extended by b2 adheres to the n+ 2-rule
as in Lemma 1.

If the LMRF assertions, as listed in Section 3, are indeed necessary and sufficient
conditions for a word w to be LMRF, then it follows that LMRFs can be generated
by finding and traversing Hamiltonian paths in Gn. The traversed paths need to be
Hamiltonian to guarantee that the words formed by the traversal are repetition-free. As
per Lemma 3, a word w formed using this graph traversal approach may still have to be
extended with an appropriate prefix p and/or suffix q to make it LMRF.

Example 6. The graph G3 is depicted below, where Vk indicates the vertices depicting
inner bboxes of length k. For readability purposes, not all of the edges in G3 are shown;
in particular, the edges between V2 and V4 are not drawn. Edges with arrowheads are
directed; all other edges are bi-directional. The light gray vertices of V3 are simply
duplicates to simplify the drawing of the edges. A partial traversal of this graph is
depicted in gray. The string formed via this traversal is

w = aacbcabacb

= aa(0)cbc(−2)bcab(−2)aba(−2)bacb.

Note that w consists of only inner bboxes, and it adheres to the n+ 2-rule. Moreover, it
can easily be verified that the LMRF in Equation 2 can be associated with a Hamiltonian
path in G3.

The adjacency matrix A for G3 is shown below, with (bi, bj) = 1 if bj is a maximal
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extension of bi.

A aa bb cc aba aca bab bcb cac cbc abca acba bacb bcab cabc cbac
aa 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0
bb 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0
cc 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1
aba 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0
aca 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0
bab 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0
bcb 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
cac 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
cbc 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
abca 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
acba 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
bacb 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
bcab 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0
cabc 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0
cbac 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0

In general, the indegree and the outdegree of the vertices belonging to Vk decrease
as k increases. The number of incoming and outgoing edges per inner bbox size, for G2

through G7, is shown in Table 1. An entry is marked with ‘-’ if inner bboxes of that
length cannot be constructed. For example, in G3, there are no inner bboxes of length
five. The number of edges is naturally ordered from large to small; the longer the inner
bbox, the fewer edges it has.

Inner bbox length G2 G3 G4 G5 G6 G7

2 2 6 21 88 445 2676

3 2 3 8 27 112 565

4 - 3 4 10 33 136

5 - - 4 5 12 39

6 - - - 5 6 14

7 - - - - 6 7

8 - - - - - 7

Table 1: The indegree and outdegree per inner bbox size of Gn.

Let I denote the list of inner bboxes ordered lexicographically on length (as in the
adjacency matrix A above). Let I ′ denote the reverse of this list. Recall that the search
algorithm will attempt to find a Hamiltonian path in Gn.

The simplest approach to search for Hamiltonian paths in Gn is to employ DFS,
with a defined order in which the vertices of Gn are to be explored [Diestel 2017]. The
pseudo-code for finding all the Hamiltonian paths in an arbitrary graph G via DFS is
presented in Algorithm 2. Note that in Algorithm 2 the order in which the nodes are to be
explored is not made explicit. Moreover, the algorithm will find all the Hamiltonian paths
in an arbitrary graph, and does not terminate when the first path is found. In this work,
we used a slighlty modified version of this algorithm in which the program terminates
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as soon as a Hamiltonian path is found (making it non-enumerative). Two exploration
strategies are considered. In the first approach, the next vertex to expand is found via its
rank in I . That is, from all the valid inner bboxes that can be expanded at any point in
time, the one with the lowest rank in I is chosen. In the second approach, the inner bbox
with the lowest rank in I ′ is chosen. The first approach is called basic node search, and
the latter approach reverse node search. The latter approach should intuitively outperform
the former – the inner boxes with longer length have fewer edges, and so the reverse
search covers fewer edges and leaves more edges open for further exploration within the
graph [Seeja 2018] while it searches (seeA and Table 1 to verify). Note that backtracking
is used in both approaches. As soon as a dead end is reached, the algorithms backtrack
to the closest vertex which still contains edges connected to vertices that have not been
visited yet. As soon as a Hamiltonian path is found, the search is terminated.

Algorithm 2: Finding all Hamiltonian paths in a graph G via DFS.

Function DFS(Graph G, node V , path P ):
add node V to path P
if path P contains all nodes then

save(P )

end

for each node W connected to node V do

if node W is not in path P then
DFS(G,W ,P )

end

end

remove node V from path P

Function Hamiltonian(Graph G):

for each node K in G do

DFS(G,K,∅)
end

The results from the basic node search improved upon both the brute force and the
MCTS, in the sense that it could find longer MRFs in the same time. Nevertheless, it
still failed to find an LMRF for n = 5 in a reasonable time. In contrast, the reverse node
search could find an LMRF for both n = 5 and n = 6.

5 Analysis

The four search algorithms have different inherent properties, which influences the
comparison of the results obtained. Note that backtracking and MCTS are both tree based
search algorithms, while the remaining two algorithms are graph based search algorithms.
In addition, MCTS is a stochastic search algorithm; the remaining algorithms are all
deterministic.

One would expect that the exploitation of domain knowledge would increase the
chances of finding LMRF words. This is indeed the case. Backtracking requires no
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domain knowledge, other than the definition of an LMRF word. MCTS uses partial
domain knowledge, as it employsB(n). The two node searches exploit knowledge about
the properties of LMRF words; in particular, the LMRF assertions.

(a) n = 3 (b) n = 4

(c) n = 5 (d) n = 6

Figure 2: The average time taken for each search algorithm to find a BRF word of length
k ≤ B(n), for n ∈ {3, 4, 5, 6}.

The average time for each of the four algorithms to find a BRF word of length
k ≤ B(n) (for 3 ≤ n ≤ 6) is presented in Figure 2. The search experiments were
repeated multiple times; the average result obtained is plotted. Each algorithm was
allowed to search through the allotted search space for 10 minutes at a time (experiments
showed that this was a choking point for all the algorithms). All of the experiments were
conducted on an Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz with 8 cores.

Most of the curves in Figure 2 are monotonically increasing; as expected, the al-
gorithms generally take longer to find longer BRF words. However, as the value of
n increases, the curve for MCTS reaches a non-increasing plateau. Because fewer of
the search experiments for MCTS are able to find long BRF words, the measurements
reported towards the end of the curves have a higher error associated with them, due to
the stochastic nature of the algorithm.

The first words found by the different algorithms are of varying lengths. This is not
surprising, as some algorithms search by adding individual symbols to existing words,
while others add entire inner bboxes. Moreover, some algorithms, like the node search
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algorithms, require the addition of a prefix and a suffix as well. The words used to
initialise the different algorithms also vary. For backtracking and MCTS the starting
word is a permutation of Σn (by Theorem 2), while the node search algorithms start with
an inner bbox padded with an appropriate prefix and suffix (see Lemma 2).

Most algorithms experience a steady increase in execution time as a function of the
word length k. However, at some value of k, most algorithms reach a choking point
– a sudden increase in execution time is required to make further progress. Soon after
the choking point, most algorithms get stuck and are unable to find longer BRF words.
Enumerations of BRF lengths for n = 3 and n = 4 show that, at the choking points, the
allotted search space contains many relatively long BRF words and only a few LMRF
words. Interestingly, MCTS experiences a less abrupt increase in execution time at
the choking point. This is due to the fact that it explores its search space somewhat
intelligently and therefore still has favorable avenues to explore at the choking point.
This is exacerbated exacerbated by the fact that MCTS is a stochastic algorithm where
only average results are reported. The choking point of the graph based approaches
generally appear at a longer word length than for the tree based approaches. This is to be
expected, as the tree-based search recurses through branches with a similar prefix. The
graph-based approach searches through more varied prefixes. Note that a choking point
is not visible in the curves associated with reverse node search. Because the values of
n are small, the reverse node search did not have to backtrack in its search – this will
however not be true in general for larger values of n.

The execution times of the algorithms are comparable, until each algorithm reaches
its choking point. The noteable exception here occurs for MCTS when n = 3. This can
most likely be attributed to the overheads that are required to set up the MCTS algortihm.
Generally speaking, backtracking performs the worst, only reaching the theoretical upper
bound for n = 3. MCTS performs slightly better, reaching the theoretical limit for both
n = 3 and n = 4. The basic node search also reaches the theoretical limit for n = 3
and n = 4, while reverse node search reached the theoretical limit for 3 ≤ n ≤ 6. As
pointed out in Section 4.3, this is due to the fact that its exploration strategy preserves the
most unexplored edges in Gn. The algorithm will undoubtedly require backtracking for
larger n, as it is dependent on a deterministic algorithm for finding Hamiltonian paths in
Gn. Lastly, one should note that backtracking can outperform MCTS. When the search
is small, a random walk is an adequate strategy for exploring the search space, but for
larger n a more sophisticated strategy is required. This could also be attributed to the
need for further optimisation of the hyper-parameters of MCTS.

The experiments also illustrate that the worst case (exponential) time complexity of
the algorithms can be alleviated to some degree in practice. Recall that J(n) denotes
the total number of inner bboxes that exist over an alphabet Σn and that B(n) = 2J(n).
Furthermore, the worst case time complexity of bactracking and MCTS will occur if
the entire tree is to be generated; that is, if every vertex is to be created. A tree with a
branching factor of r and a depth of h has (r− 1)−1(rh− 1) vertices [McConnell 2001].
The tree generated here has a branching factor of n and a depth of 2J(n). The worst case
time complexity is, therefore, roughly O(n2J(n)). In other words, neither backtracking
nor MCTS can be executed in polynomial or linear time. It should be noted that the
worst case complexity will never occur in practice, since the tree is continually pruned
as it is expanded when backtracking is used, while it is explored cleverly in the case of
MCTS. Having said this, even with all of these optimisations these two algorithms fail to
execute in polynomial time, as the results clearly indicate. Moreover, the execution time
of DFS, when used to find the Hamiltonian paths in an arbitrary graphG, has a worst case
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time-complexity of O(v!), where v denotes the total number of nodes in G [McConnell
2001]. This occurs when the algorithm has to enumerate through all possible paths in
G that consist of only unique vertices, of which there are at most v! possibilities. In the
case of Gn, therefore, the worst case time complexity is given by O(J(n)!). Given these
theoretical upper bounds, neither the tree based nor the graph based algorithms ought to
be capable of finding LMRF words for larger n. This is clearly highlighted by the fact
that basic node search already fails to find an LMRF word for n = 5 within the allotted
search time. The reason that reverse node is successful, is due to the unique structure of
Gn, where the indegree and the outdegree of Vk deacreases as k increases (see Table 1).
By prioritizing the exploration of the longer inner bbox vertices, the reverse node search
algorithm maximises the number of unexplored edges that remain in the graph. Hence,
the DFS traversal requires almost no backtracking for small values of n. In other words,
it immediately finds a Hamiltonian path, and it does so in linear time. Nevertheless, we
hypothesize that the algorithm will, for larger n, have to rely on backtracking which
will increase its execution time significantly. Exploring this aspect in more detail will
be done as part of a future endeavour. Lastly, the astute reader may be wondering why
we do not present execution times, but rather kept track of the longest MRF that each
of the algorithms could find within 10 minutes. The theoretical time complexity of the
algorithms highlight the reason why. Most of the algorithms were not able to make much
progress after 10 minutes (they reached a choking point), precisely since the search space
grows exponentially for larger n. Most of the algorithms made little progress even for
substantial longer periods. In contrast, the reverse node search always found an LMRF
within the allotted time for small values of n.

The results are summarised in Table 2.

B(n) Backtracking MCTS Basic node Reverse node

n = 3 30 30 30 30 30

n = 4 128 98 128 128 128

n = 5 650 424 588 623 650

n = 6 3912 2468 1802 3341 3912

Table 2: Maximum BRF word length found for each search algorithm.

6 Conclusion

In this paper some theoretical properties of longest bbox repetition-free words were
derived and utilized to modify search algorithms to generate such words. Based on theory
and an empirical analysis, a conjectured tight upper bound for the length of the longest
maximal bbox repetition-free word was established as B(n) = n(2 +B(n− 1)), for an
alphabet size of n (see Theorem 1 and Conjecture 1).

The theoretical properties of MRF words made it clear that the associated search
space could be represented as either a tree (see Section 4.1 and Section 4.2) or a graph
(see Section 4.3). DFS can then be utilized to traverse the search spaces. In both cases
the search space becomes intractable and it becomes impossible to find LMRF words for
large n (see Table 2).
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Construction of a unique graph Gn, which can be traversed using a modified DFS,
allowed for finding LMRFwords for larger values ofn. The vertices ofGn can be grouped
into sets of vertices Vk, depending on the length of the bbox that a vertex is associated with.
The larger k becomes, the smaller the indegree and the outdegree of vertices belonging
to Vk are. When DFS is executed, the vertices with the lowest indegree and outdegree
are explored first. This maximizes the number of unexplored edges that remain within
the graph while the search progresses. This strategy (called reverse node search) makes
it possible to find LMRF words up to n = 6 (see Table 2). To summarise, the graph-
based search methods, based on the LMRF assumptions, outperformed backtracking and
MCTS.

Future work includes a theoretical proof for the upper bound on the length of an
LMRF, and determining the number of LMRF words for each n.
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