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Abstract: To identify autoimmune diseases in humans, analysis of HEp-2 staining patterns at

cell level is the gold standard for clinical practice research communities. An automated procedure

is a complicated task due to variations in cell densities, sizes, shapes and patterns, overfitting

of features, large-scale data volume, stained cells and poor quality of images. Several machine

learning methods that analyse and classify HEp-2 cell microscope images currently exist. However,

accuracy is still not at the level required for medical applications and computer aided diagnosis due

to those challenges. The purpose of this work to automate classification procedure of HEp-2 stained

cells from microscopic images and improve the accuracy of computer aided diagnosis. This work

proposes Deep Convolutional Neural Networks (DCNNs) technique to classify HEp-2 cell patterns

at cell level into six classes based on employing the level-set method via edge detection technique

to segment HEp-2 cell shape. The DCNNs are designed to identify cell-shape and fundamental

distance features related with HEp-2 cell types. This paper is investigated the effectiveness of our

proposed method over benchmarked dataset. The result shows that the proposed method is highly

superior comparing with other methods in benchmarked dataset and state-of-the-art methods. The

result demonstrates that the proposed method has an excellent adaptability across variations in cell

densities, sizes, shapes and patterns, overfitting features, large-scale data volume, and stained cells

under different lab environments. The accurate classification of HEp-2 staining pattern at cell level

helps increasing the accuracy of computer aided diagnosis for diagnosis process in the future.
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1 Introduction

Recognition and analysis of Human Epithelial type 2 (HEp-2) at cell level in Indirect
Immuno-Fluorescence (IIF) microscopy is commonly adopted for identifying the pres-
ence of autoimmune diseases in Computer-Aided Diagnosis (CAD). This process requires
highly trained clinicians to accurately process and interpret the results. For example, if
the occurrence of mitotic cells in the microscope image is determined by the technician
to be high, the presence of autoimmune disease is possible and the cell image must
be further scrutinised [Hobson u. a., 2016]. The presence of Anti-Nuclear Antibodies
(ANA) indicates autoimmune disease in the subject and this presence is detectable by
examining the distinct patterns that are produced by the antibodies during cell staining.
Thus, practice clinical practitioners must have a deep understanding of HEp-2 staining
at cell level morphology for accurate diagnosis. Currently, some techniques exists that
can assist the experts in the process of cell classification; however, there is still much
research to be done [Buchner u. a., 2014]. Manual classification of HEp-2 staining at
cell level is a laborious process in which the final result is subject to the interpretation of
pathologists. This interpretation could vary with pathologists’ experience and with the
visual complexity of the IIF microscope image results because the staining patterns have
many types: “homogeneous, speckled, nucleolar, centromere, nuclear membrane and
golgi”, as shown in Figure-1, that have different shape, size and pattern. In a competitions
hosted by ICPR 2014 and 2016, a study of automatic methods for HEp-2 staining patterns
at cell level classification had been conducted and evaluated against manual classification
by two scientists. In some cases a third scientist was needed to provide a manual opinion
where the two scientists disagreed on the type of cell [Hobson u. a., 2016] due to differ-
ent staining pattern,intensity level size, and shape, overlapped cell and large-scale data
volume. In addition to the risk of mis-classification of the manual process, the manual
procedure is time-consuming and costly [Al-Dulaimi u. a., 2020a]. Thus, it is important
to be able to design a CAD system which can address these issues by giving the correct
medical diagnosis, as well as decreasing the cost and time needed for testing. Achieving
this can increase testing throughput and assist in training of technicians for diagnoses.

Figure 1: Types of HEp-2 staining pattern at cell levels, including nuclear membrane,

nucleolar, homogeneous, centromere , golgi and speckled.

This work aims to develop automated segmentation and classification methods to
address the problems of HEp-2 cell detection from microscopic images, especially,
overfitting of features, stained cell images, different sizes and shapes of cell, overlap-
ping of cells and large-scale data volume problems. In this paper, we propose Deep
Convolutional Neural Networks (DCNNs) technique for cell classification at cell level
based on cell shape. The level-set method via gradient of edge detection is employed
to detect cell shape. The output of DCNN is then analyzed with hyperparameters in
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Deep Neural Network to identify the combination features of diameter distance and cell
shape that can be discriminated between different HEp-2 cell types, which is proposed
for the first time. The contributions of this paper is to design a CAD system that it: (i)
produces segmentation and classification methods with improved accuracy compared
with the current state-of-the-art methods to permit comparison and benchmarking;(ii)
uses segmentation and classification methods that are more adaptable to variation in
intensity level, overlapping cells, overfitting of features, staining pattern and cell shape
than the current methods; and (iii) can recognize six classes of Hep-2 cell “(homogeneous,
speckled, nucleolar, centromere, nuclear membrane, and golgi)”.

The organisation of paper follows as: related work is described in Section-2; the
proposed method is presented in Section-3; the experimental analysis and comparison
results are discussed in Section-4; and the Conclusion is presented in Section-5.

2 Literature Review

Advanced research have used different machine learning and Deep Learning (DL) tech-
niques for classification of medical images as have done in [Sathish und Elango, 2019;
Al-Dulaimi u. a., 2018; Agaian u. a., 2018; Al-Dulaimi u. a., 2016b; Makki und Al-
Dulaimi, 2022; Bollipo und KV, 2021; Al-Dulaimi u. a., 2019a; Prakash u. a., 2022], and
classification of biomedical images, specifically classification of HEp-2 cell in [Li und
Shen, 2019], Multi-context unsupervised domain adaption for HEp-2 cell classification
in[Zhao u. a., 2022], Joint segmentation and classification of HEp-2 cell [Xie u. a., 2022],
classification of HEp-2 cell using adaptive MLP Al-Dulaimi u. a. [2023] and HEp-2 Cell
Classification Using an Ensemble of CNNs [Kasani u. a., 2021]. CNNs are becoming
more common in HEp-2 cell classification, due to their ability to be highly adaptable
to new data sets. This includes data sets of different colour-schemes, image resolution,
noise/distortion and other differentiating factors. This is crucial to the implementation of
a real-world cell classification system, as different labs may use different equipment and,
therefore, will produce dissimilar images. [Prasath u. a., 2016] classified HEp-2 cells at
both cell and specimen level using a variety of different classifiers (Support Vector Ma-
chines (SVMs), Random Forest (RF), and K-Nearest Neighbours (K-NNs)). Maximum
MCA for cell-level classification was achieved using a K-NN classifier (93.16%). That
study used the same dataset used in our study (the 13,596 training images from the ICPR
2014 Task 1 dataset). A split of 80% was given to the training dataset and 20% was
devoted to testing. Similarly, [Li u. a., 2016] also noted that these rarer cell types were
difficult to classify, as the number of cell images were significantly fewer than more
common types in the data set, but that the histogram approach to CNN classification
employed in their study provided a more robust approach. In [Jorgensen u. a., 2021],
DCNNs was proposed for classification of HEp-2 HEp-2 specimen staining cells based
on cell shape and adapted to consider overfitting using Task-2 data set. It achieved good
results. “ The official International Conference on Pattern Recognition (ICPR) contest
in 2014”, with 13 participating contestants, was documented by [Hobson u. a., 2016].
Two tasks were presented, namely, cell and specimen level classification. The methods
discussed by [Codrescu, 2014] and [Gao u. a., 2016] were featured and have already
been discussed in this paper. All other methods for cell-level classification in the study
were presented using SVM algorithms. The greatest accuracy of 84.63% was recorded by
[Qi u. a., 2016] using a linear SVM and the next best accuracy of 84.24% was achieved
by [Manivannan u. a., 2014a,b], also using a linear SVM classifier. It was found that
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accuracy of classification using the method by Manivannan et al. increased by 3% to
87.1% with data rotation. An observation was made that the CNN-based method by [Gao
u. a., 2016] scored only 1.5% lower than the best performing method and that future
research should be in the direction of deep learning. [Qi u. a., 2016] mentioned that the
homogeneous and speckled types were often misclassified as each other, possibly due
to similar texture and shape structures. [Nigam u. a., 2015] proposed a classification
network that features two separate classification system, one for positive images and
one for intermediate. Images were divided into these two sets through the use of a pre-
liminary classifier trained to detect intermediate or positive images. This was based on
the hypothesis that the information presented in positive and intermediate cell images is
distinctly different within each class.

Classification accuracy can be influenced by segmentation and feature extraction
process. Particular combinations of these classification and segmentation algorithms are
capable of achieving high accuracy. Popular HEp-2 cell classification methods, discussed
previously, include machine learning and DL algorithms, such as SVMs, RF, and K-NNs,
as well as DL methods, such as (CNNs) and Artificial Neural Networks (ANN), have
been used to classify HEp-2 staining cell based on different features. However, the
accuracy of these methods still requires improving because none of these methods have
been dealt with all HEp-2 cell classification problems at same time. This work creates a
classification system for cell-level HEp-2 images using a DCNN based on the diameter
distance of segmented of cell shape. This feature has been used for the first time.

3 Proposed DCNNs classification method

The proposed DCNNs classification method of segmented HEp-2 staining patterns at
cell level is shown in Figure-2 Image enhancement is used in adjusting the contrast of

Figure 2: The proposed DCNN classification procedure of segmented HEp-2 staining

patterns.

each cell staining pattern image by applying contrast stretching to the grayscale images
and then morphological operators is used to initialise the shape of cell.



436 JensenM., Al-Dulaimi K., Abduljabbar K.S., Banks J.: Automated ...

3.1 Segmentation of HEp-2 level cell

In this study we employed level-set force in normal direction base edge detection in
previous works [Al-Dulaimi u. a., 2020b] [Al-Dulaimi u. a., 2016a] [Al-Dulaimi u. a.,
2016b] to segment and separate cells. The proposed segmentation method is adapted by
using Zero crossing edge detection method to address issues of overlapping cells and the
variety of shapes in the database and to separate cells from cell clusters.

3.2 HEp-2 cell level Classification using DCNNs

CNNs are a class of deep learning networks that apply convolutional filtering techniques
used in image processing to recognise an object in an input image. “DCNNs are commonly
used to identify patterns in images and video. DCNNs considerably reduce the number
of neurons required to process an image, comparing to traditional feed forward neural
networks”. The network can employ a “convolution” mathematical operation instead of
using “matrix multiplication”. The DCNN architecture can typically consist of 4 layers
types: convolution, pooling, activation, and fully connected [Venkatesan und Li, 2017;
Aversano u. a., 2022]. The input layer accepts cell shape as an image input, and the
output layer gives a classification for the input image. The layers between the input and
output are where the decisions are made regarding which features best represent the
image content and classification process. A convolution—can take a set of weights and
multiply them with inputs from the neural network.

The DCCNs in Figure-3 accepts an image input and applies a convolution filter by
multiplying a set of of weights with inputs from the neural network. Convolutional layers
have a pre-defined kernel which is used to filter the input. The kernel is a feature detector,
which can be thought as 2D arrays of weights. Dot product is a mathematical process and
performing during the convolution. Each filter can multiply the weight with different
values of input. Then, we calculate the total inputs to provide a unique value for each
filter position. Then, the procedure passes the convolution maps through a nonlinear
activation layer called “Rectified Linear Unit (ReLU)”, that can make negative numbers
of the filtered images equal zeros [Jorgensen u. a., 2021].

Figure 3: An example of a architecture of CNN, including a feature extraction and

classification into many types [Wang u. a., 2017].

The pooling layer will reduce the size of the image. The pooling layer has a pre-
defined window size, such as 2× 2 and 3× 3, and this layer will divide up the image
into windows of this size and reduce each window into a single pixel. It does this by
substituting the entire window with either the maximum value (max pooling), or the
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average value (average pooling) contained within each window in the image. We reduce
the number of calculations and parameters in the network by using Pooling layers to
control overfitting. The Softmax function has been applied at the end for giving the
probability of a type of the image to the outputs of the fully connected layers, as shown
Figure-4. .

Figure 4: The Softmax function and an example of how the function transforms the

weights from the output layer into probabilities that sum to 1.

The type of hyperparameters that can be selected depend on the optimisation solver
being utilised by the DCNN, but three important hyperparameters are:batch size, number
of epochs, and the learning rate. The latter determines how quickly the network updates
its internal parameters during training. The number of epochs represents the number of
times the DCNN is trained on the entire input dataset. The batch size (or mini-batch
size) defines the number of training samples to be used for training within a single epoch
before updating parameters.

4 Experiment and Results

4.1 Description of Dataset

The dataset is benchmarked dataset and was collected at the Sullivan Nicolaides pathol-
ogy (SNP) laboratory. The total image of this benchmarked dataset is 68,429 images.
There were six patterns of cell staining in the dataset: “speckled (Sp), centromere (Cn),
homogeneous (Hm), nucleolar (Nu), nuclear membrane (Nm), and Golgi (Gl)”, as shown
in Figure-1. In the cell level classification of staining patterns, there are a total of 13,596
categorised cell images divided into six classes (with samples), as shown in Table-1.

4.2 Proposed Method Implementation

The proposed method is implemented using MATLAB 2021b. The steps of implementa-
tion are as follows:

1. Image enhancement and segmentation is applied to the microscopic images to assist
the level-set method based edge detection to create the most accurate mask possible
and to prepare the images for classification. The image enhancement is achieved
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Cell name Number of cell

homogeneous (Hm) 2.494

speckled (Sp) 2,831

nucleolar(Nu) 2,598

centromere(Cn) 2,741

Golgi(Gl) 724

nuclear membrane 2,208

Table 1: Number of each cell in the task-1 dataset

by adjusting the contrast of each cell staining pattern image and applying contrast
stretching to the greyscale images. This stretched the contrast values of each image
to occupy the entire 8-bit contrast spectrum. Zero-cross edge detection is then used
on the morphological result to identify the initial edges in the cell images using
the edge function. The algorithm for the level-set method in the normal direction,
from previous work of [Al-Dulaimi u. a., 2016b], is adapted with edge detection to
develop a contour to address the segmentation of HEp-2 staining patterns at cell
level problems. Cell segmentation is achieved using the level-set method based edge
detection. This is the first process to implement the classification algorithm. The
dataset of cell images and ground truths are received to the entire dataset. The result
is shown in Figure-5.

Figure 5: Contrast stretched cell images (Row-1), in addition to their ground truth

images (Row-2) and the level set equivalent masks (Row-3). Each cell was randomly

selected for plotting.

2. The segmented cell images are used to train and classify HEp-2 cell images using a
DCNN. A model is used to rained a network and returned the trained DCNN with the
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lowest validation loss at the end of training, instead of returning the trained DCNN at
the last iteration . This feature is implemented in for each test. The diameter of a cell
can have an identical area to identify the cell. The work of the NNmodel is to analyze
HEp-2 cell distance and cell shape features. After separation by minimum distance,
the six measures of cell shape are scaled and normalized. Then, these measures are
used R statistical software, as illustrated in Figure-6 to input nodes into three net
models (linear output, simple, and tuned).

Figure 6: The proposed classification method procedure of segmented HEp-2 staining

patterns.

From the DCNN output, we have obtained relative diameters distances and features
of HEp-2 cell shape. Six independent measures of 2-D shape are used, that include
regular perimeters, regular areas, convex area major and minor axis lengths, and
diameter. R statistical software are used and analyzed these data to determine which
is the best discriminated among the HEp-2 cell types. Images are organised into
folders, where the folder named matched the cell label. The dataset of 13,596 images
is divided into 75% for training and validation, and 25% for testing. The training and
validation set is further divided into 75% for training and 25% for validation. This
split is performed randomly each time a network is trained, resulting in 4077 images
being used for testing, 6662 images for training and 1019 used for validation. The
network comes pretrained for 1000 classes. The hidden layers of the network consists
of multiple convolution, pooling, ReLU, fully connected and drop-out layers. The
final 3 layers of the network are trained specific to a set of existing classes. These
layers are a fully-connected layer of 1000 nodes, a Softmax layer of 1000 nodes
and an output layer of 1000 nodes. These layers are removed from the network and
replaced with a new fully connected layer, Softmax layer and output layer, each of 6
nodes in length.

3. Augmentations is applied to the training set. This augmentations are applied to the
training set on the fly during training instead of creating physical files. The only
augmentation specified was rotation between 0 and 360 degrees, and the augmenter
applies rotation of a random number between these two values at each epoch. A new
random number is picked at each epoch, so there is high rotation variance using this
method.

4. Training is used Adaptive Moment Estimation (ADAM) with a mini-batch size of
32. Training is conducted for a total of 80 epochs, with an initial learning rate of
1× 10−4.

5. Classification tests were conducted on a small laptop with an Intel Core i7-8565U
CPU and an integrated Intel GPU. Training times were found to be unsatisfactorily
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slow, so training was moved to a 64-bit Windows 10 machine with a 3.8 GHz AMD
Ryzen 5 3600X CPU, an NVIDIA GeForce GTX 1660 Super GPU and 16 GB RAM.
The GPU was used in both training and classification.

4.3 Results and Discussion

4.3.1 Results of Proposed Method

The confusion matrix of classification of segmented HEp-2 cell is shown in Figure-7.
The confusion matrix is calculated using True positive, True negative, False negative and
False positive parameters for each class [Hobson u. a., 2016; Al-Dulaimi u. a., 2019b]. The
highest accuracy value is achieved on the centromere, nuclear membrane and nucleolar in
the first iteration, and centromere, nuclear membrane and speckle in the second iteration.
Homogeneous cells are commonly classified as speckled cells and, similarly, speckled
cells are commonly misclassified as homogeneous. However, the result has shown that
homogeneous cells are more often misclassified than the speckled cells, with 59 and
96 homogeneous classification as speckled, and 41 and 24 speckled classification as
homogeneous. The trained network is then used to classify the test dataset, and the
total overall accuracy and Mean Class Accuracy (MCA) are calculated for the testing
and validation sets, and confusion matrices are produced to show the total number of
classifications and misclassifications for each class of cell. The test result is based on the
entire image dataset to test the accuracy of the combination of level-set segmentation
and deep CNN classification systems. The average accuracy of the proposed method is
95.24%.

4.3.2 Comparison with Other Methods and Discussion

Our classification system achieves a high level of accuracy, comparable with many of the
current high performing methods for HEp-2 cell classification. The confusion matrices
of all methods listed in [Hobson u. a., 2016] have shown that all methods achieved
high accuracy with three classes nucleolar, nuclear membrane and the centromere. The
latter class results are the most accurate over all the methods in Task-1. They have
also shown that a small number of golgi class in data set had a negative impact over
the MCA values of some methods listed in Table-2, such as Paci [Nanni u. a., 2016],
[Sarrafzadeh u. a., 2016], [Han u. a., 2016] and Roberts [Lovell u. a., 2014], where the
accuracy of this pattern is lower than 50%. This is because the cells belonging to the
golgi class are typically overlapped with the nucleolar and nuclear membrane classes,
while the errors regarding the speckled cells are typically due to overlapped “with the
centromere and homogeneous classes. We also note that homogeneous samples are
often misclassified as nuclear membrane or speckled. This common behaviour is due
mainly to the high similarity, both in terms of shape and texture, among such classes”.
By contrast, our proposed method is achieved high accuracy over centromere, nucleolar,
homogeneous and nuclear membrane classes at accuracies of 97.2%, 96.2% 94.2%,
and 98.2%, respectively. Golgi class is achieved better accuracy than other methods
in benchmarked dataset due to the use of proposed segmentation method which has
shown the ability to split according to the shape of the class. Although deep learning
methods have not been widely used over benchmarked dataset, it is worth mentioning
that the methods of [Codrescu, 2014] and [Gao u. a., 2014] used CNNs. The highest
accuracy has achieved by [Gao u. a., 2014] with 83.23% respectively. Other methods
in this study have used linear Support Vector Machine (SVM), such as [Manivannan
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Figure 7: Confusion matrices for classification of segmented cells with contrast

stretching performed.

u. a., 2014a]; [Theodorakopoulos u. a., 2014]; [Gragnaniello u. a., 2016]; and [Qi u. a.,
2016] and produced MCA values between 83%-84%. In addition, classification methods
described in this study were influenced by segmentation and feature extraction methods
which negatively affected the MCA values of some methods [Lovell u. a., 2014];[Han
u. a., 2016]; [Nanni u. a., 2016]; and [Sarrafzadeh u. a., 2016].

5 Conclusion and Future Work

This work used DCNNs for segmentation and classification of cell level of HEp-2 stain-
ing images. The DCNNs are designed to used diameter distance feature of segmented cell
shape to produce classification method with improved accuracy over current methods
under various of conditions,including variations in cell sizes, shapes and patterns, over-
fitting of features, stained cells and poor quality of images. We produced a classification
method which achieved higher mean class accuracy than the current methods in the litera-
ture, specifically ICPR-2014 and ICPR-2016. The results of the research have shown that
cell shape segmentation significantly affects the accuracy of classification. A DCNNs
and a level set-based segmentation algorithm have proved to be successful in achieving
performance comparable to that found in the state-of-the-arts methods. However, some
cells are not segmented well due to highly stained images. Future works may consider
focusing on using MASK R-CNN deep learning techniques to segment and classify these
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References Classifier Training Testing

[Codrescu, 2014] QR-FIRMLP 98.94 74.60

[Gao u. a., 2014] CNN 99.95 83.23

[Manivannan u. a., 2014a] Linear SVM & Platt rescaling 98.04 84.24

[Lovell u. a., 2014] Multi-class boosting algorithm 100 .00 81 .55

[Lovell u. a., 2014] Linear SVM 72.99 67 .00

[Theodorakopoulos u. a., 2014] Linear SVM 93.82 83.33

[Ensafi u. a., 2016] Linear SVM 98 .07 80 .82

[Gragnaniello u. a., 2016] Linear SVM 95 .47 83 .64

[Han u. a., 2016] Linear SVM 94 .68 64 .30

[Nanni u. a., 2016] SVM (one-vs-all) 100.00 79.85

[Ponomarev und Kazanov, 2016] Linear SVM 95.85 75.46

[Qi u. a., 2016] Linear SVM 99.91 84.63

[Sarrafzadeh u. a., 2016] Gaussian mixture model 88.59 73.33

[Cascio u. a., 2016] SVM 90.25 80.12

[Vununu u. a., 2020] Unsupervised Deep Learning 98.74 90.05

Proposed method Deep CNN 99.09 95.45

Table 2: Comparing proposed method with state-of-the-art methods using the task-1

dataset

images employing improved feature extraction. This may further improve the accuracy
of HEp-2 cell image classification.
9pt
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