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Abstract: At extreme scale, the frequency of silent errors – a class of errors that remain 
undetected by low-level error detection mechanisms – increases significantly with the 
computational complexity of the application and the scale of the computing infrastructure. As 
hardware and software advances are made to usher in the next scientific era of computing, 
developing new approaches to mitigate the impact of silent errors remains a challenging problem. 
In this work, we propose an energy-aware fault-tolerance model, referred to diffReplication to 
overcome silent errors. In the proposed model, the main process is associated with one replica 
that executes at the same rate as the main process, and one diffReplica that is executed at a 
fraction of the main process' execution rate. If the main and its replica reach consensus at the end 
of a computation phase, the state of the diffReplica is updated and computation is resumed. If the 
synchronization attempt results in a disagreement, however, the diffReplica increases its 
execution speed to complete the computation and quickly reach the synchronization barrier. 
Assuming a single error over any given synchronization interval, a majority voting is used to 
reach consensus and tolerate silent errors. To further enhance its performance, diffReplication is 
augmented with speculative execution, whereby the main or its fast replica is selected to continue 
execution without waiting for the diffReplica. The selection process is based on the previous 
behaviour of the main and its replica. A performance analysis study is carried out to assess the 
performance of diffReplication, in terms of the energy saving and time-to-completion reduction 
achieved by the diffReplication scheme. The experiment shows that speculative execution 
reduces the time to completion with additional energy, and dynamic decision-making balances 
the energy consumption and time to completion. 
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1 Introduction  

In both the scientific and commercial fields, the complexity and computational intensity 
required to solve problems in these fields have been steadily increasing. Future 
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applications to solve these problems will require massive scale parallelism to support 
the training of AI models and process extremely large data sets, in order to achieve 
significantly higher resolutions and fidelity than what is possible with existing 
computing infrastructure. The massive levels of parallelism will be achieved using 
hundreds of thousands of threads executed as an ordered sequence of local computation 
and global communication phases, separated by barrier synchronizations. 

Propensity to failure and the need to operate within power constraints are two of 
the most daunting challenges faced by extreme scale systems. They are both direct 
results of the computational complexity of the underlining application and the 
siginificant amount of parallelism necessary to meet its QoS requirements, in terms of 
energy saving and reduced time-to-completion [Sachs, 2011]. This stems from the fact 
that the rate of system level failures increases dramatically as the number of computing 
nodes increases in spite of unprecedented and continued improvement of the software 
and hardware technologies. For example, a computing infrastructure with 200,000 
nodes will experience a mean time between failures (MTBF) of less than one hour, even 
when the MTBF of an individual node is as large as 5 years [Mills et al., 2013, Riesen 
et al., 2010]. The continued pressure to physically shrink board- and chip-level control 
further compounds the propensity of computing systems to failures.  

As the scale of the complexity of the computational infrastructure continues to 
increase, erroneous behaviour, caused by silent errors, is gradually being observed in 
computing nodes. This type of errors is known as silent data corruption, silent data 
errors or corrupt execution errors. These errors, which will be referred to as silent errors 
(SEs) in this paper, are neither bugs nor software errors. It is caused by bit flips in 
memory, disk, or a processor core register. They occur randomly and unpredictably and 
remain undetected by low-level error detection mechanisms. At extreme scale, the 
likelihood of SE occurrence increases significantly. Since a single SE may corrupt the 
entire execution, it is critical to apply SE-tolerance techniques to mitigate the impact 
on applications’ QoS requirements in extreme-scale computing systems. To tolerate 
this type of errors, two tasks need to be performed: fault detection and fault correction. 
To detect SE, the computational results need to be verified. The most accurate method 
is to compare the results computed by other replicas and check if they match. 
Unmatched results is only an indication that SE has occurred, but what the correct 
answer is remains unknown. In order to tolerate f SEs, (2f+1) replicas are required to 
determine the correct outcome, using majority voting [Veronese et al., 2011]. The 
resource usage required by this SE-tolerance scheme, however, is tripled, with direct 
implication on energy consumption and time-to-completion.  

To address the shortcoming of the basic SE-tolerance scheme proposed above, the 
energy-ware diffReplication model is proposed to overcome silent errors in extreme 
scale computing infrastructure. In the proposed model, the main process is associated 
with one replica that executes at the same rate as the main process, and one diffReplica 
that executes at a fraction of the main process' execution rate. If the main and its replica 
reach consensus at the end of a synchronization interval, the state of the diffReplica is 
updated and computation is resumed. If consensus is not reached, the diffReplica 
increases its execution speed to complete the computation and quickly reach the 
synchronization barrier. Assuming a single error occurs over a given synchronization 
interval, a majority voting is used to tolerate silent errors. To further enhance its 
performance, diffReplication is augmented with speculative execution, whereby the 
main or its fast replica is selected to continue execution without waiting for the 
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diffReplica. The selection of which process continues execution without waiting for the 
diffReplica is based on the previous behaviour of each process.  

Mindful of the fact that, in heterogeneous environment, silent errors occur 
unpredictably and at different rates depending on the underlying computational 
components, the diffReplication model takes heterogeneity into consideration to 
determine how replication is carried out and at what speed diffReplicas executes. A 
performance analysis study is carried out to assess the energy saving and time-to-
completion reduction achieved by the diffReplication scheme. The experiment shows 
that speculative execution reduces the time to completion with additional energy, and 
dynamic decision-making balances the energy consumption and time to completion. 

The rest of the paper is introduced as follows. Related work is discussed in Section 
2. The diffReplication execution model is introduced in Section 3. Experimental 
evaluation is introduced in Section 4. Section 5 concludes the paper and proposes areas 
for future research. 

2 Related Work 

The field of fault tolerance in computing systems is well established, and significant 
advances on how to deal with faults have been achieved by different communities. 
Rollback and recovery are predominated mechanisms to achieve fault tolerance in 
current HPC environments [Elnozahy et al., 2002, Kalaiselvi and Rajaraman, 2000]. 
Upon the occurrence of a fault, recovery is achieved by restarting the computation from 
a safe checkpoint [Kalaiselvi and Rajaraman, 2000]. Coordinated checkpointing and 
rollback recovery schemes have been proposed [Elnozahy et al., 2002, Kalaiselvi and 
Rajaraman, 2000, Daly, 2003]. The drawback of coordinated checkpointing is a lack of 
scalability, as it requires global process coordination [Bougeret et al., 2012, Hargrove 
and Duell, 2006, Losada et al., 2019]. Uncoordinated checkpointing and rollback 
recovery schemes have been proposed as an alternative approach to achieve fault-
tolerance. These schemes, however, have not been widely adopted in HPC 
environments, due to their dependency on the underlying application [Guermouche et 
al., 2011]. Multi-level checkpointing can benefit tolerance to failure but may increase 
failure rates of individual nodes and increase per-node cost [Hakkarinen and Chen, 
2013]. Message logging-based approaches have been proposed to harness applications’ 
temporal computation and communication patterns to reduce the cost of checkpointing 
in hybrid systems. 

Process and state machine replication have long been used to provide fault 
tolerance in distributed [Schneider, 1990] and mission critical systems [Bartlett, 1981]. 
Based on this technique, processes’ state and computation are replicated across 
independent computing nodes. Redundancy has been proposed, to augment existing 
checkpointing techniques [Stearley et al., 2012, Elliott et al., 2012, Casanova et al., 
2012]. In its basic form, replication, when used to tolerate f fail-stop failures, requires 
the execution of (f +1) replicas. Byzantine fault-tolerant systems require at least (2f+1) 
replicas to overcome f failures. Consequently, tolerating a single failure in a system of 
N nodes, executing independently, requires doubling or tripling the number of nodes, 
depending on the type of failure to be tolerated. 

In extreme scale environments, the energy cost of such a replicated infrastructure 
may quickly become prohibitive, especially in the system that has to operate under a 
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power cap. Furthermore, the cost of recovery remains proportional to the system size 
and not to the degree of failure.  In our previous work, we took an adaptive approach 
to dynamically adjust the replica’s execution rate based on the predicted failures to 
tolerate fail-stop errors. Replicas only execute at higher rates when their associated 
main processes are at risk of failure. Therefore, these replicas can be collocated to fewer 
numbers of processors than regular replicas. In this case, the energy consumption is 
reduced, without increasing the task completion time [Li et al., 2021, Cui et al., 2018, 
Mills et al., 2014]. 

The silent data corruption (SE) problem has been the subject of large number of 
studies, which can be classified as either hardware-, or software-based, redundancy-
based, algorithm-based, and runtime-based [Di and Cappello, 2016, Lee et al., 2011, 
Peña et al., 2015, Bosilca et al., 2015, Mukherjee et al., 2005, Chen et al., 2018, Krluku 
et al., 2019, Huang, et al., 2022]. Error Correction Code (ECC) is an architecture 
solution that correct bit-wised errors [Mukherjee et al., 2005]. This method is typically 
well adopted to tolerate errors in memories. But may limited when it comes to 
correcting computational errors incurred by processors. Similarly, algorithm-based 
fault tolerant (ABFT) method can detect and recover errors using the properties of the 
giving algorithm such as protecting matrix data by checking rows’ checksums [Bosilca 
et al., 2015]. ABFT methods are algorithm specific methods and may not be general 
enough to tolerate unknown errors. 

Process replications can be used to detect and correct SEs during run time [Fiala et 
al., 2012]. The overhead, however, may be prohibitive in extreme-scale environment. 
To reduce the overhead, and detect the majority of SEs, Di et al. proposed an adaptive 
SE detection method based on local run time data [Di and Cappello, 2016]. Similarly, 
Huang et al. proposed a method to adaptively duplicate selected instructions to 
maximize the SE coverage and maintain a low performance overhead [Huang, et al., 
2022]. These methods, however, does not capture all the SEs. In extreme-scale systems, 
a single undetected SE can corrupt the entire computation and cause unacceptable 
increase in completion time and energy consumption, due to re-execution. How to 
reduce the energy consumption and ensure all the SEs can be detected and corrected in 
a reasonable amount of time is paramount to the design of an effective scheme to 
tolerate SEs in extreme-scale systems. 

FT-MPI has been proposed as a user-level framework to control failures in a 
dynamic, HPC environments [Fagg and Dongarra, 2000]. The focus of this paper is on 
node failure checking and corrective recovery actions in MPI HPC/MPI environment. 
The framework enhances the MPI checkpointing and roll-back recovery scheme with 
user-level capabilities to control failures.  It is suitable to deal with fail-stop failures in 
HPC environments.  Our scheme is designed for extreme scale computing, where the 
time between system failures is smaller than the time between successive checkpoints. 
Furthermore, our scheme is designed to deal with silent failures, under the dual 
constraint of energy minimizing and adherence to time-to-completion. 

3 diffReplication Execution Model 

The diffReplication fault-tolerance model assumes that the execution of a 
computational job follows a Bulk Synchronous Parallel (BSP) model, whereby a job is 
split into N equal-sized tasks executed in parallel. The computation is segregated into 
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consecutive global supersteps [Valiant, 1990]. In each superstep, the main processes 
execute independently of each other and communicate when they reach the 
synchronization barrier. A superstep ends when all computation in the superstep is 
completed and all messages have been sent. 

The diffReplication model consists of one main process, a set of (M – 1) replicas 
and one diffReplica. The main process and its replicas execute the same code at the 
same processor execution rate. The diffReplica, however, executes the same code as 
the main process, but at a lower execution rate. Collectively the main process, its 
replicas and diffReplica constitute a diffReplication group. Processes within a group do 
not share messages, to prevent the propagation of silent errors. 

In order to overcome f SEs, the diffReplication group size must be at least 2f+1. 
When the processes reach a synchronization interval, which consists of a single 
superstep, a majority-based consensus algorithm is executed to validate the 
computation output. Based on this algorithm, the output of the group is that of the 
diffReplication process majority. Without loss of generality, we assume a single SE 
within a superstep. Consequently, the size of the diffReplication group is 3, namely the 
main process, one replica and one diffReplica. 

During the execution within a superstep, the main and replica processes execute at 
the same rate 𝜇 to ensure no delay in SE detection. The diffReplica, however, initially 
execute at a slower rate, 𝜎!. When they reach the end of a superstep, the main process 
and its replica engage in a process to validate their output. If consensus is reached over 
the computation output, indicating that no process has incurred a silent error during its 
execution, the state of the diffReplica is “leaped” to be an exact replica of the main 
process’s state. Leaping consists mainly in consolidating the address space of the main 
process with the address space of the diffReplica1. The case of no silent error occurring 
during execution is depicted in Figure 1. 

Failure to reach consensus, however, indicates that at least one SE occurred during 
the superstep execution interval. In response, the diffReplica is signalled to increase its 
processor execution rate to 𝜎", in order to reach the end of superstep execution and 
validated the group output. To this end, majority voting is used to identify the faulty 
process and determine the group output. The case of a silent error occurring during the 
execution is depicted in Figure 2. 

3.1 Speculative Execution 

While waiting for the diffReplica to reach the end of a superstep, the main and its replica 
remain idle, thereby consuming static energy. In addition to the wasted energy, the 
delay incurred by the main and its replica, while waiting for the diffReplica, can also 
significantly increase the overall time to completion of the computational job. To 
address both shortcomings, speculative execution is used. Based on this approach, the 
state of one process, either the main’s or its replica’s, is selected to be the correct state. 
The other process is then leaped and execution of the two processes resumes 
immediately, without waiting for the diffReplica to reach the end of a superstep. Both 

 
1 Techniques, based on duplication mechanisms and awareness of context, which are 
frequently used to migrate virtual machines, can be easily adopted to reduce leaping 
overhead. 
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processes execute at a rate, 𝜇#, lower than 𝜇. This rate is determined to achieve a 
balance between energy consumption and increase in time-to-completion. 

When the diffReplica reaches the synchronization barrier, majority voting is used 
to identify which process, the main or its replica, is faulty and determine the superstep 
outcome. Depending on the voting outcome, multiple scenarios are possible: 

Case 1 – Speculative execution with faulty process: Upon reaching the end of 
the superstep, the diffReplica compares its output with the output of the selected 
process. The discrepancies between the two outputs indicates that the faulty 
computational state has been selected to proceed with the speculative execution. In 
response, the diffReplica interrupts the current execution of the main and its 
replica. Leaping then takes place to bring the state of the two processes to the 
correct state of the diffReplica. Execution of all processes at the original rate of 
execution resumes immediately after the completion of the leaping process. The 
basic steps of this case are depicted in Figure 3. 
Case 2 – Speculative execution with non-faulty process: Upon reaching the end 
of a superstep, the diffReplica compares its output with the output produced by the 
selected process. If it is determined that the non-faulty process has been correctly 
selected to carry out the speculative execution, the diffReplica process does not 
take any action to inform the main or its associated replica. Instead, it continues its 
execution, but at an execution rate, 𝜎$, which is lower than the maximum speed, 
𝜎%"&, but higher than the initial speed, 𝜎!. Adjusting the execution rate to 𝜎$ 
enables the scheme to proactively deal with the potential occurrence of a second 
silent error during the current superstep. In the one hand, resuming execution at a 
rate 𝜎! results in energy saving, but increases the delay to break the tie, if a second 
silent error detected at the end of the current superstep. This case is depicted in 
Figure 4. On the other hand, resuming execution rate at a rate 𝜎%"& may increase 
energy consumption unnecessarily, if no silent error is detected at the end of the 
superstep. The selection of 𝜎$ as the execution rate strikes a balance between 
reducing the job time-to-completion and energy consumption. Depending on the 
outcome of the output validation upon reaching the end of the superstep, two 
subcases are possible: 

Subcase 2.1 – Output validation disagreement: When the output validation 
fails, the diffReplica, executing at speed, 𝜎$ , increases its speed to 𝜎%"& to 
complete the remaining computation and reach the end of a superstep. The 
output of the diffReplica is used to determine the fault-process and trigger the 
appropriate leaping process to bring all processes to a consistent state. A new 
superstep is entered, with the main and its replica executing at speed, 𝜇,	and 
the diffReplica executing at initial speed, 𝜎! . The basic steps of this scenario 
are depicted in Figure 4. 
Subcase 2.2 – Output validation agreement: If the main and its replica reach 
an agreement on the end of the subsequent superstep, diffReplica’s state is 
leaped to mirror the main process’s state. All processes resume execution with 
speed, 𝜇, for the main and its associated replica and with the initial speed, 𝜎!, 
for the diffReplica. The basic steps of this scenario are depicted in Figure 5. 
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3.2 Dynamic Decision Making 

Speculative execution may reduce the time to completion. It also, however, may induce 
additional energy consumption as an incorrect choice may consume more energy. To 
improve energy efficiency and ensure an acceptable completion time, we propose a real-
time approach to determine whether to perform a speculative execution upon SE is 
detected based on the estimated cost incurred by time delay or the estimated cost of the 
energy consumed in making the decision. For the speculative execution approach, the 
dominating factor is the cost of wasted energy consumption, while the cost of the no-
speculative approach is the time delay. If saving energy is more important than reducing 
time to completion, waiting for correction is the best option. Otherwise, speculative 
execution should be conducted. We use different cost functions for wasted energy and 
time delays to make them comparable, which is explained in the following subsection. 
Firstly, we need to calculate the estimated wasted energy and time delay. The estimated 
wasted energy for speculative execution is calculated using following equation.  
 

𝐸('"#() = 𝑝* × 2𝐸+(𝜇#, 𝑡,)                                            (1) 
 

 

 

Figure 1: Case of No 
SE 

 

 

Figure 2: Case of SE and 
Wait for DiffReplica to 

Catch Up 

 

 

Figure 3: Case of SE and 
Speculative Execution of 

the Incorrect Replica 

 

 

Figure 4: Case of SE and Speculative 
Execution of the Correct Replica but 

Disagreed at Second Voting Point 

 

 

Figure 5: Case of SE and Speculative 
Execution of the Correct Replica and 

Agreed at Second Voting Point 
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𝑝* is the likelihood of SE for the process that the computational state is selected to use 
for speculative execution, and 2𝐸+(𝜇#, 𝑡,) is the dynamic energy consumed by the two 
processes when performing the speculative execution. It can be expressed as 
𝐸+0𝜇#, 𝑡,1 = 𝛾 × 𝜇#- × 𝑡,, where 𝛾 is the unit of energy consumption per unit time 
depends on the processor’s design, and 𝛼 is the parameter that represents the 
relationship between power and the execution rate. Normally, power is proportional to 
the cube of execution rate. 𝑡,	is the time used for the speculative execution, which is 
same as the time used by the diffReplica to catch up with its main process. It is 

calculated as 𝑡, =
'./!×	"#

/$
, where 𝑤 − 𝜎! ×	'

2
 is the workload left for the diffReplica 

to catch up with its main process at execution rate 𝜎". The estimated time delay is 
calculated as: 

 
𝑇(+)3"4 = (1 − 𝑝*) × 𝑡,                                             (2) 

 
To calculate these penalties, we need to first obtain the likelihood of SE. In this 

work, we used an online failure prediction model that is based on exponential 
smoothing. This model can dynamically learn and predict the failure likelihood and 
robust enough to be not influenced by sudden changes in the data. The predicted 
likelihood of SE is obtained by the following equation: 

 
𝑝8(𝜏5) = (1 − 𝑤,(𝜏5))𝑝8(𝜏5.6) + 𝑤,(𝜏5)𝑝(𝜏5)                           (3) 

 
where 𝑝(𝜏5) is the observed failure likelihood, and 𝑝8(𝜏5.6) is the previous predicted 
failure likelihood. 𝑤,(𝜏5) is the learning weight, and it is defined as 𝑤,(𝜏5) = 𝑐, ),

%(8&)
/,(8&)

 
, where 0 < 𝑐, < 1 and 0 < 𝑤,(𝜏5) < 1. 𝑒𝑝(𝜏5) is the prediction error function, which 
is calculated as 𝑒𝑝(𝜏5) = 𝑝(𝜏5) − 𝑝8(𝜏5). 𝜎𝑝(𝜏5) is the square prediction error. It is 
learned by a second order exponential smoothing as 𝜎𝑝(𝜏5) = 𝑐,𝑒𝑝:(𝜏5) +
01 − 𝑐,1𝜎𝑝(𝜏5.6). Therefore, in the case of sudden changes in the data, the prediction 
results will not be significantly affected. 

The workload for each interval, w, may be affected by the potential communication 
between processes. Therefore, the actual workload may vary among all the intervals. 
To have an estimate of the actual workload to calculate the time delay and wasted 
energy consumption, we used exponential smoothing to predict the future workload 
𝜔(𝜏5). Following is the formula of the model. 
 

𝜔@(𝜏5) = (1 − 𝑤3(𝜏5))𝜔@(𝜏5.6) + 𝑤3(𝜏5)𝜔(𝜏5)                             (4) 
 
𝑤3(𝜏5) is defined as 𝑐3 )3

%(8&)
/3(8&)

, where 𝑒𝑙(𝜏5) is the prediction error function. Similar to 
the failure likelihood prediction, this model also used second order exponential 
smoothing (the square prediction error, 𝜎𝑙(𝜏5) ) to ensure that it is not affected by 
sudden changes in the data, denoted as 𝜎𝑙(𝜏5) = 𝑐3𝑒𝑙:(𝜏5) + (1 − 𝑐3)𝜎𝑙(𝜏5.6). 
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3.3 Cost Function 

To fairly compare these two costs, we convert them to the same unit for comparison. 
The process of the decision making is depicted in Figure 6. Therefore, we need 
additional cost functions that convert the cost of 𝐸('"#() and 𝑇(+)3"4 to the same unit. 
The cost of 𝐸('"#() is the cost of money paid for additional energy consumption. The 
cost of 𝑇(+)3"4 is the revenue lost due to longer execution time than expected. These 
costs may be varied depend on the cost function. The cost of 𝐸('"#() could be maxed 
out after exceeded a certain threshold of usage. This is also applied to revenue 
reduction. It also can be a linear increment function as each unit of 𝐸('"#() is counted 
towards the cost with the same price. Also, another possibility is that the price of a unit 
of energy increases or decreases as the 𝐸('"#() increases. We use an exponential or 
logarithmic increment function to represent this case. In this paper, we evaluate 
diffReplication with linear cost function, exponential cost function, logarithmic cost 
function, and cost function with a cap, where the cost is maxed out when exceeding the 
cap. 
 

 

Figure 6: Decision Making Process Given Costs of Energy Wasted and Time Delay 

As the cost may be directly proportional to the energy consumption or time to 
completion, we considered linear cost function as 𝐶𝑜𝑠𝑡;(𝑥, 𝛾) 	= 𝛾	𝑥, where 𝛾 is the 
price and 𝑥 is either the time delay or wasted energy incurred by the scheme. 

The cost of energy wastage or time delay may also be exponential or logarithmic 
based on the nature of the application and the required quality of services. To this end, 
we also investigate the performance of the proposed model, assuming an exponential 
cost function, 𝐶𝑜𝑠𝑡<(𝑥, 𝛾) 	= 	 𝑒=	&, where 𝛾 is the coefficient in the exponent, and a 
logarithmic cost function, 𝐶𝑜𝑠𝑡;>(𝑥, 𝛾) = ln 𝛾	𝑥. 

In addition, the cost function under cost cap is expressed in (5), where 𝛾 is the 
coefficient, 𝛽 is the maximum cost, assuming a budget cap, 𝑐𝑎𝑝.  

 

𝐶𝑜𝑠𝑡<$",	(𝑥, 𝛾, 𝛽, 𝑐𝑎𝑝) = J𝑒
=(&), 𝑥 < 𝑐𝑎𝑝
𝛽, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              (5) 
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The above is a representation of the scenario where the energy cost is capped, and the 
cost can be reduced if the energy is saved.  

4 Experimental Evaluation 

To evaluate the proposed model, we conducted an experimental evaluation in a 
simulated HPC environment, where the nodes have different failure rates. It should be 
noted that a single SE may propagate from one process to other processes via message 
passing. Therefore, if SE has occurred, all the processes are required to be corrected. 
To tolerate SE, messages among mains are not shared with replicas and diffReplicas to 
maintain isolation; a condition that is also applied to messages among replicas and 
diffReplicas. In addition, as processes may be blocked due to waiting for messages from 
slow processes, same-type processes are required to execute at the same rate. To this 
end, it is reasonable to model all mains as one, including the replicas and diffReplicas. 

We use CSIM19 (C++ version) to conduct the simulation [Schwetman, 2001]. To 
simulate the SE of a process, a random number is drawn from an exponential 
distribution with the mean set to the processor’s MTBF. This random number 
represents the time of SE occurrence. It occurs only if the time is earlier than the voting 
point. The simulation has the same assumption of the expected value calculation, as 
stated in the previous section. 

In this experiment, we simulate a system with one million available processors, 
which is the minimum scale towards extreme-scale system based on current technology. 
As each main requires two more processes for SE detection and correction, only a third 
of the processors could be used to host main processes. Therefore, there are 333333 
mains in our simulation. It is the best practice to use the reliable processors to host the 
main processes to minimize the failure likelihood. Therefore, all the main processes are 
executed on reliable processors with an average of 10 years MTBF. We varied the 
MTBF of the replicas from 5 to 10 years to simulate different reliability scenarios. All 
the diffReplicas execute on processors with an average of 5 years MTBF. The work for 
each epoch, 𝑤, is set to the workload that could be completed with the maximum 
execution rate of 0.1 hours on average. The actual work that was completed within an 
interval may be varied due to factors such as communication delay and computation in 
different scale. We randomly varied the actual workload from 0.05 to 0.15 hours to 
simulate different scenarios. There are 1000 (𝑛) epochs of work to simulate long run 
tasks. The main and replica’s execution rates, 𝜇, 𝜇#, and 𝜇$, are set to 100%, 30%, and 
100% of the maximum execution rate, respectively. The diffReplica’s execution rates, 
𝜎! and 𝜎" are set as 10% and 100% of the maximum execution rate, respectively. The 
energy consumption and time for leaping and SE correction are all set to 0.01 as a small 
fraction of the average workload within each interval. 𝑐,, 𝑐3 in the failure likelihood 
predictor and workload predictor are set to 0.25. The initial failure likelihood 𝑝8(𝜏5) is 
set as 0.5. The initial prediction of the workload is set as 0.05. The experiment 
compared speculative execution, diffReplication, and no speculative execution 
approaches. 

To demonstrate the advantage of diffReplication, we conducted sensitivity 
analyses on different failure rates, speculative execution rates, and parameters of cost 
functions. For each analysis, we simulated the execution 1000 times, and reported the 
average values in different scenarios and standard deviations as error bars in the figures. 
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We show energy consumption of one task’s execution in the experiment, as each main 
process has a similar execution rate as other mains. It is the same story for the replicas, 
and diffReplicas. 

4.1 Sensitivity Analysis of Different Failure Rates on Replicas 

In this analysis, we focus on how different failure likelihoods impact the performance 
of the proposed model. In this experiment, we use linear cost function for energy 
consumption and time to completion, with the coefficients as 0.1 and 4.0, respectively. 
Figure 7 and Figure 8 depict the energy consumption and completion time changes with 
the changes of the replica’s MTBF, respectively. Considering that there are 1000 
epochs of work in each execution, the number of SEs are similar with each run. 
Therefore, the standard deviations are marginal in Figures 7 and 8. If the replica’s 
failure rate decreases (increment on MTBF), the energy consumption reduces as less 
SEs may occur during the execution in all the approaches. diffReplication has the 
energy consumption between no speculative execution and speculative execution. It is 
also the same case for completion time. With the reduction of the replica’s failure rate, 
the completion time of all the approaches decrease. It is worth noting that 
diffReplication has less energy consumption compared to speculative execution, and it 
has less time to completion than no speculative execution. With the same setting, 
speculative execution reduces the time to completion, but it consumes more energy as 
the corrupted process may be picked for speculative execution and has to revert back 
to the previous voting point. 

 
Figure 7: Sensitivity Analysis on Different Failure Rates for Replicas (Energy 

Consumption) 
 

 
Figure 8: Sensitivity Analysis on Different Failure Rates for Replicas (Time) 
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4.2 Sensitivity Analysis of Different Speculative Execution Rates 

In this analysis, we show how different speculative execution rates impact energy 
consumption and time to completion. As the proposed model always chooses the most 
reliable process for speculative execution, the success rate of choosing the correct 
process is higher than random. Therefore, with the increment of the speculative 
execution rate, the time to completion decreases, as depicted in Figure 10. When the 
speculative execution rate is at maximum, the speculative execution approach has 13% 
time to completion reduction compared to no speculative execution approach. The 
energy consumption also decreases when the speculative execution rate increases, as 
depicted in Figure 9. It is because that lower time to completion implies that more work 
has been completed successfully through speculative execution. The energy 
consumption reaches the minimum when the speculative execution rate reaches half of 
the maximum. The energy consumption starts to increase after the half point. The 
reason for this is that when the execution rate increases, the energy consumption 
increases cubically. In this case, the energy wastage due to the incorrect choice for 
speculative execution has a greater impact on energy consumption. Therefore, the 
diffReplication dynamically determines that it may be more costly to perform 
speculative execution. Consequently, when the speculative rate increases, it is more 
likely to choose to not perform speculative execution. 
 

 
Figure 9: Sensitivity Analysis on Different Speculative Execution Rates (Energy 

Consumption) 
 

 
Figure 10: Sensitivity Analysis on Speculative Execution Rates (Time) 
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4.3 Sensitivity Analysis of Different Cost Function Setups 

Other than the execution rate and hardware reliability, the cost function difference also 
has an impact on the performance of diffReplication. This analysis shows how 
diffReplication performs with different cost function setups. We compared different 
linear functions, exponential functions, and logarithmic functions. We also compared 
exponential function to exponential function with budgets to evaluate how the budget 
cap can influence the performance of diffReplication. 

4.3.1 Linear to Linear Cost Function 

In this analysis, we use the linear cost function for completion time and energy 
consumption. We fixed the coefficient of cost function for time delay as 0.1 and varied 
the coefficient for energy wastage. Figures 11 and 12 show the energy consumption 
and completion time with different linear coefficients for diffReplication. When the 
linear coefficient increases for the cost of energy wastage, the time to completion 
increases and the energy consumption linearly decreases.  

 
Figure 11: Sensitivity Analysis on Different Linear Rate for Cost Function of Time 

Delay (Energy Consumption) 
 

 
Figure 12: Sensitivity Analysis on Different Linear Rate for Cost Function of Time 

Delay (Time) 
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4.3.2 Exponential to Exponential Cost Function 

In this analysis, we evaluated the diffReplication model with different exponential cost 
functions. We fixed the coefficient of the cost function for time delay as 5 and varied 
the coefficient in the cost function for wasted energy consumption. Figures 13 and 14 
depict the energy consumption and time to completion changes. The energy 
consumption decreases, and the completion time increases when the coefficient 
increases, which means energy consumption is more costly when the coefficient 
increases. We also conducted the analysis that using logarithmic function as well as 
other combination of different functions. The results are similar with what is depicted 
in Figure 13 and 14. 
 

 
Figure 13: Sensitivity Analysis on Exponential Coefficient for Cost Function of 

Energy Wastage (Energy Consumption) 
 

 
Figure 14: Sensitivity Analysis on Exponential Coefficient for Cost Function of 

Energy Wastage (Time) 
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4.3.3 Exponential to Capped Exponential Cost Function 

In this analysis, we used exponential cost function for completion time and energy 
consumption. We also added a cap to the energy wastage so that if the energy wastage 
is higher than the defined cap, the cost of energy wastage will max out. We fixed the 
coefficient of the cost function for energy wastage and time delay as 150 and 5, 
respectively, and varied the cap for energy wastage. Figures 15 and 16 show the energy 
consumption and completion times with different caps for diffReplication. When the 
cap for the cost of energy wastage increases, the energy consumption starts to decrease 
and the time to completion starts to increase. If the cap is too small, diffReplication will 
prioritize improving completion time as energy wastage didn’t relatively increases. 
These analyses clearly show that diffReplication can smartly choose if it is necessary 
to do speculative execution dynamically based on current cost estimations. 
 

 
Figure 15: Sensitivity Analysis on Different Cap for Cost Function of Energy wastage 

(Energy Consumption) 
 

 
 
Figure 16: Sensitivity Analysis on Different Cap for Cost Function of Energy Wastage 

(Time) 
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5 Conclusion and Future Work 
In future distributed systems, applications that require massive-scale parallel 
computing may be highly likely to encounter silent errors and produce incorrect results. 
In this work, we propose the diffReplication model that facilitates at least three 
processes for one task, where one process executes slowly and only speeds up when SE 
is detected to catch up and correct it. The key contribution of this work is the design of 
an energy-aware model, diffReplication, to tolerate silent failures, without incurring 
significant increase in time to completion of the underlying application. In order to 
reduce the waiting time required to reach consensus and determine correct output, the 
model uses an “intelligent” speculative execution method to determine which process 
should continue execution, without waiting the diffReplica to reach the synchronization 
barrier. Majority voting is achieved asynchronously and roll-back is only used when 
speculative execution selects the wrong process. The experiment results show that 
speculative execution could reduce the time to completion by a maximum of 13%, but 
with additional energy consumption. The experiment also shows that diffReplication 
can balance the energy consumption and time to completion to choose speculative 
execution when advantageous. The proposed model has the best performance in the 
case that energy saving is important but also maintaining an acceptable completion time 
is necessary, and vice versa. 

The changing of execution rates for each process has the impact on the time to 
completion and energy consumption. How to find the optimal speculative execution 
rate that achieves the shortest completion time under power consumption remains a 
challenge. It is also to be noticed that the proposed approach assumes processors' MTBF 
does not change during the execution. If the failure rates can be dynamically determined 
by predictors, diffReplica's execution rates could be optimized based on the predicted 
failure rates to further reduce energy consumption and the time to completion. 

Finally, this work assumes that each diffReplica is allocated a full processor core 
to achieve execution at  maximum rate when consensus between the main and its replica 
is not achieved. In future work, we will explore virtualization-based approaches to 
execute multiple diffReplicas on a single core, in order to improve resource utilization. 
We also plan to explore the impact of dynamic, time-of-day dependent energy pricing 
schemes on the performance of the diffReplication model. 
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