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Abstract: Perceptual Learning Modules (PLMs) is a variation of Perceptual Learning based on

multiple-choice questionnaires. There exists successful research of the use of PLMs in math and

flight training. The possibility of designing and adopting PLMs in Introductory Programming

Courses (CS1) is still an open area of study. The goal of this study is to test whether students

that received a PLM training on recognising segments of programs will perform better at writing

programs. Two PLM interventions were administered to students. The first intervention was a

nonrandom controlled experiment, in which students opted to answer the PLM questionnaire

(N=40), while the control group consisted of students that did not answer it (N=629). The second

intervention was a randomized controlled experiment with a placebo, in which students were

randomly assigned to perform either the PLM questionnaire (N=51) or another a placebo activity

(N=51). The different forms of analysis of the first experiment results yielded Cohen’s d ranging

from 0.23 to 0.34 in favor of the PLM intervention. For the second experiment, the effect size was

d = -0.11 against the PLM intervention, but the two results were significant. We believe that the

cautious conclusion is that there is a null effect in using a PLM activity as part of a CS1 course.

The paper is also of interest because of the methodological decisions and techniques used.
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1 Introduction

Perceptual Learning (PL) is the process where our brains automatically retrieve and
identify information, working in a passive mode of background processing that does
not require active thinking. For example, when looking at a chess board, a chess master
would have the ability to (at least in most cases) “see” the big picture, automatically
identifying a pattern in the arrangement of the pieces, thus swiftly proceeding with a
suitable move. On the other hand, a beginner player, who does not have such patterns
internalized, would need to inspect each piece individually, considering how moving that
particular piece would impact the game [Kellman et al. 2010, Chase and Simon 1973].

Perceptual Learning Modules (PLM) [Kellman et al. 2010, Thai et al. 2015, Guerlain
et al. 2004, Kellman and Kaiser 1994, Tallal et al. 1998, Chen et al. 2014, Carey 2015]
are a particular form of Perceptual Learning where the student is shown a large set of
multiple-choice questions (in sessions of about one hour) and receive feedback on the
correct answer immediately after making their choice. Through this process, the student
is trained to automatically recognize certain sets of patterns.

PLMs have been successfully used in areas where some form of pattern recognition
is important, such as Radiology and Electrocardiography [Thai et al. 2015, Guerlain et
al. 2004], flight training [Kellman and Kaiser 1994], and language learning [Tallal et al.
1998, Chen et al. 2014].

The idea that automatically learning patterns could be useful for an Introduction to
Programming course (CS1) stems from two intuitions, which will be elaborated below.
This study follows these intuitions and presents the development and assessment of a
PLM intervention for a CS1 course in the Python language. In particular, the intervention
is performed at the first half of the course, when, as we will discuss below, we expect
the effect to be greater.

The first intuition for the automatic recognition of some programming patterns derives
from the ideas known as hierarchy of programming skills or learning hierarchy [Lopez et
al. 2008, Harrington and Cheng, 2018, Xie et al. 2019]. The final goal of an Introduction
to Programming course is to teach students how to write a program, given the description
of a problem to be solved or the specification of the program itself. However, there are at
least two other steps in this hierarchy of programming skills or learning hierarchy. At the
lower level is the ability to trace a program – that is, to compute the output of the program
or program components given an input or state of variables. At an intermediary level is
the ability to comprehend the program, thus being able to explain what the program or
program segment does. Although there is a correlation between writing correct code and
the abilities of tracing and explaining, it is unclear whether such correlations are causal
[Venables et al. 2009, Lister et al. 2009, Harrington and Cheng, 2018]. One particular
model of the learning hierarchy is a temporal one [Harrington and Cheng, 2018]. At
the beginning of the learning process, tracing and perhaps comprehension are more
important to the skill of writing code, but that importance decreases as the code-writing
skill improves.

The second intuition is the work by [Van Merrienboer and Paas 1990] on automation
of code-writing procedures. The authors argued that having a library of schemata, that
is, highly structured knowledge, allows programmers to use these schemata to compose
programs that solve a particular problem. Although [Van Merrienboer and Paas 1990]
discussed in detail how the use of such schemata should be automatic in a sense not
dissimilar to perceptual learning, their focus is not on recognising the schemata but on
using them.
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None of these two intuitions are about automatic recognition of patterns or schemata.
Studies that specifically link comprehension and writing [Murphy et al. 2012] and other
research on program comprehension applied to CS1 courses [Nelson et al. 2017] do
not propose that the automatic recognition of short program structures play a part in
understanding what a program does. Nonetheless, we find it a reasonable hypothesis that
students that spend some cognitive effort recognising some common (short) patterns in
programming could perform better in comprehending the program, and given some of
the results in the learning hierarchy, could result in better writing performance.

Similarly, the study described in [Van Merrienboer and Paas 1990] is about au-
tomation of the use of schemata, and it spans research on teaching practices that could
foster such a process; for example, the use of worked examples in teaching [Skudder
and Luxton-Reilly 2014, Morrison et al. 2015], incomplete examples, pattern-oriented
instruction [Muller and Haberman 2008] and so on. We believe, however, that learning
to automatically recognise some of the patterns could help to use said patterns in writing
code.

Both the learning hierarchy and the automation of the use of schemata support
the idea that the PLM intervention should focus on the early phases of learning. The
temporal aspects of the learning hierarchy suggest that comprehension (and thus automatic
recognition) should be more important in the early stages of developing the learning skill
[Harrington and Cheng, 2018]. Similarly, for the automation of the use of schema theory,
early in the process of learning to program, there are fewer schemata to learn and to use.
Thus, if the automatic recognition of patterns is useful at all, both theories suggest that
their effect should be stronger earlier in the learning process.

This paper is organized as follows: in Section 2 we present the background, related
works and motivation; in Section 3 we describe the design process of a PLM for the CS1
course; in Section 4 we present the materials, interventions and results; and in Section 6
we present the discussions and conclusions.

2 Background

2.1 Perceptual Learning Modules

In the literature [Kellman et al. 2010, Thai et al. 2015, Guerlain et al. 2004, Kellman
and Kaiser 1994, Tallal et al. 1998, Chen et al. 2014, Carey 2015], a typical use of PL is
through Perceptual Learning Modules (PLMs), multiple-choice questionnaires in which
the students are asked to identify which learning pattern is associated to each question.
Through the analysis of PLM works [Kellman et al. 2010, Kellman and Kaiser 1994]
we propose, as illustrated by Figure 1, that the phases of PLM interventions may be
classified into six steps (S1 to S6), although each study might have its own particularities:

– S1: identification of the learning patterns related to the area of study;

– S2: design of a PLM questionnaire that maps the learning patterns defined in step
S1;

– S3: participants answer a pretest with questions related to the topic being addressed
by the PLM;

– S4: assignment of the participants to two groups (experimental and control). Partici-
pants from the experimental group answer the PLM questionnaire and participants
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from the control group answer the same PLM as the experimental group or they
carry out a similar or a placebo activity or no activity;

– S5: participants from both groups answer a post-test on the PLM topic; it is possible
to assess the learning gain when comparing the pretest (step S3) and the post-test;

– S6: results from steps S3, S4, and S5 are analyzed and compared;

S1) Identification of 
Learning Patterns

S2) Creation of a PLM 
questionnaire

 Experimental 
Group

S3) Pre-test

PLM 

S5) Post-test

S6) Analysis

S4)

 Control 
Group

PLM, placebo or
no activity

Figure 1: Methodological approach adopted in this study, based on [Kellman et al.

2010, Kellman and Kaiser 1994].

In the next subsections, we describe 3 PLM interventions related to Mathematics.
The research steps of each example were classified according to our systematic approach
(steps S1 to S7).

2.1.1 Mathematics MultiRep PLM

As explained by [Kellman et al. 2010], theMultiple Representation PLMwas designed “to
help middle and high school students develop pattern recognition and structure mapping
with representations of linear functions, in graphs, equations, and word problems.” The
goal was not to ask students to solve problems, but rather to facilitate fluent identification
of features and patterns.

In step S1, the researchers initially defined three possible patterns to represent linear
equations: a typicalmath equation (e.g. y = mx+b); a graph; and the textual description
of the equation, defined as word problem.

In step S2, the researchers designed a PLM questionnaire with 2 trial blocks and
60 multiple-choice questions per block, for a total of 120 questions. In the questions,
students were asked to select, among three possible choices, a representation depicting
the same information provided in the question statement. Questions were divided into
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four groups: question statement following the equation pattern and the available choices
as graphs; question statement following the graph pattern and the available choices as
equations; question statement as a word problem and the available choices as equations;
and question statement as a word problem and the available choices as graphs. The
possibility to use the word problem as a pattern for the available choices was discarded
because of the variability of possible correct responses.

In step S3, all participants answered a paper-and-pencil pretest with 12 open-ended
questions: 4 questions related to solving word problems and 8 questions involving the
translation of a given target (word problem, graph or equation) to a new representation.

In step S4, 68 ninth- and tenth-grade students were divided into experimental and
control groups.

Participants in the experimental group answered 2 trials with 60 PLM questions each
in a computer program. After each question, they received visual and auditory feedback
indicating whether it had been answered correctly, and, if not, what the correct response
would be. The intervention took two class periods per day on two consecutive days.

Participants in the control group answered, using paper and pencil, sets of 32 open-
ended questions designed to closely resemble the pre- and post-test translation problems.
The feedback was provided in the form of an answer key sheet provided to students
after each section was completed. The time for this task was similar to that given to the
experimental group.

In step S5 all participants answered a paper-and-pencil post-test, with similar –
although not the same – questions to the pretest described in step S3.

In step S6, the researchers state that the PLM intervention led to dramatic improve-
ments in the speed and accuracy of equation solving, with the PLM group showing
greater improvement than the control group from pretest to post-test. Results indicate
that practice in mapping problems across multiple representations (PLM group) led to
strong improvements in the transfer task problems administered in the pre- and post-tests
(F (1, 66) = 21.27).

2.1.2 Algebraic Transformations PLM

[Kellman et al. 2010] considered that in a PL approach, it “should be possible for a
student to have relevant declarative and procedural knowledge in some domain and yet
lack fluent information extraction skills”. The authors hypothesized that, in the algebraic
topic for middle school, inducing the students’ attention to structure and transformation
would lead to an improvement in their ability to identify patterns, which could positively
affect problem-solving.

In step S1, authors defined the domain as algebraic equations, specifically of the first
degree. Then, in step S2, the PLM was designed as a set of multiple-choice questions
that asked students to select, from several choices, the equation that best represented the
proper algebraic transformation of a target equation. An example presented by [Kellman
and Kaiser 1994] is a target equation defined as 6k + 5x− 17 = 32, having as one of
the wrong transformations the equation 6k − 17 = 32− x− 5, and 6k − 17 = 32− 5x
as right choice.

In step S3 all participants took a pretest composed of multiple-choice questions
(similar to the PLM questions) and problem-solving tasks (open-ended questions that
asked students to solve basic algebra equations).

In step S4 there was no organization into experimental and control groups. All
participants took the PLM.



Caceffo R., Wainer J., GamaG., Garcia I., Azevedo R.: Perceptual Learning ... 993

Then, in step S5, all participants took the post-test, which is similar in design to the
pretest described in step S3.

Finally, in step S6, data from pre- and post-tests were compared. Results indicate that
the response time in the solving problems dropped from 26s (pretest) to 12s (post-test)
to each problem, in average. Accuracy was high (around 80%) in both tests.

2.1.3 Linear Measurement PLM

[Kellman et al. 2010] explain that students have difficulties to conceive units of linear
measurement as having an extent. Also, “they do not make a clear distinction between
position and distance, and they have great difficulty using fractions to represent subdivi-
sions of units” [Kellman et al. 2010].

In step S1, the authors defined the domain as “linear measurement”.
Then, in step S2, the PLM was designed as a web software that presents to students

a graphic display showing a ball on top of a ruler and a billiard cue ready to strike it. The
questions (trials) were designed to provide some data (start point, endpoint, distance, etc.)
and then ask for a piece of missing information (e.g. the software provides the starting
point and the distance, asking for the endpoint). After students entered the answer, the
PLM software provided immediate feedback.

In step S3, all participants took a pretest composed of 44 open-ended questions to
be solved with pencil and paper. Topics covered by the questions were related to linear
measurement with integers and fractions; and adding and subtraction fractions.

Groups were organized in step S4 as follows: the control group was composed of
seventh- and eight-grade students (N=86), whereas the experimental group consisted of
sixth-grade students (N = 63). Only the participants of the experimental group took the
PLM.

In step S5, all participants took the post-test in a similar way as described in step S3.
Finally, in step S6, data from the pre- and post-tests were analyzed. According to

[Kellman et al. 2010], the PLM intervention had a positive impact on the experimen-
tal group as indicated by an ANOVA analysis comparing control and experimental
participants (F (2, 138) = 19.687, p < .001).

2.2 MC102 – a CS1 course

The university in which the research was held has a coordinated CS1 course in Python,
named MC102, mandatory for all STEM students. In the university, the term coordi-
nated means that all classes of a given course follow a predefined plan and all students,
regardless of section or instructor, are assessed in the same way – that is, take the same
or similar exams. The CS1 courses for Computer Science and Computer Engineering are
not coordinated.

The MC102 course comprises four weekly hours of classroom activities (mainly
expository lectures) and two weekly hours of lab practice. In addition, the students have
access to a learning platform (Moodle [Moodle 2013]), in which they carry out Conceptual
Activities, multiple-choice questionnaires related to the topics seen in class. Students
receive feedback after completing each questionnaire and are allowed to retake them if
so desired. These activities are graded based solely on participation per questionnaire –
that is, whether the student has attempted each questionnaire at least once – and not on
their specific performance.

The number of Conceptual Activities may vary each semester according to overall
student performance in the previous term and other external factors. Typically, around
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10 Conceptual Activities are made available each semester, respectively covering the
following topics: basic types, conditional commands, loops, lists, tuples, dictionaries,
functions, and recursion.

MC102 is further described in [Wainer and Xavier, 2018]. An important characteristic
is that it started as a C course and, at the time the intervention described herein was
executed, the Python version still inherited some of the sequence of presentation of topics
from the C version. For example, the topic of functions was only presented after the
midterm, as in a C-language teaching context it must come after pointers, despite the
fact that in a Python-based course it could have been presented earlier. The interventions
explored in this research took place two weeks before the midterm exams for MC102 and
the student’s grades in the midterm exam were the evaluation metric for the interventions.
The midterm exams in MC102 cover questions that involve single loops, lists, complex
if-else expressions, and print and read commands. An example of a midterm can be
found in [Gama et al. 2018].

3 Designing a PLM for MC102

Related to the methodological steps S1 and S2 (see Figure 1), for a period of about
3 months, a group of 4 specialists (2 CS1 professors, 1 postdoctoral researcher and 1
undergraduate computer science student) held brainstorming sessions [Lazar et al. 2017]
focused on what the most useful learning patterns for the first half of the MC102 course
could be.

The researchers first identified 3 main topics (T1 to T3): arrays/lists (T1); loops (T2);
and conditionals (T3). In total, 8 learning patterns were associated to these topics (Q1),
as described in Table 1.

ID Learning Pattern Description

T1-P1
Iterate over the list until the first
element to satisfy a certain property is located.

T1-P2 Append an element to a list.
T1-P3 Copy the contents of a list to another list.
T2-P1 Carry out a preset number of iterations.
T2-P2 Carry out iterations while a certain property is true.
T2-P3 Carry out iterations until a certain situation is identified.
T3-P1 Check whether a number is in a certain interval.
T3-P2 Choose one alternative from a set of options.

Table 1: Learning patterns related to the 3 selected CS1 topics: T1 (arrays/lists); T2
(loops); and T3 (conditionals). The ID indicates the pattern number in determined topic,
following the format TY-PX, in which X is a sequential number and Y relates to the topic.

For example, the topic T1 has 3 patterns, labeled T1-P1, T1-P2 and T1-P3.

Considering that the expected resolution time of each question would be around 1
minute, and that the total resolution time of the questionnaire should be around 1 hour, it
was defined that the PLM should consist of around 60 questions.

An important aspect of learning the patterns is the syntactic variation of code to
achieve the same goal. For instance, a loop that scans a list until a particular condition
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is found (T2-P3) could be implemented as a while loop, as a for loop iterating on an
index of the list , a for loop iterating on the list’s values , and so on. So, many of these
syntactic variations for the same patterns were developed.

The available choices in the PLM questions – in addition to the correct one, that is, the
correct learning pattern – were initially defined as random possibilities from the available
learning patterns (see Table 1). However, during the design process, we identified certain
combinations of learning patterns where students might consider multiple options to be
correct. For instance, a loop that iterates over an index (pattern T2-P1) is, by definition,
constantly verifying whether a number is in a given interval (pattern T3-P1). This led to
the definition of a constraints table (see Table 2), used as a guide in question design.

Table 3 shows an example of two PLM questions for the pattern (T2-P3) “Carry
out iterations until a certain situation is identified.” The correct answer is c) for the first
question and b) for the second. The other answers were randomly selected from the other
patterns, with the exception of T1-P1, T2-P1, and T2-P2 – which are answers that cannot
be alternatives to a T2-P3 question, as indicated in Table 2.

T1-P1 T1-P2 T1-P3 T2-P1 T2-P2 T2-P3 T3-P1 T3-P2

T1-P1 X X
T1-P2 X X X
T1-P3

T2-P1 X X X
T2-P2 X X
T2-P3

T3-P1 X
T3-P2

Table 2: Constraints Table. “X” indicates that a given learning pattern is not allowed to
be mapped as possible choice for questions of another pattern. For example, for all
questions of the T1-P1 pattern, the patterns T2-P2 and T2-P3 are not allowed as
possible choices. Diagonal gray cells indicate that all questions from determined

pattern must map as correct choice in their own pattern (e.g. all questions from pattern
T1-P1 must map as right choice to the pattern T1-P1). Information within light-gray

cells was omitted as they mirror the upper white cells.

The full set of 64 questions and answers are available in [Caceffo et al. 2018].

4 Interventions

Two PLM interventions were administered to students. The first intervention was a
nonrandom controlled experiment in which students were given the choice whether
or not to answer the PLM questionnaire. Those who answered the questionnaire were
considered the experimental group, while the control group consisted of students who did
not (see Section 4.1). The second intervention was a randomized controlled experiment
with a placebo, in which students were randomly assigned to perform either the PLM
questionnaire or another a placebo activity (see Section 4.2).

Both interventions, although with differences in their design, share a similar pattern,
as follows:
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Example 1 Example 2

The code below is an example of:

found = False
i = 0
while i < n and not found:

if array[i] % 2 == 0:
found = True

i += 1

(a) Appending an element to a list.

(b) Checking whether a number is in a

certain interval.

(c) Carrying out iterations until a certain

situation is identified.

(d) Copying the contents of a list to an-

other list.

.

The code below is an example of:

all_odd = True
for a in array:

if a % 2 == 0:
all_odd = False
break

(a) Appending an element to a list.

(b) Carrying out iterations until a certain

situation is identified.

(c) Copying the contents of a list to an-

other list.

(d) Choosing one alternative from a set

of options.

.

Table 3: Two examples of the PLM questionnaire for the T2-P3 pattern.

– the PLM intervention was one of the Conceptual Activities, an activity performed
using an online system. The activity counted towards the students’ final grade, but
only on a binary basis – whether or not the student performed the activity – and not
related to the student’s performance in the questionnaire;

– the PLM questionnaire was the same in both interventions;

– before the PLM intervention, participants were instructed to download and preview
a PowerPoint presentation in which the learning patterns were briefly explained;

– the PLM questionnaire was configured to provide immediate feedback after each
question was answered;

– the PLM intervention began two weeks before the midterm;

– the PLM questionnaire remained available for 3 days, after which it was closed and
made inaccessible to students;

– we used the student’s grade in the midterm as the students’ outcome;

In terms of the steps described in Figure 1:

– step S1 relates to the learning patterns discussed in Section 3;
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– in step S2, the PLM questionnaire designed is available to the readers as discussed
in Section 3;

– there was no pretest (step S3);

– step S4, related to how the experimental and control groups were organized, is
different in each intervention as discussed in the next sections;

– step S5, related to the post-test, was the midterm exam in both interventions. The
exam versions, carefully designed to have a similar level of difficulty, were not
exactly equal for all students in a same intervention, as there were slightly differences
for the morning, afternoon, and evening CS1 sections to minimize cheating. As
discussed in section 2.2, the exams are available to the readers;

– step S6 for each intervention is discussed in the following sections.

4.1 Intervention 1

This intervention was performed in seven coordinated MC102 classes (N = 761 students)
on the second semester of 2018. Around 2 weeks before the midterm exam, a special
Conceptual Activity containing the PLM questionnaire was made available at the online
learning platform. All students were invited to participate. Students were informed that
the participation was optional.

Two groups were formed: the experimental group, composed of students who took
the PLM questionnaire, and the control group, of students who did not (step S4 in Figure
1).

Participants from the control group did not perform any special placebo activity.

4.1.1 Results and Analysis

From all students enrolled in the MC102 coordinate course (N = 761), 98 took the PLM
Questionnaire, with 45 students answering all questions. We discarded responses from
students that scored less than 50% in the PLM questionnaire. The reason for this was that
we considered that these students had not learned from the PLM exercise, considering
that 50% was also the approve/fail threshold of the MC102 course itself. Five students
fell into that category, leaving a total of 40 students in the experimental group. Also, by
excluding those students we hoped to exclude the students that had answered the PLM
in too short a time, by (likely) guessing the answers and scoring around 25%.

The control group was composed of the students that did not take the PLM question-
naire (N = 663). Individuals who missed the midterm exam (N = 34) were discarded,
and thus this group has a total of 629 students.

The average time registered to answer the PLM questionnaire by the experimental
group was 37 minutes (N = 37, sd = 22.1). Students that saved the session and resumed
the questionnaire later (N = 3) were not considered in this calculation, as the online
system was not able to correctly log the elapsed time.

We will report the difference between the control and experimental group using the
effect size measure Cohen’s d [Cohen 1988]. Cohen’s d is a standardized difference of
the means of the experimental and control groups. The standardization is performed by
dividing the difference of the means by a “compound” or “pooled” standard deviation of
both groups. Formally:
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d =
ȳe − ȳc
sdpool

(1)

where ȳe is the mean of the outcome measured for the experimental group and ȳc the
mean for the control group. sdpool is the pooled standard deviation of both groups, and
is calculated as:

sdpool =

√
(nc − 1)s2c + (ne − 1)s2e

nc − 1 + ne − 1
(2)

where sc and se are the standard deviations for the control group and experimental group,
respectively, and nc and ne are the respective sizes of the same groups.

Finally, [Hedges and Olkin 1985] proposed a correction to Cohen’s d formula which
compensates for an upward bias of d when the sample sizes are small. The corrected
formula is usually called Hedge’s g. In this paper, our calculations include Hedge’s
correction, but we will refer to the measurement throughout the paper as Cohen’s d,
which we believe to be the more commonly used term in the Educational literature, and
not Hedge’s g.

Instead of reporting the p-value of the Cohen’s d, we will follow a more modern
approach [Gardner and Altman 1986] and report the 95% confidence interval (abbreviated
as 95% CI) for the g. If the 95% confidence interval includes the 0 then the reader may
conclude that the results are not statistically significant at the 5% level, and therefore
that the p-value is higher than 0.05. The computation of the confidence interval uses
non-central Student-t distributions as described in [Cumming and Finch 2001]. The
computations of the Cohen’s d and their confidence intervals in this paper were performed
using the function cohen.d from the R package effsize [Torchiano 2019].

Comparing the midterm grades for both the experimental and control groups in this
first intervention yields Cohen’s d = 0.23, with the 95% confidence interval from−0.08
to 0.55. This and other results are summarized in Table 4.

The usual interpretation of Cohen’s d was proposed by [Coe 2002], who states that ef-
fect sizes below 0.2 should be considered negligible, from 0.2 to 0.5 should be considered
small, from 0.5 to 0.8 should be considered medium and above 0.8 should be considered
large. But within Educational interventions, an effect size of 0.2 should be considered
large and important. For example, [Wainer and Xavier, 2018] finds a d of 0.27 and 0.38
on the midterm and final exam outcomes of changing the introductory programming
language from C (control) to Python (experimental) for a CS1 course . [Salleh et al. 2010]
finds a d of 0.16 on exam grades when comparing pair programming (experimental)
with solo programming (control) in a CS1 course; [Freeman et al. 2014][Fig 2.] finds
an average d of 0.3 for 8 interventions on using active learning in Computer Science
Education. Finally, [Lipsey et al. 2012](cf. Table 9 and Table 10) is a meta-analysis of
Educational meta-analyses and reports mean and median effect sizes for educational
interventions from elementary school to high school (unfortunately it does not include
university-level interventions). All effect sizes reported are below 0.40.

We believe that a Cohen’s d of 0.23 is, in fact, a surprisingly large effect size for
such a limited intervention.

4.1.2 Dealing with the selection bias - matching

The design for this experiment has a clear threat to validity: the students that received
the PLM intervention were self-selected, that is, they chose to receive the intervention,
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and thus they could have some specific characteristic that was itself the reason for
their better outcome in the midterm exam. The usual technique to analyze data from
experiments where there may be a selection bias is to match the students from the control
and experimental groups based on the characteristics that one believes are relevant to
explain the bias.

We used the following student’s data regarding to match each member on the experi-
mental group with one on the control group:

– major – the student’s major.

– in phase – whether the student was taking the class at the appropriate moment in
their student trajectory - for most majors (but not all) the MC102 course should be
taken in the second semester of the student’s trajectory

– the year the student entered the University. For all students in phase, they entered
the university the same year, but for students out of phase, the year may indicate
how close to graduation is the student or how slowly they are progressing through
their educational trajectory.

– Student’s Standardized Grade Coefficient (SSGC) - is a given student’s GPA nor-
malised for their combination of major and admission year.

We used two procedures to match students from the experimental group with students
from the control group: pairing on each of the independent variables and propensity
score matching.

The pairing procedure tries to match each student in the experimental group with
one in the control group, provided that both students have the same value for each of the
categorical variables (major, in phase, and year) and the value of the numeric variable
(SSGC) should be as close as possible. Therefore, each experimental student will be
matched (if possible) with a control group student in the same major, who has the same
in phase status, who entered the university in the same year, and who has the closest
value for their SSGC.

As the procedure may not always find a corresponding match for an experimental
group student, unmatched students are dropped out of the experimental group. In this
case of this study, only 36 of the 40 students in the experimental group were matched.

The pairing procedure was computed by the MatchBy function of the matching R
package [Sekhon 2011].

In terms of the statistical analysis, one can consider that the purpose of the pairing is to
select or filter a subset of the control group that is most similar to the experimental group,
in the hope of mitigating the selection bias of the design. In this sense, the statistical
computations of the effect size are as described in Equation 1 – we have two sets of
measurements (which happen to have the same number of elements) and the Cohen’s d
is computed as described.

A second alternative is to consider the pairing as a form of actually pairing a student
in the experimental group with his or her correspondent in the control group. In this case,
the two sets of measures are paired (and they are required to have the same number of
elements). The computation of the effect size of paired sets of measurements is somewhat
different than described in Equation 1 [Gibbons et al. 1993].

Unfortunately, as far as the authors are aware, there is no clear standard way of
performing the effect size calculation after a pairing procedure, so we will report both
calculations.
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Using the non-paired calculation, the effect size after the pairing is d = 0.26, 95%
CI [−0.21, 0.73]. For the paired calculation, d = 0.25, 95% CI [−0.09, 0.59]. The results
for d are very close, but as expected the confidence interval for the paired calculation is
narrower. But none of the results are significant (with 95% confidence).

The propensity score matching [Guo and Fraser 2014] technique computes a single
number for each student in both groups, and tries tomatch each student in the experimental
group with the one in the control group based only on that number. This single number is
the propensity score of the student and it is the result of modeling the probability that the
student belongs to the experimental group as a logistic regression of the other independent
variables (in this case major, in phase, year, and SSGC). Thus, the propensity score is a
measure of how likely the student is to belong to the experimental group based on the
other independent variables. The matching finds, for each student in the experimental
group, the student in the control group with the closest value for the propensity score.

The propensity score matching was computed using the matchit function of the
Matchit R package [Ho et al. 2007].

As with the pairing procedure, the computations for the effect size may either consider
both sets as not-paired or as paired. We will report both results.

For the non-paired computation: d = 0.34, 95% CI [−0.10, 0.78]; for the paired
computation: d = 0.33, 95% CI [−0.06, 0.58]. Again, both results are similar and the
confidence interval for the paired computation is narrower.

4.1.3 Discussion

Table 4 contains the values of d for the different analyses discussed above. The table
also contains the result for the second intervention discussed below.

Interv.
Experimental
Group (N)

Control
Group (N) Random Matching d

Paired
Analysis 95% CI Significant

1 40 629 No No 0.23 No −0.08, 0.55 No
1 36 36 No Pairing 0.26 No −0.21, 0.73 No
1 36 36 No Pairing 0.25 Yes −0.09, 0.59 No
1 40 40 No Propensity 0.34 No −0.10, 0.78 No
1 40 40 No Propensity 0.33 Yes −0.06, 0.58 No
2 53 52 Yes No −0.15 No −0.56, 0.26 No

Table 4: PLM interventions quantitative results.

We considered the results of the first experiment to be promising. As we were aware
of the selection bias of the design, we used two different statistical techniques (pairing
and propensity score matching) that could compensate for it, and the five results (the
raw analysis, the pairing and the propensity score matching, and the analysis using the
non-paired and paired calculations for the effect size) were consistent – the effect size
was between 0.25 and 0.35, which we consider a large enough effect, but the results were
not statistically significant.

There are two alternative interpretations for the non-significant results: either the
effect was “real” but the number of subjects was not enough to show significance, or that
the effect was not “real” and the figures computed are just “noise”. In other words, a non-
significant result may count against the theory, or it may just indicate data insensitivity.
Given that two forms of statistical treatment of the selection bias of the experiment yield
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Figure 2: Diagnostics of the matching procedures

similar and positive results, we opted to believe that the effect was “real”, but a different
experiment was needed to show it.

4.1.4 Threats to validity

As discussed, the design of Intervention 1 suffers from selection bias, inasmuch as the
experimental group’s comparatively better outcome could have been due to characteristics
of the group itself, rather than owing to the PLM intervention.

The matching procedures used are an attempt to compensate for the selection bias.
Despite the fact that is a standard and well-used technique, it is nonetheless not guaranteed
that the matching will create a control group that is similar to the experimental group
in a way that is relevant to the study. The two groups are similar a) in the values of the
categorical independent variables and to close values to the nominal independent variable
(for the pairing procedure) or b) on the value of the propensity score which combines all
independent variables to predict whether the student is or not in the experimental group
for the propensity score matching.

Nonetheless, we can show that the procedure did successfully match the students
on those independent variables. Figure 2 contains two scatter plots where the control
group (horizontal axis) is compared to the experimental group (vertical axis), each with
a y = x graph for reference. The data points on the left-hand pane correspond to the
respective SSGC scores for each of 36 pairs of students, whereas those on the right-hand
pane show the propensity scores for 40 pairs of students.

The left-hand pane shows that the values of the SSGC are reasonably paired in the
sense that they concentrate along the y = x line. However, that claim seems less strong
for the propensity score on the right-hand pane – the four largest values of the propensity
score are not well-matched among the experimental and control groups. If we remove
those 4 pairs from the analysis, the resulting d is 0.12 (95% CI [−0.35, 0.58]) for the
non-paired computation and 0.12 (95% CI [−0.24, 0.47]) for the paired one. In this case,
the effect size is smaller than the one including those pairs, but the results are compatible
with the previously stated.

Besides the selection bias, this intervention also suffers from a lack of placebo in the
control branch. After all, each student in the experimental branch undertook an additional
learning activity of about 30 minutes, while those in the control branch were not offered
an alternative activity of the same duration. If one group of students devoted half an
hour more to preparing for the midterms than the other group, it could be claimed that
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any suitable learning activity could produce an improved outcome for the experimental
group, regardless of whether it is PLM-based.

Hence, we concluded that even if the PLM intervention did have a real effect on
the students’ performances, the experiment as carried out using Intervention 1 was not
the appropriate means to demonstrate that (Section 4.1.3). In order to account for the
lack of placebo – as well as for the aforementioned selection bias – we designed a new
intervention, as discussed below.

4.2 Intervention 2

This intervention was carried out in the first semester of 2019, with six coordinated
MC102 classes (N = 574 students). Around two weeks before the midterm exam, students
were divided into two groups (step S4 in Figure 1): the experimental group, composed
of students with an even last digit in their student identification numbers and the control
group, composed of students with an odd final digit in their ID. Each group consisted of
287 students.

All students were invited to participate through a Special Conceptual Activity avail-
able on the online platform. This activity was configured in such a way that students from
the experimental group had access to the PLM questionnaire, while the control group to
a revision activity, composed of a selection of 32 questions from previous versions of
the same activity. The placebo questionnaire was designed to take a similar time to the
PLM, around 40 minutes. Also, taking the Special Conceptual Activity counted towards
the final average of students in either group.

From the 287 students of the experimental group, 124 took the questionnaire, with
62 participants answering all questions. As for the the control group, 122 of 287 students
took the questionnaire, with 61 answering all questions.

Experimental group participants were instructed, before taking the questionnaire,
to download a PowerPoint presentation in which the learning patterns were briefly
presented. The PLM questionnaire was configured to provide immediate feedback after
each question was answered. Control group participants only received feedback after
completing the placebo activity. In both groups, we removed from the analysis the
students that did not achieve 50% of correct answers in their respective questionnaires.
The remaining experimental group had 51 students, and the remaining control group had
also 51 students. Please note that the fact that the final groups had the same number of
students is merely coincidental.

Because of the random assignment of students to the experimental and control
group, there is no selection bias in this experimental design, and the two groups can be
compared directly. The result is Cohen’s d = −0.15, 95% CI [−0.56, 0.26] – that is, an
effect against the PLM intervention. Despite both groups having the same size, there is
no meaningful pairing among the students in each group, and thus there is no meaningful
paired computation for the effect size.

5 Contributions

As explained earlier in the text (see Section 1 and 2), the PLM has been successfully used
in different areas, such as Radiology and Electrocardiography [Thai et al. 2015, Guerlain
et al. 2004], flight training [Kellman and Kaiser 1994], language learning [Tallal et al.
1998, Chen et al. 2014] and mathematics [Kellman et al. 2010].
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Part of these studies uses as methodology a non-random participant selection model.
For example, in the Flight Training study [Kellman and Kaiser 1994] participants were
divided into the experimental and control groups, being respectively composed of vol-
unteers and airplane pilots. In the Linear Measurement study [Kellman et al. 2010],
participants in the experimental group were students in the 6th grade and the control
group was composed of students from the 7th and 8th grades. Both groups, as they
represented students from the same school, shared similar socioeconomic criteria.

On the other hand, a randomized selection approach is also possible, being used for
example in the Math MultiRep PLM [Kellman et al. 2010], in which participants were
divided into control and experiment groups. A third option, as the one employed in the
Algebraic Transformations PLM [Kellman et al. 2010] study, does not divide participants
into groups, instead comparing the performance of all participants before and after the
PLM intervention.

In this way, one of the contributions of this study, concerning the methodology
related to PLM interventions, is the use of procedures to combine students from the
experimental group with students from the control group to compensate for selection
bias in non-randomized controlled experiments.

We described and used pairing procedures, which try to match each student in the
experimental group with one in the control group, considering for this the profile and
background of each student (for our study we used variables like “major”, “in phase”,
“year” and the SSGC). We also present and discuss two ways to use pairing procedures:
selecting a subset of the control group that is most similar to the experimental group and;
pairing a student in the experimental group with his or her correspondent in the control
group, discarding students that were not able to be paired.

Also, another pairing procedure adopted was through the propensity score. This
technique computes a single number – the propensity score – for each student, and
then tries to individually match students from a group to a student in the other group,
considering how close the propensity score numbers are.

We believe these pairing techniques are a useful way to deal with this specific threat
to validity (selection bias), and therefore it can serve as a reference to other researchers
when designing further studies in the PLM area.

Another methodological contribution relates to the assessment of the PLM interven-
tions. In the literature, a typical assessment is performed through pre- and post-tests,
exams specifically designed to measure the impact of the interventions, like the ap-
proaches used in the MultiRep PLM [Kellman et al. 2010] and Algebraic transformations
[Kellman et al. 2010] studies. Another possible approach, as the one employed in the
Flight Training [Kellman and Kaiser 1994] and Linear Measurement [Kellman et al.
2010] interventions, used the own PLM as a measurement instrument, considering, for
example, variables such as speed and response accuracy.

In this way, one difference of our research – and its consequent contribution to the
literature – is the fact that the assessment instrument was not designed by the authors, but
rather was a real and independent CS1 course exam, in which students should understand
and write programming codes. This is a hint that the use of PLM may have a smaller
impact in real situations than in the controlled/laboratory environment reported in other
literature studies, although further research need to be performed, in the various PLM
application areas, to validate this hypothesis.

Finally, as far as we know, this is the first study on automatic recognition of patterns
in Introductory Programming (CS1) courses. Although the results point out that the
use of PLM does not impact students’ understanding and ability to code, it can be a
starting point for the design of other PLM studies related to CS1 and programming. For
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example, the learning patterns presented on this study could be expanded, and even used
to complement the teaching material in CS1 courses. Also, the intervention itself could
be revised, having a longer duration (and possible a greater impact) than the currently
presented.

6 Discussion and Conclusion

In this paper, we described two interventions designed to ascertain whether or not the
use of Perceptual Learning Modules in CS1 courses has an effect on students’ program
comprehension, as well as the magnitude of that effect if any exists. The interventions had
different experimental designs, were both carried out taking the appropriate precautions to
mitigate threats to validity, and yielded opposite results – one with a reasonable positive
effect in favor of the use of PLM, the other with a somewhat smaller negative effect,
that is, against the use of PLM. Formally, the first intervention was a non-randomized
controlled trial with no placebo, while the second was a randomized controlled trial with
a placebo. None of the results were significant at the 95% confidence level, but some
of them (in particular the results for Intervention 1 that used the paired computation for
the effect size) had confidence intervals that almost did not include the 0, and thus were
“almost significant”.

We will present two interpretations for the set of results yielded by the experiments
described in this paper – one that is more cautious and we deem to be more likely; another
that provides for a more consistent analysis of both sets of results, but that we consider
to be less probable.

The first and more cautious interpretation is as follows: This paper presents an
objective result that the use of Perceptual Learning Modules in CS1 courses as tools
for improving program comprehension likely has no effect. Unfortunately, we cannot
make any stronger statements than this. Moreover, under this interpretation, we assume
that both the large positive and the less large negative results were “noise” from an
“underpowered” experiment. The term underpowered is used here in quotes, because if
we were to assume that the effect is null, then there would be no experiment, no number
of subjects (N), that could detect a positive effect!

Notwithstanding, this negative conclusion, as all negative conclusions, must be
understood in its specificity. The null result is for our particular PLM intervention, which
included the following characteristics:

– consisting of a particular set of patterns, i.e., the perceptual modules,

– carried out as a short half-hour, 60-question intervention,

– conducted as part of a CS1 course that did not place any pedagogical emphasis on
program comprehension besides the PLM intervention itself.

It is the sum of these characteristics and statements that we believe to have shown not to
have any effect.

The second interpretation is one that allows for a consistent view of both experiments,
but which we find less likely than the one put forth above. It hinges on whether the
activity given to the control group in Intervention 2 was a placebo at all. Considering
that the activity was a compilation of questions taken from previous review activities,
it could only serve as a placebo if the students had already solved those questions on
a previous occasion. On the other hand, if the questions were new to the students, the
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activity served as a meaningful learning activity, and therefore was responsible for the
control group’s better outcome. Hence, the gain of the PLM in the first intervention
was due to the fact that the experimental group spent an extra 30 minutes performing a
learning activity while the control group did not, and that gain was lost in the second
intervention when the control group did perform a meaningful learning activity of the
same duration as that of the experimental group.

We find this interpretation less likely because it does not explain the fact that the
difference in learning gains between the experimental group and control group increased
between Intervention 1 and Intervention 2, rather than decrease. In this view, 30 minutes
of a learning activity against no activity at all would result in a gain of 0.2 to 0.3 standard
deviations – as observed in the first intervention – but the review/placebo was such a
meaningful activity (assuming that the students had not performed the review activities
before) that it changed the effect by 0.3 to 0.4 standard deviations against the PLM in the
second intervention. For that reason, we believe our first interpretation as stated above
to be more likely.

Furthermore, there is a second aspect of this study that we believe is of interest
to a researcher in computer education in general – the methodological decisions and
techniques used.

The use of propensity score matching, or other forms of matching, to compensate
for selection bias on non-randomized controlled experiments is uncommon in Computer
Science Education (CSE) papers. We know of only three other papers that used the
technique [Peteranetz et al. 2018, Peteranetz et al. 2018a, Stout et al. 2018], two of them
from the same research group. Since non-randomized experiments are a very common
experimental design in Educational interventions – particularly in experiments in CSE –
the community should use matching techniques, such as pairing and propensity score
matching, more frequently. In particular, the two R packages mentioned above, Matchit
[Ho et al. 2007] and matching [Sekhon 2011], contain a powerful set of functions to
apply matching techniques and to perform the diagnostics of the resulting match.

Regarding randomized experiments in CSE, although there has been an increase
of such experiments in recent years ([Cao and Porter 2017, Patistas et al. 2013, Denny
2015, Vihavainen et al. 2015, Bezakova et al. 2014, Leinonen et al. 2019, Yuan and
Cao 2019, Nelson et al. 2017], to cite a few recent papers within the CS1/CS2 context),
randomized experiments are still not very common within CSE. We note that using an
online tool as part of the standard activities in a CS1 course is an unparalleled opportunity
for randomized experiments.

Finally, the methodological warning mentioned in the title of this paper refers to
two questions we had to face in this research and that we believe other researchers may
face in different lines of research. The first question is what to do with a non-significant
intermediary result. Does the positive, non-significant effect indicate that one should drop
the research line because the positive result is noise generated by the non-significance?
Or should the researcher believe that the effect is real and that the non-significant result
is just an accident of the low number of subjects in the experiment? While on the one
hand, the significance tests were designed so that researchers and readers would not be
misled by noisy results, on the other hand, the threshold of significance (p ≤ 0.05) is
arbitrary and thus an unknown number of true results may never been published because
of this.

Should the researcher decide to repeat or redesign the experiment, they may also
face the second methodological problem: what to conclude if both experiments indicate
conflicting effects. Although randomized experiments are considered “a better design”
than non-randomized experiments, we believe that there is no reason to only use its
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results as the final conclusion of this line of research. There has been some empirical
literature in the health field that show that despite the theoretical disadvantages of non-
randomized experiments, the results of comparing them with randomized experiments
are well correlated [Benson and Hartz 2000, Concato et al. 2000]. There is no evidence
to believe that our second intervention was so more “valid” than the first that one should
disregard the evidence of the latter. Thus, we believe that one should just report the
contradiction of the results. In our case, the non-significance of all the intermediary
results suggest that the effect is indeed null, and although perhaps less exciting, null
results should be published [Rosenthal 1979] nonetheless.

Future work involves the adoption of PLMs in conjunction with Concept Inventories
(CIs), assisting in mitigating misconceptions [Caceffo et al. 2016, Caceffo et al. 2019] as
well as joint adoption of active learning techniques in CS1 courses [Caceffo et al. 2018a].
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