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Abstract: Predicting human mobility is a key element in the development of intelligent transport

systems. Current digital technologies enable capturing a wealth of data on mobility flows between

geographic areas, which are then used to train machine learning models to predict these flows.

However, most works have only considered a single data source for building these models or

different sources but covering the same spatial area. In this paper we propose to augment a macro

open-data mobility study based on cellular phones with data from a road traffic sensor located

within a specific motorway of one of the mobility areas in the study. The results show that models

trained with the fusion of both types of data, especially long short-term memory (LSTM) and

Gated Recurrent Unit (GRU) neural networks, provide a more reliable prediction than models

based only on the open data source. These results show that it is possible to predict the traffic

entering a particular city in the next 30 minutes with an absolute error less than 10%. Thus, this

work is a further step towards improving the prediction of human mobility in interurban areas by

fusing open data with data from IoT systems.
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1 Introduction

At the dawn of the digital transformation era, modern societies now face the fact that
most of the habitual objects and artefacts that we wear or use on a daily basis, from
watches to vehicles, are equipped with location-enabling technologies like GPS, Wi-Fi
or Bluetooth, capable of locating these objects in physical locations in the real world.

As a side effect of this development, the human-mobility mining discipline has
emerged within the Artificial Intelligence field in an attempt to extract meaningful
knowledge about human movement behaviours at different scales [Solmaz and Turgut,
2019]. One of the most relevant findings in this discipline is that human mobility is quite
predictable at some extent [Guo et al., 2020]. As a result, the prediction about people’s dis-
placements is an instrumental tool in domains like healthcare [Xi et al., 2020], urban ser-
vices [Kałużny and Filipowska, 2018] and transportation management [Castrogiovanni
et al., 2020].

An important factor in developing these forecasting methods is the location data
that will feed the system. Thus, it is possible to find related proposals based on GPS
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traces [Liu et al., 2021], Call Detail Records (CDRs) [Batran et al., 2018] or Online
Social Network (OSN) posts [Ullah et al., 2020] covering different temporal and spatial
scenarios. These solutions basically rely on the raw spatio-temporal trajectories generated
by different moving objects like taxis or individuals reporting their current locations with
high frequency. Nonetheless, this type of high-quality individual-based location data
are, in most occasions, rather inaccessible due to some privacy and economic policies
defined by data providers and operators [von Mörner, 2017].

On the other hand, public institutions at different levels have promoted the release of
open data for the research community (e.g. see the European Commission’s principle As
open as possible, as closed as necessary1). This approach has given rise to an increasing
number of human-mobility datasets [Chan et al., 2020, Barlacchi et al., 2015, Chang
et al., 2020]. However, such open availability comes at the cost of data filtering and
aggregation stages before the dataset is released to comply with several restrictions. As
a result, the development of predictors leveraging such coarse-grained mobility data is
still scarce in the mobility mining domain.

In addition, the IoT paradigm has played a key role in the actual realization of
solutions in the field of intelligent transportation [Germanaitė et al., 2020, Chen et al.,
2022]. The deployment of different roadside sensors to measure numerous road-traffic
features is now a reality in modern cities [Nellore and Hancke, 2016]. Several works
now propose spatio-temporal predictors to anticipate traffic volume in a particular region
or road ecosystem from these infrastructure-based sensors [Frez et al., 2019, Lv et al.,
2021].

In this context, this paper proposes a mechanism to predict human mobility in an
urban area utilising two different types of human flow data. Firstly, we use a region-
based open mobility dataset that defines human flows at a large spatial scale, rather
than using the more typical high-resolution mobility datasets. Secondly, this proposal
also incorporates the traffic volume of a main road close to the urban area of interest
through an exogenous input provided by an inductive loop sensor. The rationale for
using this second source is based on studies that indicate that vehicles remain the most
important means of transport in most urban settlements [Organisation Internationale des
Constructeurs d’Automobiles, 2020].

Therefore, the key novelty of our work is that we compose a human mobility predictor
integrating an exogenous variable that operates at a quite different spatial scale than the
primary one. While the region-based mobility data defines the mobility of the target
urban region at a macro-scale level, the data reported by the traffic sensor focus on a
particular section of the road infrastructure of such a region. In that sense, some solutions
for mobility prediction have already been proposed for each of these two types of data
separately, but not in a combined manner [Nagy and Simon, 2018]. To the best of the
authors’ knowledge, this is one of the first attempts to combine such heterogeneous
mobility sources to compose a functional predictive service.

The contribution of this paper is threefold: First, by using human movement data
in an aggregated manner, it is possible to accurately capture human flows in regions
that do not have a dedicated sensing infrastructure for this purpose. Moreover, as a side
effect, it can be regarded as a cost-effective mechanism, since it reuses data from already
deployed sensors and open data sources. Finally, the anonymization of the data thanks to
the aggregation process will also relieve the privacy concerns among end-users.

The remainder of the paper is structured as follows. Section 2 reviews existing trends

1 https://ec.europa.eu/research/participants/docs/h2020-funding-guide/cross-cutting-issues/
open-access-data-management/data-management_en.htm
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in predicting human mobility and the use of open and sensor data for this purpose. Then,
section 3 describes the use case in which our solution has been deployed. In section 4,
the proposed predictor is described and evaluated. Lastly, section 5 summarizes the main
conclusions and potential future research lines motivated by this work.

2 Related Work

This section provides an overview on the usage of road traffic data for building human
mobility predictors.

Many works have already used different roadside sensors as primary data sources
for developing a palette of road-traffic prediction frameworks. For example, dual-loop
sensor traffic data from freeways in California and Portland (USA) were used to evaluate
a modification of the space–time autoregressive integrated moving average (STARIMA)
model [Duan et al., 2019]. Besides, roadside cameras of the freeway network of Los
Angeles city (USA) have been also used to develop a macroscopic traffic flow model
able to anticipate potential traffic jams [Chu et al., 2019]. Magnetic sensors have been
also used to estimate not only the speed but also the category of vehicles in a motorway
[Feng et al., 2022]. In addition to that, Bluetooth sensors have been deployed in certain
parts of urban road networks to perform forecasting tasks by training Artificial Neural
Networks (ANNs) to estimate the next intersection that a vehicle is going to visit based
on its previously visited ones [Choi et al., 2019]. A similar approach has been proposed
in [Ikidid et al., 2021] but, in this case, by means of fuzzy logic and a multi-agent system.

In a different approach, mobile location sensors embedded in several types of vehicles
or personal devices have become an instrumental datasource so as to develop forecasting
frameworks in the human mobility field. For instance, GPS trajectories extracted from
a bikes and taxis are used in [Wang et al., 2020] to forecast urban traffic conditions in
peak hours using external factors such as weather conditions by means of a bidirectional
Long short-term memory (LSTM) network. The same architecture is used in [Zhao et al.,
2018] to develop a destination predictor based on high-resolution GPS trajectories that
has been tested with datasets from two Chinese cities, Beijing and Chengdu. In addition
to that, the framework in [Lee et al., 2021] aggregates GPS data from cabs in Seoul
(South Korea) as input to a feed-forward ANN to predict traffic speed in 170 segments
of the city’s road architecture. Finally, semantically-enriched GPS trajectories are also
used in [Zhao et al., 2019] to estimate the vehicle speed in a motorway network within
the Chinese province of Jiangxi.

Other works have fused GPS trajectories with geo-tagged documents coming from
Online Social Networks. An example of this fusion is proposed in [Miyazawa et al., 2020]
where OSNs and aggregated GPS trajectories are use together to provide predictions
about individual movements in the city of Tokyo. The authors fed an LSTM network
with the embeddings generated from the spatio-temporal and textual data extracted from
the OSN and GPS traces.

Apart from raw GPS data, Location-Based services (LBS), usually installed in per-
sonal devices, have become another interesting mobile data source for human mobility
exploration. As a matter of fact, the work in [Kong and Wu, 2018] made use of a spatio-
temporal LSTM model (ST-LSTM) to predict the next area of interest visited by a
particular user based on his/her previous trace of visits to other city’s areas. The proposal
was successfully tested by using location data extracted from an LBS in Beijing.

At a broader scope, the fusion of infrastructure and fine-grainedmobile traffic data has
been also extensively considered in the literature. For instance, a Graph Neural Network
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(GNN) has been proposed in [Zhao et al., 2020] to predict the traffic conditions of the
cities of Shenzhen and Los Angeles through latent input graphs extracted from inductive
loop detectors and aggregated GPS trajectories. The same type of data sources are used
in the proposal introduced in [Cui et al., 2020] to also predict the traffic conditions in the
city of Seattle by considering the free-flow traffic dependencies among road networks.

Finally, region-based human flows have also been evaluated as a suitable source to
anticipate human movements. In the case of the work in [Terroso-Sáenz and Muñoz,
2021], authors proposed a GNN to predict the nation-wide mobility of Spain by modelling
the latent connections among regions by means of the gravity model. Such system was
feed with an open mobility dataset covering the whole Spanish territory. The same dataset
is used in [Terroso-Sáenz et al., 2021] to develop a region-based urban mobility predictor.
In this case, authors also made use the water consumption of a residential area as the
exogenous variable to improve the accuracy of the proposal.

All in all, it is observed that fine-grained movement data have been extensively used
and fused with other sources in the road-traffic analysis field. However, the usage of
more coarse-grained human mobility data and their fusion with other complementary
sources have not achieved the same level of development. While we have reviewed
some works that merge region-based flows with exogenous variables defined at different
spatial scales [Terroso-Sáenz et al., 2021], it is worth noting that such a work relies on a
latent human behaviour (the presence of people at home), that is completely different to
the one used in our proposal, namely the count of vehicles moving across the target area.

3 Setting Overview

The feasibility of our proposal has been evaluated in a geographical area comprising
three cities in the center of Spain, namely, Valladolid (VAL), Palencia (PAL) and Burgos
(BUR). In 2021, these cities had a population of 297,775, 77,090 and 174,051 people,
respectively. Fig. 1 depicts the boundaries of this area whose bounding box is defined by
the latitude-longitude coordinates 〈(42.40,−4, 70), (41.56,−3, 56)〉.

The three cities are interconnected by the A-62 national motorway (see Fig. 1). Table
1 shows the distance matrix of the cities. Last, for this spatial area it is extracted the
two target datasets, namely the human mobility open dataset and the traffic data from
the sensor located in the motorway. Both of them cover the same 2-week period from
January, 1st to January, 14th, 2021.

VAL PAL BUR Sensor

VAL - 52,9 (45m) 134 (90m) 30 (28m)

PAL 52,9 (45m) - 92 (60m) 26 (19m)

BUR 134 (90m) 92 (60m) - 102 (63m)

Sensor 30 (28m) 26 (19m) 102 (63m) -

Table 1: Distances among the target cities and the sensor location in Km. In brackets

the Estimated Travel Time by car in minutes according to the Google Maps Navigator.
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Figure 1: Geographical area under study. The three colored polygons are the three

cities under consideration: Valladolid is colored in blue, Palencia in red and Burgos in

orange, respectively. The grey lines define the boundaries of the mobility areas (MAs)

defined in the open mobility dataset. The green triangle indicates the location of the

traffic sensor and the dashed black line indicates the path of the A-62 motorway

connecting the three cities.

3.1 Traffic-Volume data

The traffic volume data have been extracted from an inductive loop sensor installed in
the A-62 national roadway at the 98-kilometer point. This sensor reports the number of
vehicles traversing that point in each of the four lanes of the motorway (two per direction)
every 15 minutes.

As a result, three different time series were composed from the extracted data, Tn,
Ts and Ttotal. The first series Tn = 〈tn1 , tn2 , .., tnH−1, t

n
H〉 reports the sheer number of

vehicles moving north (from VAL to PAL or BUR) every 15 minutes whereas Ts just
mirrors the previous one reporting the number of vehicles moving south. Lastly, Ttotal
reports the total number of vehicles traversing the sensor’s location regardless their
direction.

3.2 Human mobility data

This dataset has been retrieved from the nation-wide human mobility report released by
the Spanish Ministry of Transportation (SMT) in December 20202. It covers a 15-month
period from February 29th, 2020 to May 10th, 2021, indicating the number of trips among

2 https://www.mitma.es/ministerio/covid-19/evolucion-movilidad-big-data/opendata-movilidad
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3216 ad-hoc administrative areas (herebyMobility Areas, MA) per hour in Spain both
in its peninsular and insular extension. A single trip stands for the spatial displacement
of an individual with distance above 500 meters. Consequently, this dataset could be
regarded as a set of tuples where each one takes the form

〈date, hour,morigin,mdest, ntrp〉

reporting that there is ntrp human trips from the MAmorigin to the MAmdest during
the indicated date and hour.

According to the official documents [Secretaría de Estado de Transportes, 2020],
these mobility data was collected through Call Detail Records (CDRs) from 13 million
users of an unspecified mobile-phone carrier. Once anonymised, this dataset was used to
infer representative mobility statistics at the nation-level of the population of Spain and
made publicly available as open data. Note that this dataset captured the movement of
people regardless of the means of transport used for their displacements.

Given this dataset, we first needed to filter the trips related to the target cities. To do
so, we focused on the MAs (out of the 3216 of the study) that spatially covered each of
the three cities. In particular, VAL was covered by 11 MAs, PAL by 6 and BUR by 7.
This gave rise to the set of MAs,MV ,MP andMB respectively.

From this dataset, 12 different human flows were extracted for the MAs reflecting
different human-mobility behaviours. Each flow captures a different type of human
displacement for a particular combination of origin or destination MA. This extraction
was done by filtering the tuples of the dataset with the selection criteria defined in Table
2.

Mobility Behaviour Flow mo md Avg. num. of trips

Incoming trips

F i
V ∗ MV 6,309.57 (±3,751.71)

F i
P ∗ MP 2,022.23 (±1,213.87)

F i
B ∗ MB 1,890.39 (±1,283.43)

Outgoing trips

Fo
V MV ∗ 6,265.62 (±3,974.00)

Fo
P MP ∗ 2,023.76 (±1,192.03)

Fo
B MB ∗ 1,871.83 (±1,254.14)

Inter-city trips

FV−P MV MP 89.68 (±77.83)
FP−V MP MV 91.87 (±83.14)
FP−B MP MB 16.11 (± 9.72)

FB−P MB MP 14.90 (± 8.63)

FB−V MB MV 22.91 (±16.31)
FV−B MV MB 22.61 (±16.41)

Table 2: Criteria followed to extract the mobility behaviours and human flows from the

SMT mobility survey. The symbol ∗ stands for any value. The rightmost column shows
the average number of trips every 15 minutes of each flow and its standard deviation.

More in detail, each flow is structured as time series with the number of trips every
15 minutes accomplishing the flow criterion. For example, according to Table 2, flow



380 Terroso-Saenz F., Muñoz A.: HumanMobility Prediction with Region-based Flows and Road ...

F i
V represents the incoming flow to Valladolid and it is defined as 〈f i

(V,1), f
i
(V,2), ..,

f i
(V,H−1), f

i
(V,H)〉 where f

i
(V,j) is the number of human trips that arrive to any of the

MAs converging in VAL (MV ) from any other MA at the j-th time interval.

3.3 Correlation Study

Once we defined the human mobility flows indicated in Table 2, the next step was
to study whether the traffic time series 〈Tn, Ts and Ttotal〉 described in sec. 3.1 were
a suitable input to develop a forecasting method for any of such flows. To do so, a
correlation study among these sources was performed by means of two different metrics,
namely the Pearson’s correlation coefficient (PCC) and the Mutual Information Score
(MIS). In short, PCC is a number between -1 and 1 that describes a negative or positive
linear correlation, respectively. A value of zero indicates no linear correlation.

One limitation of the PCC is that it just captures the linear correlation between the
variables, if any. For that reason, the MIS metric was also used as it allows measuring
other types of non-linear correlations [Ross, 2014]. In brief, MIS is a non-negative score
where higher values mean higher dependency. The MIS between two variablesX and Y
is defined as

MIS(X,Y ) = H(X) +H(Y )−H(X,Y )

whereH stands for the entropy, that is, the expected amount of information held in a
variable. Table 3 shows the values of these scores for each human mobility flow F and
traffic series T〈n,s,total〉.

Flow PCC(Tn) MIS(Tn) PCC(Ts) MIS(Ts) PCC(Ttotal) MIS(Ttotal)
F i

V 0.846 0.863 0.831 0.696 0.863 0.864

Fo
V 0.812 0.807 0.745 0.717 0.802 0.809

F i
P 0.856 0.897 0.821 0.783 0.863 0.901

Fo
P 0.775 0.746 0.746 0.680 0.783 0.795

F i
B 0.823 0.719 0.795 0.641 0.833 0.772

Fo
B 0.770 0.610 0.705 0.592 0.760 0.608

FV−P 0.750 0.560 0.685 0.505 0.738 0.558

FP−V 0.723 0.555 0.694 0.521 0.730 0.574

FP−B 0.383 0.181 0.341 0.242 0.369 0.242

FB−P 0.348 0.140 0.317 0.218 0.343 0.239

FB−V 0.689 0.435 0.631 0.429 0.681 0.441

FV−B 0.384 0.138 0.423 0.144 0.415 0.158

Table 3: Correlation values between each extracted human flow and the traffic series Tθ.
The highest value of each column is shown in bold.

From this table it is observed four interesting findings. First, the highest correlation
for the northwards traffic flow (Tn) is obtained by the incoming flows of PAL (F i

P ),
0.856 PCC. This is reasonable as it is the closest city to the traffic sensor in its north side
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(see Fig. 1). Therefore, the volume of traffic captured in the northwards lanes is likely to
be very related to the actual incoming flows to the city of Palencia.

Secondly, the highest correlation for the southwards road traffic (Ts) is achieved by
the incoming flow of VAL (0.831 PCC). Again, this also makes sense as Valladolid is
the closest city of the sensor in its south side.

A third interesting finding shows that the correlation between each incoming flow
of the three cities (F i) is higher when considering the total traffic flow reported by the
sensor (Ttotal) than when relying solely on a particular direction. For example, Table 3
shows that the MIS for the incoming flow of PAL (F i

P ) with the total traffic volume
(0.901) is higher than with the northwards (0.897) or the southwards (0.783) traffic. It
reveals a latent relationship between the sheer number of vehicles in a motorway close
to a city (regardless of its direction) and the incoming human displacements of that city.
This can be due to the fact that cities usually have multiple entry points and certain
vehicles may enter the city by making a detour.

Finally, the pairwise flows in Table 3 show a lower correlation than the incoming
and outgoing city-level flows. This is specially remarkable for the mobility between PAL
and BUR cities (FP−B and FB−P ) whose PCC is below 0.4 for the three traffic flows.
This is because the road traffic between these two cities mainly occurs in the segment
of the A-62 motorway that is above the location of the sensor. Besides, this correlation
decrease might be also due to the existence of an inter-city railway that connects the three
cities. Hence, travellers may opt to use this means of transport instead of road vehicles
to move among cities. As a result, the road sensor is not able to capture this type of flow
between each pair of cities.

After analyzing these results, we eventually decided to focus on providing a predictive
solution for the city flow F i

V , representing the incoming flow of people to VAL, and
for FP−V representing the trips from PAL to VAL. These are the city and inter-city
flows with the highest correlation scores with the total traffic flow Ttotal. Furthermore,
these flows represent the mobility behaviour related to incoming and inter-city trips
with the highest number of displacements (see Table 2). Hence, they represent the most
challenging scenario among all the evaluated urban flows. For the sake of completeness,
Fig. 2 shows the time series of both human flows along with the traffic one.

4 Designing a Mobility Predictor with Traffic Data and Region-
based Flows

This section describes our approach to develop a human mobility predictor based on the
time series selected in sec. 3.3.

4.1 Problem formulation

The human mobility prediction problem could be formulated following two approaches.
The first one can be expressed as the following regression problem:

Given the time instant d ∈ 〈1, .., D〉, the number of inner trips of VAL during the last
dprev minutes,F i,d

V = 〈f i
(V,d), f

i
(V,d−1), .., f

i
(V,d−dprev)

〉 and the total number of vehicles
measured by the traffic sensor during the same minutes T d

total = 〈td, td−1, .., td−dprev
〉,

Find a mapping function P ,

P(Fd,i
V , T d

total) → f i
(V,d+T )
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(a) F i
V (in blue) and Ttotal (in red) time series.

(b) F i
P−V (in blue) and Ttotal (in red) time series.

Figure 2: Time series of the selected flows for developing the predictor.

where f i
(V,d+T ) is the sheer number of inner trips at the d+ T instant in VAL being

T the time horizon of the prediction (T ≥ 1). As can be seen, the key goal of this work
is to develop a predictive model enriched with traffic data instead of solely relying on
the SMT data source.

The second approach to define the human mobility predictor can be formulated as

the previous one by just replacing F i,d
V with Fd

P−V , namely the number of trips from
PAL to VAL at time instant d during the last dprev minutes.

4.2 Causality Test

After formally defining the target problems, we leveraged the Granger Causality Test
(GCT) [Spirtes et al., 2000] to determine if one time series (x) is helpful for predicting
another (y). To do so, GCT tests the null hypothesis that the coefficients of past values of
x in the regression equation to predict y are zero. Hence, GCT compares an unrestricted
model, in which the time series y is explained by the lags of y and the lags of an additional
series of observations from x (both lags up to a same fixed order), to a restricted model,
in which y is only explained by the lags of y. Table 4 shows the p-value of this test for
different number of lags (i.e., past values) for the time series F i

V and FP−V (acting as
y) and Ttotal (x).

As observed, all the p-values are below the significance level of 0.05, thus rejecting
the null hypothesis that the coefficients of past values of Ttotal in a regression equation to
predict eitherF i

V orFP−V are zero. As a result, the sensor time series seems a promising
exogenous variable to be integrated in the predictive model.
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4.3 Candidate Models

Regarding the methods to address this regression problem, 4 candidate models have been
considered: a Long short-termMemory (LSTM) and aGated Recurrent Unit (GRU) neural
network and 2 algorithms for time series forecasting, namely the Vector autoregression
(VAR) and the AutoRegressive Integrated Moving Average (ARIMA) models. A brief
description of each of them is provided next.

Num. of lags

x 1 2 3 4 5 6 7 8

F i
V 0.0000 0.0082 0.0062 0.0022 0.0049 0.0067 0.0004 0.0017

FP−V 0.0000 0.0076 0.0038 0.0057 0.0343 0.0357 0.0120 0.0204

Table 4: P-values of the GCT for different number of lags related to the human flows

F i
V and FP−V and the sensor traffic Ttotal.

4.3.1 LSTM model

It is a principal variant of Recurrent Neural Networks (RNN) [Smagulova and James,
2019]. In brief, LSTM models are able to learn short-term and long term patterns in
sequences of data. Fig. 3a depicts a general schema of this model comprising 3 layers.
Moreover, Fig. 3b shows the inner structure of a LSTM cell where h(d−1) indicates the

short-term state at time instant (day in the present setting) d and td is the number of trips
at time instant d. Concerning the cell outputs, t̂(d) ∈ R is the predicted number of trips
at day d whereas c(d) is the long-term state that traverses the network from left to right.

(a) Example of an LSTM architecture with
three layers unrolled thought time.

(b) Gated structure of an LSTM cell. FC
stands for Fully Connected.

Figure 3: Structure of the LSTM network.
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4.3.2 GRU model

This is a major variant of Recurrent Neural Networks (RNN) [Cho et al., 2014]. Unlike
other RNN models like LSTM, a GRU model has a slightly simpler structure that makes
it faster to train [Chung et al., 2014]. Fig. 4 depicts the inner structure of its cells. As
observed, a GRU cell makes use of a gating mechanism to memorize long-term patterns
in the target sequence. Thus, a cell receives as input the current input vector x(t) and the
previous state vector h(t− 1). Then, the cell generates the associated output y(t), which
is also the state vector h(t) of the next cell.

Figure 4: Gated structure of a GRU cell. FC stands for Fully Connected.

More in detail, the cell comprises three different gates, the update z(t), the reset r(t)
and memory-content g(t). The computations of each gate are as follows

z(t) = σ(Wz ∗ xt + Uz h(t−1) + bz) (1)

r(t) = σ(Wr xt + Ut h(t−1) + bt) (2)

g(t) = tanh(Wg xt + Ug (r(t) ⊗ h(t−1)) + bg) (3)

y(t) = h(t) = z(t) ⊗ h(t−1) + (1− z(t))⊗ g(t) (4)

where W{z,r,g} are the weight matrices for the input xt, U{z,r,g} are the weight

matrices for the connections to the previous short-term state h(t− 1) and b{z,r,g} are
the bias terms of each layer.

4.3.3 VAR model

The VAR model is a well-known statistical method to capture changes in multi-variate
time series. In brief, given a k-dimensional time series yt = (y1t, ..., ykt), a VAR model
of order p can be formulated as follows:

yt = δ +Θiyt−1 + ..+Θpyt−p + εt

where εt is a white-noise vector, δ = (δ1, ..., δk) is a constant vector and Θt is a
k × k matrix. It is a very stable model that ensures the generation of stationary time
series with invariant means, variance and covariance structure [Pfaff et al., 2008]. It
is worth mentioning that the model must be fed with a stationary time series so as to
generate reliable predictions.
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4.3.4 Autoregressive Integrated Moving Average model (ARIMA)

It is one of the foremost predictor within the time series analysis domain [Shahriari et al.,
2020]. In brief, it fits a regressive model to a time series to predict new values.

4.4 Configuration of the models

Table 5 shows the hyper-parameters of the LSTM and GRUmodels for the two prediction
tasks at hand. Note that the models being fed solely with human flow data will be used
for comparative purposes.

LSTM(F i
V ) LSTM(F i

V ,Ttotal) LSTM(FP−V ) LSTM(FP−V ,Ttotal) GRU(F i
V ) GRU(F i

V ,Ttotal) GRU(FP−V ) GRU(FP−V ,Ttotal)
Input seq. length 7 (105 min.)

Training rate 70%

Loss function Mean Squared Error (MSE)

Activation function Hyperbolic tangent function

Batch size 32

Learning factor 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01

Optimizer Adam

Num. of layers 3 4 3 4 4 4 4 4

Num of cells per layer 50 100 40 100 50 50 50 50

Num. of epochs 80 60 90 60 100 80 100 80

Table 5: Hyper-parameters of the LSTM and GRU models evaluated in the study. The

input datasets of each model are shown in brackets.

Regarding the ARIMA and VAR models, Table 6 shows their configuration param-
eters. In order to set the p and q parameters, it was considered the autocorrelation and
partial autocorrelation of the F i

V and FP−V time series. As observed in Fig. 5, there is a
strong partial autocorrelation in both time series in the first two lags whereas it slightly
decreases in both time series for lags 12 and 17, respectively.

ARIMA(F i
V ) VAR(F i

V ,Ttotal) ARIMA(FP−V ) VAR(FP−V ,Ttotal)
Num. of lags (p) 2 7 2 7

Mov. avg. window size (q) 17 - 12 -

Num. of differentiations (d) 0 - 0 -

Table 6: Hyper-parameters of the VAR and ARIMA models evaluated in the study. The

input datasets of each model are shown in brackets.

Regarding the number of differentiations (d), it was necessary to check whether
F i

V , FP−V and Ttotal were stationary or not. To do so, we performed the Augmented
Dickey-Fuller Test [Cheung and Lai, 1995]. The null hypothesis of this test states that
the time series has a unit root and thus it is non-stationary. The alternative hypothesis is
that the time series does not have a unit root, thus being stationary. As Table 7 shows,
the statistics obtained for both raw time series indicate a strong evidence to reject the null
hypothesis. For example, the statistic value for F i

V was -5.064, lower than the critical
value at 5% (-2.864), so the null hypothesis was rejected.

Given the results of Table 7, the three time series proved to be stationary. Therefore,
the required number of differentiations was set to 0.
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(a) Autocorrelation of F i
V . (b) Partial autocorrelation of F i

V .

(c) Autocorrelation of FP−V . (d) Partial autocorrelation of FP−V .

Figure 5: Autocorrelation plots of the two target human flows. The 95% confidence

intervals are shown as a cone in the plots. Values outside of these cones most likely

represent a correlation.

Model F i
V FP−V Ttotal

Significance level 0.05

Test statistic -5.064 -4.536 -4.741

Critical value 1% -3.436 -3.436 -3.436

Critical value 5% -2.864 -2.864 -2.864

Critical value 10% -2.568 -2.568 -2.568

Table 7: Results of the Augmented Dickey-Fuller Test.

Finally, the parameter p of the VAR model was selected by means of a grid search
based on the Akaike Information Criterion (AIC) [Hu, 2007]. According to the results in
Table 8, this led to the value of 7 as the most promising one.

5 Evaluation of the Predictor

This section analyses the evaluation of the different models described in the previous
section.
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5.1 Evaluation metrics

Regarding the metrics to evaluate the previous models, the Mean Absolute Error (MAE),
the Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE) [Willmott
and Matsuura, 2005] are three of the most common metrics used to measure accuracy for
continuous variables. They are suitable for model comparisons as they express average
model prediction error in the units of the variable of interest. Their definition is as
follows:

MAE =
1

n

n∑
i=1

|yi − ŷi,|

MSE =
1

n

n∑
i=1

(yi − ŷi,)
2

RMSE =
√
MSE,

where, for our experiment, yi is the real number of nationwide daily trips, ŷi is the
predicted number of trips at this same scale and n is the number of observations.

Num. of lags AIC Num. of lags AIC

1 18.244752 8 18.064981

2 18.117103 9 18.070551

3 18.080703 10 18.075614

4 18.066120 11 18.080955

5 18.068602 12 18.084146

6 18.072590 13 18.087857

7 18.062935 14 18.088350

Table 8: AIC score of the VAR model for different number of lags (p parameter). The
minimum value is shown in bold.

Furthermore, we complement these metrics with the coefficient of variance of the
RMSE (CVRMSE), a non-dimensional measure calculated by dividing the RMSE of the
predicted number of trips by the mean value of the actual number of trips. For example,
a CVRMSE value of 5% would indicate that the mean variation in the actual number of
trips which is not explained by the prediction model is 5% [Reddy et al., 1997]. Similarly,
the Mean Average Prediction Error (MAPE) metric expresses the average absolute error
as a percentage. These two additional metrics are calculated as follows:

CV RMSE =

√
1
n

n∑
i=1

(yi − ŷi)2

ȳ
× 100

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi

| × 100.
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5.2 Evaluation results

In this section, we discuss and explain the main results obtained from the evaluation of
the models given the inner-trips and inter-city settings.

5.2.1 Inner trips evaluation

Regarding the results obtained to predict the overall inner trips of Valladolid (VAL),
Table 9 shows the scores of each metric and candidate model for different time horizons
(T ). As observed, the multi-variate models (VAR(F i

V , Ttotal), LSTM(F i
V , Ttotal) and

GRU(F i
V , Ttotal)) outperformed the uni-variate models that solely relied on the human

flow (ARIMA(F i
V ), LSTM(F i

V ) and GRU(F i
V )) for most of the time horizons and

metrics. Besides, GRU(F i
V , Ttotal) achieved the best average scores for all the metrics

(see the rightmost column of the table). For example, the average CVRMSE of this model
was 16.8 whereas the GRU model solely fed with open data got a 20.4 score.

More in detail, Table 9 shows that the VAR model achieved the highest accuracy
for time horizons up to 30 minutes. For example, enriching the model with traffic data
allowed the VAR model to get a MAPE score of 4.88 instead of 5.40 as in the uni-variate
ARIMA model for a 15-minute horizon. For time horizons beyond 30 minutes, the
multi-variate GRU model achieved the best scores for almost all the metrics. This is
consistent with the fact that RNN models are usually more capable of detecting complex
patterns within the input sequence.

Table 9 also shows that the larger improvement of the models enriched with traffic
data occurred when the target prediction horizon was set over 30 minutes. For example,
the reduction of the MAPE score of GRU(F i

V , Ttotal) with respect to GRU(F i
V ) was

4.57% (13.99 vs 14.63), 22% (15.54 vs 18.99) and 26% (18.3 vs 25.0) for time horizons
of 30, 45 and 75 minutes, respectively. However, the uni-variate version of the model
outperformed the multi-variate one for T=15m (11.74 vs 11.0). This is consistent with
the location of the traffic sensor. Indeed, the distance between the city center of VAL
and the location of the sensor is roughly 33 km. This implies an Estimated Travel Time
(ETT) of 30 minutes between both locations by car (see Table 1). Consequently, it is
reasonable to think that the latent information provided by the sensor for predicting inner
trips to VAL will mainly cover time ranges over such a value.

Another interesting finding in Table 9 is that the uni-variate version of the LSTM
model (LSTM(F i

V )) outperformed its GRU counterpart (GRU(F i
V )) for all the metrics.

This is completely different from the results obtained in the multi-variate versions,
in which the GRU network clearly improved the LSTM alternative. This shows the
capability of the GRU network to better capture the latent mobility patterns from the
multi-variate timeseries with respect to the LSTM network given the same training
corpus. This is mainly due to its lighter architecture as we have discussed in sec. 4.3.2.
On the contrary, the more complex gated structure of the LSTM allowed to better fit the
uni-variate training data.

For the sake of completeness, Fig. 6 depicts the aforementioned evaluation metrics
as bar plots. It clearly shows that GRU(F i

V , Ttotal) achieved the best results in almost
all the metrics for time horizons over 15 minutes.

5.2.2 Inter-urban trips evaluation

Concerning the inter-urban trips from Palencia (PAL) to VAL, Table 10 shows the scores
of all the models for different time horizons. In this case, it is observed that the results
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exhibited a different pattern than the one obtained for the sheer incoming trips of VAL.
In particular, the multi-variate models provided a more accurate prediction for time
horizons beyond 60 minutes for the LSTM model and 30 minutes for the GRU versions,
respectively. For example, LSTM(FP−V , Ttotal) obtained a CVRMSE of 56.36 which
is remarkably lower than the score of its uni-variate counterpart LSTM(FP−V ), 64.68,
for a time horizon of 90 minutes.

At this point, we should recall that the sensor data involve the overall traffic volume
of the motorway. Hence, this sensor captures both the traffic moving from PAL to VAL
and from VAL to PAL. Besides, the LSTM and GRU models considered the traffic
and human flows of the last 105 minutes as the number of lags were set to 7 (each
lag involved a 15-minute period). Bearing in mind the ETT between PAL and VAL
(45 minutes according to Table 1), 105 minutes is a time window large enough so that
the models consider the latent go-and-return traffic patterns between both cities in the
prediction loop. However, this type of patterns cover a larger period of time (90 minutes
in total to go from VAL to PAL and return again). As a side effect, the improvement
of the accuracy of the multi-variate LSTM and GRU models is higher as long as the
prediction horizon exceeds the 90-minute threshold.

Furthermore, it is worth mentioning that the relative scores (CVRMSE and MAPE)
of Table 9 and Table 10 show that the multi-variate predictors achieved much better
results to estimate the FP i

V flow than FP−V . As a matter of fact, the average CVRMSE

of VAR(F i
V , Ttotal) was 22.30 and the same score for VAR(FP−V , Ttotal) was much

Metric Model
T (minutes)

Avg.
15 30 45 60 75 90 105 120

MSE

ARIMA(F i
V ) 199,989.33 516,350.53 942,091.99 1.50×106 2.17×106 2.93×106 3.75×106 4.60×106 2.07×106

VAR(F i
V , Ttotal) 190,396.44 478,504.51 868,231.12 1.38×106 2.01×106 2.73×106 3.51×106 4.33×106 1.94×106

LSTM(F i
V ) 441,394.25 560,520.88 688,906.12 944,690.62 1.25×106 1.68×106 2.09×106 2.67×106 1.29×106

LSTM(F i
V , Ttotal) 333,386.12 577,700.25 751,174.56 1.01×106 1.27×106 1.71×106 2.11×106 2.69×106 1.31×106

GRU(F i
V ) 391,390.66 648,561.44 872,213.44 1.16×106 1.52×106 2.01×106 2.46×106 3.23×106 1.54×106

GRU(F i
V , Ttotal) 269,591.66 452,458.53 536,525.88 7.10×105 9.70×105 1.35×106 1.81×106 2.29×106 1.05×106

RMSE

ARIMA(F i
V ) 447.20 718.58 970.61 1.22×103 1.47×103 1.71×103 1.94×103 2.14×103 1.33×103

VAR(F i
V , Ttotal) 436.34 691.74 931.79 1.17×103 1.41×103 1.65×103 1.87×103 2.07×103 1.28×103

LSTM(F i
V ) 664.38 748.68 830.00 971.95 1.12×103 1.29×103 1.45×103 1.63×103 1.09×103

LSTM(F i
V , Ttotal) 577.40 760.07 866.70 1.00×103 1.13×103 1.31×103 1.45×103 1.64×103 1.09×103

GRU(F i
V ) 625.61 805.33 933.92 1.08×103 1.23×103 1.42×103 1.57×103 1.80×103 1.18×103

GRU(F i
V , Ttotal) 519.22 672.65 732.48 8.42×103 9.85×103 1.16×103 1.34×103 1.51×103 9.72×102

CVRMSE

ARIMA(F i
V ) 7.78 12.49 16.88 2.13×101 2.56×101 2.98×101 3.37×101 3.73×101 2.31×101

VAR(F i
V , Ttotal) 7.60 12.05 16.23 2.05×101 2.47×101 2.88×101 3.27×101 3.62×101 2.23×101

LSTM(F i
V ) 11.37 12.81 14.25 1.67×101 1.93×101 2.24×101 2.51×101 2.85×101 1.88×101

LSTM(F i
V , Ttotal) 9.88 13.01 14.88 1.73×101 1.95×101 2.27×101 2.52×101 2.86×101 1.89×101

GRU(F i
V ) 10.71 13.78 16.03 1.85×101 2.13×101 2.46×101 2.73×101 3.14×101 2.04×101

GRU(F i
V , Ttotal) 8.89 11.51 12.58 1.45×101 1.70×101 2.01×101 2.34×101 2.64×101 1.68×101

MAE

ARIMA(F i
V ) 214.58 435.64 663.38 8.92×102 1.12×103 1.35×103 1.56×103 1.76×103 9.99×102

VAR(F i
V , Ttotal) 202.10 412.14 627.18 8.46×102 1.07×103 1.29×103 1.51×103 1.71×103 9.60×102

LSTM(F i
V ) 468.93 472.28 559.87 6.92×102 7.98×102 9.43×102 1.06×103 1.21×103 7.76×102

LSTM(F i
V , Ttotal) 343.55 462.86 570.53 6.90×102 8.04×102 9.57×102 1.09×103 1.27×103 7.73×102

GRU(F i
V ) 402.88 524.09 665.89 7.78×102 8.98×102 1.05×103 1.16×103 1.31×103 8.49×102

GRU(F i
V , Ttotal) 329.71 431.02 507.11 5.96×102 7.08×102 8.60×102 1.00×103 1.14×103 6.97×102

MAPE

ARIMA(F i
V ) 5.40 11.51 18.20 2.54×101 3.28×101 4.03×101 4.79×101 5.50×101 2.96×101

VAR(F i
V , Ttotal) 4.88 10.63 16.95 2.39×101 3.13×101 3.87×101 4.62×101 5.34×101 2.82×101

LSTM(F i
V ) 11.08 11.25 13.94 1.82×101 1.94×101 2.33×101 2.61×101 3.09×101 1.93×101

LSTM(F i
V , Ttotal) 8.08 11.55 14.02 1.73×101 2.10×101 2.57×101 3.11×101 3.81×101 2.09×101

GRU(F i
V ) 11.00 14.63 18.99 2.15×101 2.50×101 3.01×101 3.32×101 3.90×101 2.42×101

GRU(F i
V , Ttotal) 11.74 13.99 15.54 1.70 ×101 1.83×101 2.28×101 2.63×101 2.93×101 1.94×101

Table 9: Metric values of the models for different time horizon values (T ) for the inner
urban flows F i

V . The best metric value for each time horizon is shown in bold.



390 Terroso-Saenz F., Muñoz A.: HumanMobility Prediction with Region-based Flows and Road ...

(a) MSE. (b) CVRMSE.

(c) MAE. (d) MAPE.

Figure 6: Plots showing the evaluation metrics for different time horizons for the inner

urban flows F i
V given all the considered models.

higher, up to 48.89. Similarly, theMAPE of GRU(F i
V , Ttotal), 19.4, was much lower than

the one achieved by GRU(FP−V , Ttotal), 42.03. This reveals that the human mobility
between PAL and VAL is not strongly biased by road traffic but by other means of
transport. At the same time, this might also involve that the higher prediction accuracy to
estimate the overall inner flows of VAL is mostly due to the road displacements coming
from more distant cities.

For the sake of completeness, Fig. 7 comprises the bar plots describing the evaluation
metrics of the inter-city setting. Observe that the multi-variate LSTM model achieved
the best scores for time horizons above 60 minutes. It is also observed the performance
degradation of the VAR and ARIMA models for predictions beyond 30 minutes.

Finally, Fig. 8 depicts the raw human flows data along with the prediction of the
multi-variate LSTM models for the training and evaluation sets.

6 Conclusions and Future Work

Research on human mobility is undergoing a turning point thanks to the myriad of differ-
ent types of data that can be captured with today’s technologies. Data frommobile phones,
GPS or IoT systems such as road traffic sensors provide a more in-depth understanding
of human mobility patterns at different scales. This information is a valuable resource
for the development of intelligent transport systems capable of predicting mobility flows,
with different applications ranging from forecasting the spread of an epidemic to the
efficient management of public transport in situations where a high demand for these
services is expected.

Most of the work to date on predicting human mobility between urban areas has
focused on the analysis of data sources with the same spatial level (i.e. always covering
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the same area of analysis). In this context, the main contribution of this paper is that we
proposed an alternative approach by combining two data sources with different spatial
dimension aiming to demonstrate that such data fusion improves mobility prediction
compared to using a single source. On the one hand, we use an open macro-level mobility
dataset covering an interurban mobility area, and on the other hand, a dataset provided
by a road traffic sensor located at a specific point on a motorway within the previous
mobility area. Note that the novelty of this work does not reside in the algorithmic part of
the research, but in the detailed study of how two different, complementary datasources
can be integrated together to feed well-known predictive machine learning models.

To evaluate our proposal, we have defined four different models to predict the traffic
flow in an area of north-eastern Spain between three main cities. The first two models
are based on the use of long short-term memory (LSTM) and gated recurrent unit (GRU)
neural networks, while the other two rely on regression models based on time series
such as Vector AutoRegression (VAR) and AutoRegressive Integrated Moving Average
(ARIMA). The results show that the two deep-learning models outperform the other
ones in the reliability of the predictions in almost all the proposed situations, especially
when the LSTM is fed with the two mobility flows considered for the inter-city flows

Metric Model
T (minutes)

Avg.
15 30 45 60 75 90 105 120

MSE

ARIMA(FP−V ) 70.76 267.09 601.46 1,058.79 1,529.99 2,005.18 2,472.73 2,919.05 1,365.63

VAR(FP−V , Ttotal) 71.48 267.06 598.31 1,047.37 1,500.86 1,948.15 2,378.73 2,785.91 1,324.73

LSTM(FP−V ) 148.91 259.16 511.85 970.20 1,520.26 1,953.88 2,372.50 2,760.23 1,312.12

LSTM(FP−V , Ttotal) 292.08 478.82 713.60 1,039.02 1,306.36 1,483.51 1,673.37 1,819.58 1,100.79
GRU(FP−V ) 184.25 337.60 860.73 1,876.76 3,133.32 4,768.63 6,972.61 8,853.70 3,373.45

GRU(FP−V , Ttotal) 235.66 383.09 643.52 1,011.28 1,397.22 1,678.32 2,013.78 2,270.55 1,204.18

RMSE

ARIMA(FP−V ) 8.41 16.34 24.52 32.54 39.12 44.78 49.73 54.03 33.68

VAR(FP−V , Ttotal) 8.45 16.34 24.46 32.36 38.74 44.14 48.77 52.78 33.26

LSTM(FP−V ) 12.20 16.10 22.62 31.15 38.99 44.20 48.71 52.54 33.31

LSTM(FP−V , Ttotal) 17.09 21.88 26.71 32.23 36.14 38.52 40.91 42.66 32.02

GRU(FP−V ) 13.57 18.37 29.34 43.32 55.98 69.06 83.50 94.09 50.90

GRU(FP−V , Ttotal) 15.35 19.57 25.37 31.80 37.38 40.97 44.88 47.65 32.87

CVRMSE

ARIMA(FP−V ) 12.40 24.09 36.16 48.00 57.73 66.13 73.47 79.86 49.73

VAR(FP−V , Ttotal) 12.40 23.98 35.91 47.54 56.94 64.91 71.75 77.68 48.89

LSTM(FP−V ) 17.69 23.35 32.83 45.34 56.92 64.68 71.47 77.32 48.70

LSTM(FP−V , Ttotal) 24.78 31.74 38.76 46.92 52.76 56.36 60.02 62.78 46.77

GRU(FP−V ) 19.68 26.65 42.57 63.06 81.71 101.05 122.53 138.48 74.47

GRU(FP−V , Ttotal) 22.26 28.39 36.81 46.29 54.56 59.95 65.85 70.13 48.03

MAE

ARIMA(FP−V ) 5.36 11.52 18.03 24.74 30.72 36.12 40.81 44.95 26.53

VAR(FP−V , Ttotal) 5.25 11.17 17.46 23.77 29.40 34.37 38.64 42.35 25.30

LSTM(FP−V ) 8.32 10.06 13.67 18.79 23.92 27.90 31.21 33.37 20.91

LSTM(FP−V , Ttotal) 12.66 15.17 17.83 20.51 22.20 22.85 23.80 24.76 19.97

GRU(FP−V ) 9.27 11.76 19.45 27.99 35.83 43.20 50.81 58.70 32.13

GRU(FP−V , Ttotal) 10.96 12.71 15.87 18.92 21.69 23.45 26.87 29.38 19.98

MAPE

ARIMA(FP−V ) 15.81 36.74 61.68 88.99 113.99 137.58 159.86 180.40 99.38

VAR(FP−V , Ttotal) 14.84 33.93 57.05 82.08 105.03 126.13 145.87 164.22 91.14

LSTM(FP−V ) 23.37 28.72 33.56 49.81 69.35 88.60 103.79 115.71 64.11

LSTM(FP−V , Ttotal) 25.61 30.14 37.18 43.97 44.96 46.77 47.65 49.64 40.74

GRU(FP−V ) 19.27 24.43 43.70 66.35 93.20 121.22 159.55 215.81 92.94

GRU(FP−V , Ttotal) 23.47 28.04 35.24 45.89 43.39 48.47 53.61 58.09 42.03

Table 10: Metric values of the models for different time horizon values (T ) using the
inter-urban flows FP−V . The best metric value for each time horizon is shown in bold.
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(a) MSE. (b) CVRMSE.

(c) MAE. (d) MAPE.

Figure 7: Plots showing the evaluation metrics for different time horizons for the

inter-urban flows F i
P−V given all the considered models.

(a) F i
V (in blue) and the prediction of the LSTM(FP−V , Ttotal) model

for the training (in red) and test set (in purple).

(b) F i
P−V (in blue) and the prediction of the LSTM(FP−V , Ttotal) model

for the training (in red) and test set (in purple).

Figure 8: Time series of two target urban flows along with the associated prediction of

the LSTM(FP−V , Ttotal) model for the training and test sets.
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and when the multi-variate GRU model is used to predict the inner trips of the target city.
In particular, the prediction of traffic entering one of the cities in the next 30 minutes
following the GRU model obtains a mean average prediction error (MAPE) below 15%.
However, this same model presents a greater difficulty in capturing the prediction of
traffic volume between two of the cities in the study, mainly because the number of trips
available in both data sources is not large enough for training the model.

The obtained results support the conclusion that the combination of heterogeneous
data sources at different spatial levels, including open data sources, is a promising line
for the improvement of human mobility prediction, and that those models that can take
advantage of the fusion of such sources offer a higher reliability than those based on a
single source. However, new factors such as commuting time between cities and travel
data from other means of transport need to be added to this prediction to further improve
this research line.

As future work, we are exploring the addition of sensor data from the actual vehicles
to move towards real-time mobility prediction models, as well as predicting possible
travel hazards such as snowfall. Another source of data to be considered in the future is
official public transport data, in order to complement the low level of traffic data quantity
in certain mobility areas.
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