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Abstract: Dynamically Difficulty Adjustment (DDA) has been widely used to preserve 
engagement in serious and entertaining games, reach better learning, and enhance user 
performance. A variety of studies suggests that in DDA, task performance (score) rises 
until hitting a plateau associated with the skill level. However, the sense of engagement 
is individual and context-dependent, and the effect of DDA on other engagement 
indicators for immersive virtual environments is still unclear. This study measured 
objective indicators of engagement while study subjects played an immersive virtual 
game with DDA to find evidence of dynamic response, similar to game performance. 
Participants were demanded to perform repetitive upper-limb motions while recording 
the following indicators: Response Latency as perceptive engagement (elapsed time 
after sensory stimulus), Exercise Intensity as motion engagement (hand velocity), and 
psychophysiological responses as emotional engagement (Heart Rate, Skin 
Conductance, and Respiratory Rate). In addition, 30 features were extracted from the 
signals to evaluate their variations between time windows. Results indicate that 
response latency, vertical hand velocity, and heart rate showed significant changes over 
time during DDA and grew until hitting a plateau, i.e., at the subject's maximum 
performance. Moreover, some of the features extracted from the signals showed 
significant differences between time windows, and having strong correlation with the 
mean of score: max Latency, min velocity on the Y-axis, and mean heart rate, which 
suggest a promising application for evaluating changes in engagement between 
different experimental conditions in VR. 
 
Keywords: Engagement, Immersion, Difficulty, Presence, Psychophysiology, Virtual Reality 
Categories: I.3.8, I.3.m, J.3, J.4, L.2.0, L.2.3, L.2.5, L.6.1 
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1 Introduction  

Immersive Virtual Reality (IVR) has been increasingly used to provide higher 
engagement to learning tasks, whether psychomotor, affective, or cognitive [Karpouzis 
20, Lee 15, Makransky 19]. Traditionally, engagement and involvement have been used 
to define the psychological state that can be reached when focusing energy and attention 
on a coherent set of stimuli [Skarbez 17, Witmer 98]. Therefore, the effectiveness of 
IVR is usually linked to deeper states of engagement in such a way that the activity 
becomes autotelic, and the subject loses self-consciousness and sense of time, which is 
the foundation of Csikszentmihalyi's concept of Flow: when the individual is so 
engaged that nothing else seems to matter [Csikszentmihalyi 98]. Many authors agree 
that engagement and flow formation is strongly related to giving a clear goal, enhanced 
feedback, and matching challenge with the user's skills [Cheng 14, Hoffman 09]. 
Moreover, IVR-based games are helpful for defining and presenting goals, providing 
enhanced multisensory feedback, and allowing challenge/skill balance, and overall, it 
is believed that a IVR setup could be a means for objective real-time assessment of 
engagement. 

Engagement is widely believed to be driven by motivation and revealed through 
active participation and invested interest. However, engagement is also context-
dependent [Lequerica 10, O’Brien 16], and therefore, several human behaviors and 
attitudes that are unique for IVR should be analyzed to identify the subjective response 
to the virtual experience and thus measure the user engagement. A great deal of studies 
prefers using validated questionnaires to measure user engagement in terms of VR-
relevant constructs (e.g., Immersion, Presence, Absorption, or Agency) [Brockmyer 09, 
Hamari 14, Makransky 17, Sailer 20; Turkay 15]; however, Slater had already warned 
that post-experience self-reports could not assure an accurate measure of the mental 
activity at the time of the experience. Therefore, this study focused on real-time 
measures, which could be out of the influence of the subject's interpretation, recalls, 
and time of exposure [van Baren 04)]. Response latency, exercise intensity, and 
psychophysiological signals are probably the most accepted indicators of behavioral 
and emotional engagement in interactive VR setups, and many authors have reported 
their use [Barreda 20, Darzi 19, Goršič 17, Kerous 15]. 

In addition, van Baren and IJsselsteijn pointed out that despite actively responding 
to objects and circumstances in IVR, just as in real life, individuals are also influenced 
by their task performance [van Baren 04].  It has been noticed that when users engage 
with an interactive task-based simulator, proper challenge leads to the desired state of 
flow, but the focused attention will only remain if obtaining the expected performance 
for the given skills [Cheng 14; Csikszentmihalyi 98]. Therefore, previous studies have 
moved from simply setting engaging setups for IVR to increasing performance by 
incorporating Dynamic Difficulty Adjustment (DDA) to reach the proper 
challenge/skill balance, i.e., not too high to avoid frustration but hard enough to 
encourage engagement" [Ozkul 19, Pinto 18, Rodriguez-Guerrero 17]. However, how 
behavioral and emotional indicators behave during DDA in IVR games is still unclear.  

For instance, it is expected from DDA that in the absence of external assistance, all 
performance cues (e.g., score, error rate, completion time) rise to find a plateau at a 
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given value where they will stay oscillating, which is related to the subject's maximum 
skill level [Rodriguez-Guerrero 12). We hypothesize that real-time measures of 
engagement, such as response latency (perceptive engagement [Li 16]), exercise 
intensity (motor [Goršič et al. 17]), and psychophysiological signals (emotional 
engagement [Knaepen 15]) might also reach their final value at the maximum level of 
activity, similar to performance's curve. 

This study was designed to test the effects of DDA in a physically demanding IVR 
game (requiring repetitive motions of the dominating upper limb) using an 
Increment/Decrement One Level algorithm (IDOL). Consequently, we were able to 
explore How objective measures of engagement with task-oriented exercises in IVR 
behave during DDA? Moreover, contribute to the research community by answering 
the following research questions (RQ):  

RQ1: Which behavioral and psychophysiological indicators of engagement 
increase/decrease significantly in time as a response to DDA in IVR? 

RQ2: Which of the defined indicators, either continuous signals or extracted 
features, correlate with in-game performance during DDA in IVR? 

2 Methods 

2.1 Hardware and Instrumentation 

VR simulation was displayed via an Oculus Rift Head-Mounted Display (HMD), with 
integrated over-ear headphones and remote controllers suitable for visual, auditory, and 
haptic feedback. The entire system offered full immersion by position/orientation 
tracking (head and hands), latency < 10 ms, refreshment rate = 90 Hz, per-eye 
resolution = 1080 x 1200, field-of-view = 110o, 3D sound, and both-hands vibration. 
These technical attributes have been widely accepted to deliver the Place Illusion (PI) 
that Slater set as needed to promote Presence in VR, i.e., the sense of "being there" 
(Slater, 2009). 

Regarding the psychophysiological signals, electrocardiogram (ECG), Galvanic 
Skin Response (GSR), and Respiration (RSP) were sampled using a Biosignals Plux 
Explorer (sampling rate = 1kHz, resolution = 16 bits).  

As shown in Fig.1, ECG was acquired by two electrodes placed in the position of 
leads V2 and V6 (12-Lead ECG scheme), plus the ground electrode over the sternum. 
Likewise, two surface electrodes were placed on the intermediate phalanges of the 
index and middle fingers in the non-dominant hand to measure GSR. Finally, an 
adjustable elastic strap was worn around the thorax to measure RSP. 

Electrode wires were carefully fixed to the body to avoid motion artifacts (e.g., by 
cable pulling) and discomfort capable of breaking the sense of Presence. However, none 
of the participants reported being aware of the sensors or cables during the task.  

2.2 Study subjects 

Ten members of the research group participated in this study (n = 10), 4 females (40%) 
and 6 males (60%), mean age 29.11 (SD = 9.99). All participants were healthy adults 
with no physical or cognitive conditions that could provide informed consent, follow 
instructions, and perform the upper limbs and head motions. There was no need to 
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exclude participants due to undesired neurological conditions for VR simulations (such 
as vertigo, seizure history, or dizziness). 
 

 
Figure 1: The VR device and the sensors placed on the subject's body: schematic 

(left) and photograph (right) Head Mounted Display (1), remote controller (2) and 
sensors: 3 ECG electrodes (3), respiration strap (4), and 2 GSR electrodes 

    
Figure 2: Virtual environment developed to provide multisensory interaction and 

difficulty adjustment in an upper-limb exercise. Left: General view of the VR 
scenario; right: First-person view of the VR version of the game Wack-a-mole. 

2.3 Study protocol 

Surface electrodes were fixed to the skin at least 5 minutes before sensor placement to 
avoid tonic drifts due to electrolyte penetration. After being briefly introduced to the 
instrumentation and procedure, each participant filled a survey to provide demographic 
data (age, gender, and hand laterality) and the first report of Virtual Reality Sickness 
Questionnaire (VRSQ) to assess changes in oculomotor and disorientation symptoms 
after the VR exposure, via the 4-points scale proposed by Kim et al. [Kim 18]. Then, 
while seated, a 1-minute-long screening of body signals was performed to obtain 
baseline data at resting conditions. Afterward, VR devices were provided, and the 
experiment started. 

During the experiment, the participant was immersed in a custom-made VR 
simulation (Unity3D version 2019.3.12f1) of a funfair on a pier and asked to play the 
popular arcade machine game "whack-a-mole" (see Fig.2). The VR environment 
included the essential aspects that contribute to Plausibility Illusion (PI): coherent 
elements and actions providing the authentic experience expected by the user [Gilbert 
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16, Skarbez et al. 17]. Furthermore, the sense of coexistence was provided by including 
human-like animated avatars (for social Presence), along with an accurate 
representation of the real-life environment (for physical Presence) and precise bodily 
connectivity (for self-presence) [Caldas et al. 20, Makransky 17]. 

Participants were instructed to grab the mallet and hit the red button to start the 
arcade machine, and then play the 90-seconds game: to hit the moles as randomly 
released (one at a time) within a time limit here referred to as Time Out-of-the-Hole 
(TOH0 = 1.6 s), that is the lapse between each mole pop-up and its automatic return. 
When the player hits the single mole target strongly enough to move it down 
(approached by the hand velocity) and within TOH, the score increases by 1 point, and 
difficulty increases by a given TOH amount reduction (-30 ms). On the contrary, if 
TOH runs out and the subject misses the mole target, the score decreases by 1 point, 
and TOH increases by the same amount. Moreover, the subsequent mole releases 
immediately after the previous one returns by either hit or miss, which avoids the risk 
of having multiple targets and any lapse between subsequent moles.  

The above-mentioned dynamic difficulty adjustment is based on the commonly 
used Increment/Decrement One Level (IDOL) algorithm (Ozkul et al., 2019), and the 
flowchart further describes it in Fig.3. Therefore, participants' scores are expected to 
rise until they reach a plateau at an average maximum value, which Rodriguez-Guerrero 
named "skill limit" [Rodriguez-Guerrero 12]. 

Once participants ended the task, they were asked to give the second report of 
VRSQ, as well as to fill the User Engagement Questionnaire - Short Form (UES-SF), 
which has been proven to provide accurate reports of VR interactions in terms of 
aesthetic appeal, focused attention, perceived usability, and reward, via a 5-points 
Likert scale [O’Brien 18, Yu 19]. 

 
 

 
Figure 3: Flowchart describing the DDA algorithm by modifying the mole TOH (time 

out-of-the-hole). 
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2.4 Measurements and feature extraction 

Performance was assessed via the in-game score (now called score), which measures 
the effectiveness of hitting the mole (sampled at every hit or miss). Moreover, the mean 
and the standard deviation of the score were also extracted from the time series. 

In addition, two types of engagement indicators were considered for comparison: 
behavioral and emotional. 

Behavioral engagement 

Two indicators of behavioral engagement were measured: response latency (here called 
LAT) and exercise intensity. The first one is based on the model proposed by Li et al., 
where the time lag of responding to changes in interesting VR content is used as a 
measure of perceptive engagement since proving active participation [Li 16]. It was 
measured as the time between mole release and the corresponding hit or miss (see Eq.1). 
Notice that if the subject misses the mole, 𝐿𝐴𝑇 = 𝑇𝑂𝐻 
 

𝐿𝐴𝑇(𝑠) = *𝑡! − 𝑡"" : 𝑡! − 𝑡"" < 𝑇𝑂𝐻
𝑇𝑂𝐻 : 𝑡! − 𝑡"" ≥ 𝑇𝑂𝐻 (1) 

 
where 𝐿𝐴𝑇(𝑠) is response latency, 𝑡""(𝑠) is the time at content change (mole pops 

up), 𝑡""(𝑠) is the time at responding (mole is hit), and TOH is the preset Time Out-of-
the-Hole. 

Finally, exercise intensity is measured as the root-mean-square (RMS) of the 
dominant hand linear velocity in the three axes (𝑉𝑒𝑙𝑋, 𝑉𝑒𝑙𝑌, and 𝑉𝑒𝑙𝑍), which has been 
proven to be appropriate to reveal energy expenditure (motor engagement) in upper-
limb exercises [Tsurumi 02, Van Der Pas 11]. Hand velocity is screened directly from 
the controller's accelerometer, and the RMS of its value is agreed to provide a proper 
measure of the signal's power.  

The mean and the standard deviation were extracted from each of the mentioned 
behavioral signals (e.g., 𝜇𝐿𝐴𝑇, 𝜎𝐿𝐴𝑇) for a total of eight behavioral features to be 
compared with the corresponding two Score features. 

Emotional engagement: Psychophysiological signals 

Three signals were used as psychophysiological indicators of the subject's engagement: 
Heart Rate (HR) obtained from ECG, Skin Conductance (SC) from GSR, and 
Respiratory Rate (RR) from RSP. Moreover, 25 features were extracted from these 
signals during the task: HR (8), SC (11), and RR (6). These signals were preprocessed 
by applying smoothing, notch, and band-pass filtering, normalized using baseline 
measures, and analyzed by morphology-based custom searching algorithms in Matlab 
(2018b). 

The ECG raw signal was processed by using the Pan-Tompkins algorithm (band-
pass filtering + differentiation + squaring + moving window integration [Pan 85] and 
adaptive heuristics to detect R-peaks and measure R-R intervals, and thus interpolate 
to get the HR time series. The mean (𝜇𝐻𝑅) was extracted from the signal along with 
features indicating HR variability (HRV) in the time domain: standard deviation (𝜎𝐻𝑅) 
and root mean square of successive differences (RMSSD); and in the frequency domain: 
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absolute Power Spectral Density for Low Frequencies [0.04-0.15 Hz] (𝑎𝐿𝐹), for High 
Frequencies [0.15-0.4 Hz] (𝑎𝐻𝐹) and ratio ;𝐿𝐹 𝐻𝐹< =. 

GSR analysis followed the state-machine approach proposed by Caldas et al., 
which analyses the GSR morphology to detect skin conductance responses (phasic 
component) and separates it from the tonic component (skin conductance level) [Caldas 
20]. Features from SCL: mean and standard deviation ( 𝜇𝑆𝐶𝐿 and 𝜎𝑆𝐶𝐿), maximum-
minimum range (𝑆𝐶𝐿𝑟𝑎𝑛𝑔𝑒), and difference between final and initial values (∆𝑆𝐶𝐿); 
features extracted after identifying SCR waves: SCRs/time (𝑛𝑆𝐶𝑅), mean amplitude 
and rise time (𝜇𝑆𝐶𝑅# and 𝜇𝑆𝐶𝑅$!) and their standard deviations (𝜎𝑆𝐶𝑅# and 𝜎𝑆𝐶𝑅$!). 

After peak detection (breaths), six features were extracted from the RR signal: 
mean and standard deviation (𝜇𝑅𝑅 and 𝜎𝑅𝑅), longest and shortest time between 
consecutive breaths (𝑚𝑎𝑥𝑇𝐶𝐵 and 𝑚𝑖𝑛𝑇𝐶𝐵), and the deepest and shallowest breath 
(Deep, Shallow). 

2.5 Data analysis 

All analyses were carried out using Matlab (2018b). Descriptive statistical analysis was 
firstly performed to graphically observe variations of the behavioral and 
psychophysiological signals along with performance, i.e., mean and standard deviation 
from all participants in terms of score, 𝐿𝐴𝑇, 𝑉𝑒𝑙𝑋, 𝑉𝑒𝑙𝑌, 𝑉𝑒𝑙𝑍, HR, SC, and RR. All 
signals were windowed by 1-s intervals, resulting in 90 windows to assess inter-signal 
correlations. In contrast, features were extracted after windowing each signal by 15-s 
intervals (i.e., the shortest segment that showed to have enough samples for suitable 
signal smoothing), resulting in six windows to be compared for significant differences 
by using the null hypothesis: not showing significant differences between windows, 
using	𝛼 = 0.05, as in Eq.(2). 
 

𝐻%: 𝜇& = 𝜇& = 𝜇' = 𝜇( = 𝜇) = 𝜇* = 𝜇+ (2) 
 

where 𝜇, is the mean of the observed feature at each window. 
Repeated Measures Analysis of Variance was performed to test significant 

differences in each signal and feature among all participants, with time windows as a 
within-subject factor and gender as a between-subject factor. 

Non-parametric statistics were used for correlation analysis considering the small 
data sample and the non-normal distribution of all eight signals and most features 
(Shapiro-Wilk test). Therefore, Kendall's Tau-b correlation (𝜏) was calculated to 
measure the strength of association between behavioral and psychophysiological 
features. The post hoc test to perform pairwise comparisons was Paired Samples T-Test 
with Bonferroni correction N𝑝	 < -

.
; 	𝑛 = 6R. In addition, this paired test was also used 

to evaluate the VRSQ questionnaire (comparing results from before and after 
exposure). 

3 Results 

All participants completed the study and were all included in the study analysis. 
However, one subject was found to have no skin conductance responses, which reduced 
the sample size in the corresponding features. 
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Results from the UES-SF questionnaire showed high engagement among all 
participants (4.76 ± 1.18). None of the participants reported to be affected in any of the 
symptoms assessed by the VRSQ test, and the null hypothesis was not rejected in the 
test results (p = 0:16), which suggests that this VR exposure was probably not 
promoting simulation sickness. However, caution must be taken due to the small study 
sample. 

3.1 Demographic data 

Only one individual was left-handed, which discarded laterality as a possible between-
subject factor. Likewise, the small sample was not suitable for age range analysis, and 
therefore, gender was the only demographic factor in consideration. However, no 
evidence was found of gender being related to the responses from any signal nor feature 
extracted, i.e., no significant differences were detected by between-subject analysis. 

3.2 Behavioral measures 

From the charts shown in Fig.4, it can be seen that the Score and LAT changed 
significantly in time, the first growing  (𝑝 = 0.00, 𝜂/' = 	0.73) and the last decreasing 
(𝑝 = 0.00, 𝜂/' = 	0.87).  However, both charts reveal a damped trend to an average 
level, which in the case of the score is more evident when observing the two individual 
curves since they exhibit the level to which each subject's response starts to oscillate. 

Fig.4 also indicates that the dispersion of data in both charts is considerably high 
if compared with the signal range, which explains the lack of significant and strong 
differences in standard deviations, which differs from the other extracted features. The 
differences between time windows for the feature with the largest effect size at each 
behavioral measure are displayed in Fig.5, where the damped trends are the most 
evident. In the case of 𝜇𝑆𝑐𝑜𝑟𝑒 (Fig.5-up), the post hoc test revealed significant 
differences between the second and sixth segment (𝑝 = 0.04), between the third and 
the fourth segment (𝑝 = 0.03), and as explicitly shown in the boxplots, between the 
first and all the other windows (𝑝 = 0.00). In the case of 𝜇𝐿𝐴𝑇 (Fig.5-middle), it can 
be seen that the only significant differences were found between 1st and 3th (𝑝	 =
	0.01), 1st and 4th (𝑝	 = 	0.01), 1st and 5th (𝑝 = 0.00), and 1st and 6th (𝑝 = 0.00). 

A significant negative correlation was found between Score and Latency (𝑝 =
0: 00, 𝜏 = −0.68). Regardless of the statistically significant correlation, both indicators 
showed a very weak relationship with RMS of Hand Velocity in all three directions, 
i.e., |𝜏| < 0.01. 

Oppositely, Exercise Intensity showed no clear evidence of changes in the time 
since 𝑉𝑒𝑙𝑋 had no significant differences (𝑝 = 0.01, 𝜂/' = 0.34), 𝑉𝑒𝑙𝑍 had a weak 
effect size (𝑝 = 0.38, 𝜂/' = 	0.10), and only 𝑉𝑒𝑙𝑌 reported significant and moderate-
strong relationship with the DDA changes along time (𝑝 = 0.00, 𝜂/' = 	0.48). 
However, it is apparent from Fig.4 that 𝑉𝑒𝑙𝑌 reaches a higher final value and takes up 
to half of the session to become steady. 
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Figure 4: Performance and behavioral engagement measures in terms of the mean 

and standard deviation (shaded). Single measures from 2 random subjects (𝑛 =
1	𝑎𝑛𝑑	𝑛 = 4) were also included in the charts for further illustration. 
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Table1 describes the observed behavior of all features that reported significant 

changes between time windows, being the minimum value the one with the strongest 
effect size in 𝑉𝑒𝑙𝑋 ;𝜂/' = 	0.91=, 𝑉𝑒𝑙𝑌 ;𝜂/' = 	0.88=, and 𝑉𝑒𝑙𝑍 ;𝜂/' = 	0.73=. In the 
case of 𝑚𝑖𝑛𝑉𝑒𝑙𝑌 , shown in the lower boxplot in Fig.5, posthoc tests found that all-
time windows were significantly higher than 1st (𝑝 = 0.00). Moreover, all four score-
related features showed to be significantly correlated with 𝑚𝑖𝑛𝑉𝑒𝑙𝑌	(𝑝 < 0.05), with 
a moderate-strong relationship with 𝜇𝑆𝑐𝑜𝑟𝑒	(𝜏 = 0.41) and 𝑚𝑖𝑛𝑆𝑐𝑜𝑟𝑒	(𝜏 = 0.44). 
 

Signal Within-subject effect 
Name Feature 𝐻% Effect Size 

Score µScore 𝑝 = 0.00 𝜂/' = 0.76 
LAT µLAT 𝑝 = 0.00 𝜂/' = 0.51 
RMS VelX µVelX 𝑝 = 0.00 𝜂/' = 0.91 
RMS VelX µVelY 𝑝 = 0.03 𝜂/' = 0.88 
RMS VelX µVelZ 𝑝 = 0.00 𝜂/' = 0.79 
HR µHR 𝑝 = 0.04 𝜂/' = 0.32 

HR: Heart Rate, LAT: Latency, RMS: Root Mean Square 
𝑝: Significance, 𝜂!": Partial eta-squared 
In bold: 𝜂!" > 0.5 (strong effect size) 

Table 1: Differences between extracted features in time windows. Only features with 
significant differences (p < 0:05) are reported. 
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Figure 5: Inter-quartile range of score and the other engagement-related indicators. 
Only the feature with significant differences (i.e., p < 0:05) and the largest effect size 

is displayed per indicator (See Table1). 

All three measures of exercise intensity show a significant positive correlation 
between them, but only 𝑉𝑒𝑙𝑌 and 𝑉𝑒𝑙𝑍 showed a strong association  (𝑝 = 0.00, 𝜏 =
−	0.52), and none of them seem to have a relationship with the behavioral measures 
(𝑝 = 0: 00, |𝜏| < 0.01). 

3.3 Psychophysiological measures 

In contrast to behavioral engagement indicators, only one psychophysiological signal 
changed significantly in time, even with weak effect size (𝑝 = 0.01, 𝜂/' = 0.26), as 
presented in Fig.6. None of the features extracted from GSR and RSP were found to be 
significantly different in time windows, but only two features from HR with moderate 
effect sizes: 𝜇𝐻𝑅	(𝑝 = 0.05, 𝜂/' = 0.32) and 𝑚𝑒𝑑𝐻𝑅	(𝑝 = 0.05, 𝜂/' = 0.41). In the 
case of 𝜇𝐻𝑅, post hoc tests found significant differences between windows in the 
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following pairwise comparisons: second and fourth (𝑝 = 0.02), second and fifth (𝑝 =
0.01), and third and fourth (𝑝 = 0.02). Such differences are displayed in Fig.7, where 
a possible similarity between windows 4, 5, and 6 can be observed, which suggests a 
mild growing damped trend. 

 

 

 
Figure 6: Average psychophysiological signals during the VR exposure: Heart Rate 
(HR), Skin Conductance (SC), and Respiratory Rate (RR). Signals from 2 random 
subjects were also included to illustrate single responses and normalized to the 

respective mean at rest [n = 1: µHR = 87.30 bpm, µSCL = 3.57 µS, µRR = 18.26 
bpm], [n = 4: µHR$ = 89.16 bpm, µSCL = 3.85 µS, µRR = 15.14 bpm]. 
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Figure 7: Inter-quartile range from the mean of Heart Rate (µHR). Data were 

normalized subjects' baseline (at rest). 

Respiratory Rate was found to be positively correlated with score (𝑝 = 0.00, 𝜏 =
0.22) and negatively correlated with Latency  (𝑝 = 0.00, 𝜏 = −0.21), which could 
suggest it to be a response from DDA. Likewise, 𝜇𝐻𝑅, was significantly correlated with 
𝜇𝑆𝑐𝑜𝑟𝑒	(𝑝 = 0.03, 𝜏 = 	0.27), but the size of such relationship is too weak to be 
considered without caution, as well as with the correlation found between 
𝜇𝑆𝑐𝑜𝑟𝑒	and	LF/LH	(𝑝 = 0.00, 𝜏 = 0.34), and between 𝜇𝑆𝑐𝑜𝑟𝑒 and 𝑛𝑆𝐶𝑅	(𝑝 =
0.04, 𝜏 = 0.23). 

Finally, Skin Conductance was found to be positively correlated with 𝑉𝑒𝑙𝑋	(𝑝 =
0.00, 𝜏 = 0.27), in particular between 𝑚𝑢𝑉𝑒𝑙𝑋 and 𝑛𝑆𝐶𝑅	(𝑝 = 0.04, 𝜏 = 0.30), 
whereas Heart Rate was found to be negatively correlated with 𝑉𝑒𝑙𝑌	(𝑝 = 0.00, 𝜏 =
−0.20). 

4 Discussion 

This study investigated the effects of dynamic difficulty adjustment (DDA) on 
behavioral and emotional engagement during immersive VR tasks. It was hypothesized 
that some common indicators of perceptive engagement, motor engagement, and 
emotional engagement behaved similarly to in-game performance (Score) during DDA. 

As expected, DDA caused each participant's score to grow until they reached their 
apparent "skill limit," It started to oscillate to support the findings presented by 
Rodriguez-Guerrero [Rodriguez-Guerrero 12]. However, due to the high variability of 
responses (some subjects reached this level faster than others and differed in oscillations 
amplitude), this trend was not explicit in the chart with the mean of Score (Fig.4-up), 
but only observable when inspecting data dispersion or by the analysis of significance 
in features between time windows, such as in Fig.5. 

Response Latency and Exercise Intensity are even less evident but describe a 
similar trend in time (negative in the first and positive for the last). The selected feature 
from each signal to be displayed in the boxplots (𝑚𝑢𝐿𝐴𝑇 and 𝑚𝑢𝑉𝑒𝑙𝑌 , seen in Fig.5) 
gave better evidence of this damped behavior, and both showed moderate-strong 
correlation with 𝜇𝑆𝑐𝑜𝑟𝑒. Findings confirmed that only 𝑉𝑒𝑙𝑌 changed significantly, 
consistent with the game dynamics that required the participant to perform repetitive 
vertical motions (moving the mallet to whack the moles), whereas 𝑉𝑒𝑙𝑋 and 𝑉𝑒𝑙𝑍 
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remained steady almost from the beginning of the task. Given this and that both are 
subjective reactions to performance feedback during difficulty modulation (i.e., TOH 
dynamical adjustment), it is not surprising that findings confirmed the strong negative 
correlation between them. 

In contrast to earlier findings, however, evidence of psychophysiological signals 
was rather disappointing. Only HR is likely to respond similarly to Score in DDA 
compared with the other measured signals, which can be suggested from the damped 
growing trend displayed by µ𝐻𝑅 in Fig6. These findings match those observed in earlier 
studies that said cardiac activity increases during stressful conditions, which can be 
noticed from HR growing with difficulty during DDA. Literature also suggests 
activation of the sympathetic system as higher perspiration (sweating) and faster 
respiration during challenging tasks as possible consequences of excitement and muscle 
tightness during higher physical effort [Goshvarpour 17, Leung 14]. However, the weak 
strength of the relationship of RR and Score and the lack of significant changes of SC 
in time suggest that they are not substantial representations of such effect.  

Skin conductance seemed to start a growing trend in the last segment, possibly 
explained by the subject's cognitive or physical fatigue. However, this outcome is not 
conclusive and cannot be extrapolated to all VR users, and it will require longer 
sessions and more extensive study samples to be studied appropriately and confirmed 
as entirely out of the influence of other factors.  

4.1 Study limitations and future work 

The main limitation of the current study was the small sample size (n=10), mainly 
because of the pandemic-related lack of volunteers and risk of learning bias of 
performing repeated measures with the current subjects, which made it difficult to 
assure normal distribution and disallowed using parametric statistics. Therefore, some 
trends that were identified in measures signals had to be analyzed with caution to avoid 
confounding and underestimations. Likewise, some of the mentioned trends were 
observed in the last seconds of the exercise, suggesting the need for a more prolonged 
experiment to allow all subjects to reach and preserve their own "skill limit" and 
describe more significant changes in terms of the analyzed features. This shortening in 
time was also an issue during baseline measures since some participants take longer to 
reach the desired steady level, almost at the end of the fixed measuring time window. 

Furthermore, some future studies should include a covariant factor related to 
experience in immersive VR, given the high variability in the time required to reach 
"skill limit" and its relationship with the ease to manipulate such devices. 

Finally, it is also noticeable how the results from questionnaires cannot be 
conclusive due to the small study sample. Despite being effective, VRSQ could be 
reconsidered for more extensive studies to include nausea-related items. The subjective 
measurement of engagement (UES-S) helped prove levels among participants, but the 
study design (i.e., the single after-exercise measure) did not allow objective 
comparisons with the other sampled indicators. Further studies should include multiple 
within-subject trials with different experimental conditions, as is commonly seen in 
experimental designs that use this and other self-reports. 
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5 Conclusion  

In this study, we have measured several engagement-related signals to evaluate their 
response during dynamic difficulty adjustment (DDA) in a 90-seconds-long immersive 
virtual reality game that involved repetitive upper-limb motions and was overall 
perceived as highly engaging (UES-SF tested). DDA was performed via an IDOL 
algorithm that increased or decreased game difficulty after any score variation, which 
produced that the game score described a damped growing trend towards a subject's 
maximum value according to their skill limit. Response Latency and hand velocity were 
the measures of behavioral engagement, whereas Heart Rate, Skin Conductance, and 
Respiratory Rate indicated emotional engagement.  

Findings suggest that Response Latency (time between request and action) and 
hand velocity in the Y-axis (vertical motions of the hand) showed significant evidence 
of changes in response to DDA. Moreover, Latency showed strong negative correlation 
with the score, and notably, its mean and max values were strongly correlated with 
𝑚𝑢𝑆𝑐𝑜𝑟𝑒. Likewise, the RMS of 𝑉𝑒𝑙𝑌 changed significantly and strongly related to the 
time-variant experimental conditions, i.e., difficulty adjustment, and its max value at 
each time segment showed a positive correlation with the mean of the score. However, 
the weak effect size in other features extracted from the RMS of 𝑉𝑒𝑙𝑌 suggests the need 
for further studies with more extensive study samples. 

Heart Rate (HR) showed promising results through significant changes in time due 
to the difficulty adjustment and described a growing damped curve similar to the score. 
Despite showing no evidence of changes in time, the high variability of skin 
conductance also suggests the need for further studies with more extensive samples 
since it seems to describe a similar growing behavior that must be taken with caution. 
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