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Abstract: Nowadays, it is becoming increasingly important to understand the multiple configura-

tion factors of BLE anchors in indoor location systems. This task becomes particularly crucial in

the context of activity recognition in multi-occupancy smart environments. Knowing the impact

of the configuration of BLE anchors in an indoor location system allows us to distinguish the

interactions performed by each inhabitant in a smart environment according to their proximity to

each sensor. This paper proposes a new methodology, OBLEA, that determines the optimisation

of Bluetooth Low Energy (BLE) anchors in indoor location systems, considering multiple BLE

variables to increase flexibility and facilitate transferability to other environments. Concretely,

we present a model based on a data-driven approach that considers configurations to obtain the

best performing configuration with a minimum number of anchors. This methodology includes

a flexible framework for the indoor space, the architecture to be deployed, which considers the

RSSI value of the BLE anchors, and finally, optimisation and inference for indoor location. As a

case study, OBLEA is applied to determine the location of ageing inhabitants in a nursing home in

Alcaudete, Jaén (Spain). Results show the extracted knowledge related to the optimisation of BLE

anchors involved in the case study.
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1 Introduction

Location tracking systems offer a multitude of applications in different contexts, such as
evacuation of people from subway areas [Demirkan and Duzgun, 2020] and enclosed
spaces [García et al., 2020], energy optimisation in smart homes [Lee et al., 2011],
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detection of natural disasters [Ramesh 2010], or even analysis of people’s behaviour in
fire drills [Chaiwongven et al., 2018]. One of the most important application areas is
smart environments [Virginia et al., 2022, Rodrigo et al., 2021, Custodio et al., 2012].

Smart environments [Espinilla et al., 2018] are spaces equipped with intelligent
devices that capture the interactions that take place within them with the aim of extracting
knowledge. Given the privacy advantages of environmental sensors over vision sensors,
these are widely used in the health sector for activity recognition in homes. However,
environmental sensors, such as presence, motion or opening/closing sensors, have the
disadvantage of not distinguishing who performs a certain interaction (for example,
who is opening a door or entering the kitchen) [Liming et al., 2012]. In this scenario,
the indoor location system plays a fundamental role in the recognition of daily human
activities and anomalous events [Lee et al., 2018, Özdemir, 2016], providing a solution
to certain outstanding challenges like multi-occupancy [Razzaq et al., 2020] by locating
the inhabitants.

Different methods [Albín et al., 2021, López et al., 2019] have been proposed to
obtain the location of the inhabitant when performing daily activity recognition in
multi-occupancy contexts. However, each method presents a methodology with a fixed
configuration for a single case study that is difficult to transfer to another smart envi-
ronment. This fact presents a challenge that needs to be addressed: how to optimise the
configuration of a BLE multi-occupancy location system that can be transferable in a
flexible way.

The OBLEA (Optimisation of Bluetooth Low Energy Anchors) methodology for
indoor location systems is proposed to address this issue. OBLEA, based on a data-
driven approach, considers multiple variables for the configuration of BLE anchors (BLE
protocol, number of anchors, size of the time window for aggregating anchor values
and classifier algorithms) to obtain the best performing configuration with a minimum
number of anchors in multi-occupancy indoor spaces. This methodology includes: i)
a flexible framework in the indoor space to represent all the components involved in
locating the inhabitants; ii) the architecture to be deployed according to the framework
(this architecture considers the received signal strength indicator for the BLE anchors and
aggregation processes by time windows); and, finally, iii) the optimisation and inference
for indoor location to obtain the best performing anchor configuration that facilitates
transfer with a minimal learning stage.

As a case study, the optimisation of the location indoor system in a nursing home with
elderly people in Alcaudete, Jaén (Spain) has been analysed. Locating elderly people
in a nursing home is crucial to guarantee their safety [Sadoughi et al., 2020, Fraile
et al., 2010]. Finally, the proposed methodology is evaluated taking into account the
Sustainable Development Goals (SDGs) established in the 2030 agenda by the United
Nations [United Nations, 2021]. This type of assessment is essential to further compliance
with the goals and objectives of the 2030 agenda.

The rest of the paper is organised as follows: Section 2 reviews recent literature on
technologies for indoor location and location detection using BLE technology. Section 3
presents the OBLEAmethodology in the context of multi-occupancy. Section 4 evaluates
the OBLEA methodology to optimise the indoor BLE location system configuration in a
real case study. Section 5 evaluates the alignment of the proposed methodology with the
SDGs and, finally, the conclusions are presented in Section 6.
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2 Related Works

In this section, we review recent literature on indoor location technologies and the
foundations of location detection using BLE technology.

2.1 Indoor Location System Technology

In the literature, indoor location systems (ILS) use different types of technologies with
multiple features. The most popular are the mechanical, acoustic and radio frequency
technologies reviewed in this section and illustrated in Figure 1.

Indoor Location
Technologies

Ultrasonic Zigbee RFID UWB BLE Wi-FiIMU

Mechanical Acoustic Radio frequency

Figure 1: Technologies proposed in indoor positioning systems.

In mechanical sensors, inertial measurement units (IMU) such as accelerometers or a
gyroscopes are used. These sensors determine movement in terms of position and angle,
respectively, on the basis of an initial position, an angle and a velocity. Although this
technology was initially designed for outdoor applications, it has subsequently proven to
be effective for indoor use [Lee et al., 2021, You and Wu, 2021, Pham et al., 2021, Khan
et al., 2020, Han et al., 2018, Yao et al., 2017, Faragher et al., 2012] due to its high
accuracy and efficient energy management [Pham et al., 2021]. However, most systems
that rely on this type of technology are invasive and obtrusive because of the need to
be attached to the target. In addition, due to drift and cumulative error, it is necessary
to implement the approach using filtering methods such as Kalman filtering [Lee et al.,
2021].

ILS systems can also be based on ultrasound technology. This technology uses the
propagation of acoustic pulses transmitted by an audio generator to other fixed or mobile
client devices deployed inside an enclosed space, allowing position mapping [Esslinger
et al., 2020, Carter et al, 2018, Qi et al., 2018, Jordaan et al., 2017, Medina et al., 2013].
Ultrasound technology has the main advantages of guaranteeing low penetration into the
wall and being low cost, but with the drawbacks of low range and costly deployment in
large indoor spaces.

Finally, radio frequency-based location systems have been the most widely used
in the last decades. Within this field there are several options: Wi-Fi, BLE, ZigBee,
Ultra-Wide Band (UWB) and Radio Frequency Identification (RFID).The most popular
radio-frequency options are reviewed below.

– WLAN or Wi-Fi [Zhao et al., 2021, Pichaimani and Manjula, 2021] is a standard
communication technology for wireless data transmission operating in the 2.4 GHz-5
GHz frequency band of the electromagnetic spectrum. The effective range is very
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wide, covering from about 50 to 100 metres, and the location accuracy is within a
few metres in an environment with dense Wi-Fi coverage. The main problem is that
the target entity must carry a Wi-Fi enabled device, e.g. a smart phone.

– BLE [Zhao et al., 2021, Albín et al., 2021, Pinto et al., 2021] is similar to Wi-Fi in
terms of transmitting radio signals in the same frequency and using the same location
principles. In this case, it operates at 2.4 GHz (unlicensed frequency band), ensuring
it is always available, and allows collaboration with other network services. This
feature, combined with its low cost, makes it a widely used technology. However,
unlike Wi-Fi, its range of 1 to 5 metres makes it less effective for applications that
require a larger area.

– ZigBee wireless communication [Chen et al., 2020, Athira and Babu, 2019, Tan et
al., 2018, Han et al., 2018, Konings et al., 2017, Liu et al., 2017, Konings et al., 2017]
is a standard designed for short-range coverage. It operates in multiple bandwidths
and the signal range is up to 100 metres, but in actual indoor environments it is
typically between 20 and 30 metres. Thus, this technology is limited to short range
and low data rate applications.

– UWB technology [Yang et al., 2021, Brovko et al., 2021] is based on interactions
between the electromagnetic field and matter. It uses images obtained from the
scattering of electromagnetic waves within the environment, generating detailed
geometry. Its operates on a very large bandwidth of more than 1.5 GHz. However, this
wide bandwidth causes interference with other devices. Therefore, it is necessary to
resort to power limitation, which makes it impractical for many applications. Finally,
the cost of deploying UWB systems is currently high compared to other systems
like BLE, which significantly reduces their deployment potential.

– RFID technology [Nazari and Shirmohammadi, 2020, Pereira et al., 2019, Wang et
al., 2019, Shamseldin et al., 2018] consists of tags, a reader, and a server equipped
with RFID middleware. The tags can be passive or active, needing a battery in
the second case, and are unique. RFID identification is very popular and useful
for a wide range of applications, but has several limitations: the standardisation of
operating frequencies, the invasive nature, the additional infrastructure needed for
proximity identification, and the high computational cost when multiple tags are
used to achieve higher accuracy.

Bluetooth beacons appeared on the market with the adoption of the Bluetooth 4.0
standard (commonly called BLE or Bluetooth Low Energy), and have become increas-
ingly popular. A BLE beacon is a simple piece of hardware that emits BLE packets
on a constant basis [Tabbakha et al., 2021, You and Wu, 2021, Bucheli et al., 2020].
Smartphones and other devices can detect these packets, measure their signal strength
(RSSI) and determine their location. BLE beacons present the following advantages
over other technologies [Misal et al., 2020, Du and Xiong, 2020, Konstantinos and
Orphanoudakis, 2019, Stavrou et al., 2019]:

– Bluetooth beacons are typically low-cost, small and unobtrusive (a few centimetres
wide), can be installed almost anywhere (glued or screwed to the wall), and can run
on batteries or be plugged in.

– Both Android and iOS devices have great BLE support, allowing several BLE
readings per second and decent signal strength stability. This allows computing
location per second, ideally providing good navigation.
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– The BLE beacon parameters (transmit power, transmit frequency, etc.) can be easily
configured, being flexible to support different modes of operation and to create
multiple alternatives.

The main issue with indoor location systems based on BLE beacons alone is that,
to achieve good accuracy, it is necessary to deploy several beacons (e.g. one every few
meters) in the enclosed space. However, considering their low cost, this issue can be
easily overcome.

2.2 Location Detection with BLE Technology

Since our proposal is based on BLE technology for indoor location, this section reviews
the basic aspects.

Location detection using BLE technology is based on measuring received signal
strength indicator (RSSI) strength [Karoui et al., 2021, Long et al., 2021, Zeng et al.,
2021, Lee et al., 2021, Chen et al., 2020, Li et al., 2020, Yao et al., 2017]. This feature
is intrinsic to any wireless technology and uses a unit of power expressed in decibels
relative to a milliwatt (dBm or dBmW ). RSSI provides information on signal strength
between two devices with the same type of Bluetooth connection. Strength values are
usually expressed as negative values and typically range from 0 dBm to −100 dBm. A
strength value close to 0 dBmwould indicate a good connection between the two devices,
whereas negative values would indicate a weakening connection In the context of ILS,
RSSI gives an approximate distance between two BLE devices. Figure 2 illustrates how
the RSSI signal strength is read.

0-40-80

Better connectivityMedium connectivityWorst connectivity

Close distanceMedium distanceLong distanceBeacon
Anchor

Figure 2: Interpretation of RSSI values.

Therefore, two types of BLE devices are proposed to locate the inhabitant: anchor
and beacon. The beacon is a wearable device that is carried at all times by the inhabitant.
The beacon’s unique purpose is to provide a BLE connection which is scanned by the
anchor elements at all times. The anchor scans nearby devices with a BLE connection
at each time instant t. These elements are filtered by the MAC address of the target
beacons (monitored inhabitants) and their RSSI value is collected. This type of device
must be distributed throughout the monitored area and together they enable the inhabitant
(beacon) to be located in real time.

3 OBLEA: Optimisation of Bluetooth Low Energy Anchors in
Multi-occupancy Location Systems

In this section, we present the OBLEA methodology, along with its benefits compared
to other methods.
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3.1 OBLEA Methodology

In this section, we present OBLEA, a new flexible methodology for the Optimisation of
Bluetooth Low Energy Anchors in multi-occupancy location systems, which facilitates
transferability to different indoor spaces with a minimal learning stage.

The main steps of the OBLEA methodology are as follows:

1. Establishment of a flexible framework for indoor location.

2. Deployment of architecture in the indoor space.

3. Location inference method based on a data-driven approach.

The following sections describe the OBLEA methodology in detail.

3.1.1 Flexible Indoor Location Framework

In this methodology, first the special characteristics of the indoor environment, S, where
it is necessary to locate multiple inhabitants are defined.

1. Relevant location areas {A1, ..., Aj , ..., AJ} ∈ S in an indoor space.

2. A set of inhabitants {H1, ..., Hk, ..., HK} ∈ S and a set of mobile location bea-
cons {w1, ..., wk, ..., wK}, such as activity wristbands. Each beacon wk is directly
associated with a single inhabitant Hk and is identified by its MAC address wk.
Specifically, in our proposal, the Xiaomi Band 31 activity wristband model was
selected as a beacon. This device was chosen due to the high battery life (approx-
imately 30 days) and its small size (17.9 x 46.9 x 12mm) and weight (20g). It is
equipped with version 4.2 BLE connection.

3. Each relevant location area Aj has an associated set of location anchors {sbc11, ...,
sbcjl , ..., sbc

J
L} ∈ Aj . Each anchor can only be associated with one areaAj∩Ai = ∅.

In our proposal, a single-board computer (SBC) with high computational power
and a DC power supply is required. The model we selected was a Raspberry Pi
4B2. This SBC has a small size of 85 x 56mm which has a minimal impact on
the environment and an idle power consumption of 500mA. Although this model
has BLE connection, it has been equipped with two nano USB adapters with two
different versions: version 4.23 and version 5.04.

4. Beacon as fog node sbcjl responsible for collecting RSSI data through the MQTT
protocol, and subscribing to the set of anchors covering the entire enclosed space

{sbc11, ..., sbc
j
l , ..., sbc

J
L} ∈ S.

3.1.2 Architecture for BLE Indoor Location Systems

The flexible framework proposed in this methodology is designed to be deployed in a
new architecture, illustrated in Figure 3 and described below.

Each BLE anchor sbcjl generates an output stream StRSSI(sbc
j
l ) = {mju

l }, where
each measure is a tuple composed of three components:

1 https://www.mi.com/global/mi-band-3/specs/
2 https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
3 https://www.tp-link.com/es/home-networking/adapter/ub400
4 https://www.asus.com/us/Networking-IoT-Servers/Adapters/All-series/USB-BT500/
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Figure 3: BLE indoor location system architecture.

1. Timestamp tjul .

2. The MAC address wju
l of the scanned beacon that is associated with the enclosed

space S: wju
l ∈ {w1, ..., wk, ..., 2wK}.

3. RSSI value vjul of the beacon at timestamp tjul .

For each beacon sbcjl , the RSSI value v
ju
l generated in the output stream is the result

of applying a time window to the data stream. Each time window is defined by the size
Ez. Therefore, the time window is computed in a time space ∆(t) = [t−Ez, t]. This
size can be dynamically modified according to the space and the monitored area.

The aggregate value of RSSI computed over the time window given a time instant t0
is defined by the following equation:

TW
(
StRSSI(sbc

j
l ), Ez

)
= {tjul ∈ mju

l |tjul ∈ ∆(t0)}

This value is collected by the fog node sbcjl , which applies a fixed time window Ez
to avoid empty values over a period of time. Furthermore, a main element is defined as a
fog node. This device is another SBC, presented in Section 3.1.3, which implements part
of the inference method in order to estimate the location of the monitored inhabitants.
To reuse resources and to improve energy efficiency, it has been included as one of the
anchor elements.

Each of these devices is interconnected through a local network and uses the MQTT
network protocol for communication. The main element perform the inference method
for indoor inhabitant location and sends out all the information to an node in the cloud to
store it persistently in a database.
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3.1.3 Optimisation and Inference for Indoor Location

In this methodology, a model capable of optimising BLE anchor configuration is pro-
posed. To do so, first of all, a dataset5 with the maximum number of anchors in the
indoor environment is generated. From this dataset, training and testing of the different
configurations is performed, with the objective of selecting a configuration that reaches
a balance between a low number of anchors and high accuracy.

This model is optimised using the best performing configuration with a minimum
number of anchors and time window size to aggregate the RSSI values in the anchors.
The steps are summarised in Figure 4 and are described below:

Deployment of all 
possible anchors

General labeling generation 
(aprox. 15 minutes)

Dataset construction by
 labeling of individual samples

Enough labeling time

Establishment
of the most

relevant locations

Dataset construction

Subset

Con�guration 2

Subset

Con�guration N

Trained model

Trained model

Subset

Con�guration 1

Trained model

Training

Evaluated model

Con�guration 1

Evaluated model

Con�guration 2

Evaluated model

Con�guration N

Test

... ... ...

Figure 4: Steps involved in indoor location optimisation and inference.

1. Generating the dataset:

(a) Deployment of as many anchor elements as possible. The number of devices
and their position is limited by the number of electrical outlets in the enclosed
space.

(b) General labelling of the selected relevant areas at intervals of approximately 15
minutes (timestamp of entry and exit of a location).

(c) Each sample within the general labelling range is individually labelled.

(d) Data are unified into a single dataset.

2. Training and testing. According to the number of anchors, the different possible
configurations are established (2n, where n is the total number of anchors deployed).
The subsets that have cardinality 0, 1 and 2 are eliminated, since these subsets are
not suitable for calculating inhabitant location. Therefore, for each configuration:

(a) A subset of the dataset is extracted on the basis of the beacons used.

(b) The location model is trained and evaluated for each subset of the dataset.

Following the generation and evaluation of each of the models with the different
configurations, the best configuration is selected based on the results obtained. To achieve
this, the accuracy of each model is evaluated quantitatively.

5 https://asia.ujaen.es/material/oblea-dataset/index.html
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3.2 Differences between OBLEA and Other Methodologies

The OBLEA methodology is related to past proposals in the literature. However, some
key differences have been identified:

– To begin with, the objective of the OBLEA methodology is not to propose a location
method under a static framework, as other methods do [Sun et al., 2021b, Duong
and Dinh, 2019, Ok et al., 2019, Ai et al., 2021], but rather to optimise Bluetooth
anchors in a flexible indoor location system. Our methodology provides flexibility
to locate the anchors within real contexts. In this sense, it meets the challenge of
optimising BLE anchors in terms of number, location and classifier.

– The methods proposed in [Albín et al., 2021, López et al., 2019] consider an archi-
tecture where the RSSI values are sent to a server where the raw RSSI values are
processed, the model is trained and the location is inferred. However, it is not easily
transferable. Meanwhile, the proposed architecture presents a fog layer composed
of the BLE anchors and a fog node that includes short learning time, enhancing the
transferability of the methodology to other applications. Our proposal computes the
location of the fog node of an enclosed space and not on the server. This fact provides
greater scalability in closed indoor spaces, and there may be different configurations
for multiple closed spaces monitored in a same system.

– The purpose of our methodology is the optimisation of BLE anchors. Although the
classification algorithm is considered as a variable within the experimentation, it is
not a central variable as in other location methodologies [Thakur and Han, 2021, Sun
et al., 2021a].

– In our methodology, the classification algorithms used to train the location model
are not as computationally heavy, since they are deployed in the fog node (SBC)
of each indoor space. Despite this, as we will see in the experimentation in Section
4.2, it achieves very good results. This differs from other methods that use heavier
algorithms based on deep learning or convolutional neural networks [Thakur and
Han, 2021, Sun et al., 2021a].

4 Evaluation of OBLEA in a Case Study

In this section, we present the evaluation of the methodology in a multi-occupancy case
study. Specifically, on a floor of a nursing home with shared rooms. We have carried
out a wide range of experimentation following the methodology and then the obtained
results for analysis. Finally, the limitations of this approach described.

4.1 Case Study

The OBLEA methodology has been applied in a case study to a multi-occupancy context.
Specifically, in a floor of a nursing home for elderly people in Alcaudete, Jaén (Spain),
where it is vital to know the location of each inhabitant for safety reasons.

The floor of the nursing home was composed of 4 shared rooms and 7 inhabitants
were monitored. Each of the rooms housed two elderly people and had of two clearly
differentiated areas: a bathroom and a bedroom. The size of each roomwas approximately
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6.67 m

3.04 m

Figure 5: 3D recreation of the shared room. Starting from the top left corner: bathroom,
bedroom and the entire room

6.7m x 3.04m, as illustrated in Figure 5. Each room had four power outlets, restricting
the placement of location anchors to four devices, as shown in Figure 6.

Considering the relevant areas defined in Figure 6, our flexible framework was
established as follows:

– The relevant location areas were selected {A1 = Bedroom,A2 = Bathroom,A3 =
Outside} ∈ S, S being a shared room.

– A set of two inhabitants {H1,H2} ∈ S was given a set of 2 activity wristbands
{w1, w2} whereH1 was associated with w1 andH2 was associated with w2. Specif-

ically, we used the Xiaomi Band 36 activity wristband.

– A1 had a set of 3 location anchors {sbc11 = Anchor2, sbc21 = Anchor3, sbc21 =
Anchor4} associated with it, A2 one location anchor {sbc12 = Anchor1} and A3

no anchor. In our proposal, the Raspberry Pi 4B7 was selected as the BLE anchors.
Each anchor had a program deployed to obtain the RSSI of the target inhabitants
and aggregate the RSSI values in time windows according to the proposal presented
in Section 3.1.2.

6 https://www.mi.com/global/mi-band-3/specs/
7 https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
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– Since Anchor3 focused on the indoor space, this location anchor was selected as
the fog node. A program was developed for this node to collect all aggregated RSSI
samples and send them to the cloud layer.

– The cloud layer had a program developed to infer the current location of the inhabi-
tants in real time, following the proposal presented in Section 3.1.3. In addition, this
layer handled the persistence of the aggregated RSSI values in the time windows of
each anchor and the inferred location.

It should be noted that, in order to improve optimisation, two BLE protocols (4.2 and 5.0)
have been be evaluated with the purpose of determining which one is the best performing.
To do so, two Bluetooth Nano USB Adapters were connected to the Raspberry Pi 4B.

Anchor 1 Anchor 2

Anchor 3

Anchor 4

Figure 6: Room layout with sockets and relevant areas

4.2 Experimentation and Analysis of Results

In this section, an experiment with multiple configurations is described in which the
following characteristics are evaluated:

– BLE protocol version (PBLE): two BLE versions were tested: 4.2 and 5.0.

– Time window size (SW): according to the amount of time covered, the system may
respond better or worse: 1 second (without window), 5 seconds, 15 seconds and 30
seconds.

– Set of anchors (SA): 4 possible subsets were evaluated, considering that sets with 1
or 2 anchors are not relevant. Therefore, the following possibilities were tested:
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• C1 = {Anchor1, Anchor2, Anchor3, Anchor4}

• C2 = {Anchor1, Anchor2, Anchor3}

• C4 = {Anchor1, Anchor3, Anchor4}

• C5 = {Anchor1, Anchor2, Anchor4}

– Classifier: different types of classifiers were proposed to identify the most suitable
one. This was done because classifiers are highly efficient in training and evaluation,
making them very suitable to be embedded in low-cost, low-computational-capacity
IoT boards, enabling fog-edge location configurations. The following classifiers
were evaluated: K-Nearest-Neighbour, Decision Tree and Random Forest.

Experimenting with these features allowed us to evaluate 96 possible configurations
(32 per algorithm). In Table 1, the 10 best results from the total number of experiments
performed are presented. The overall results are presented in three different columns in
Table 2. The accuracy of the algorithm is indicated for each combination.

Top Classifier PBLE SA Time window Accuracy (%)

1 K-Nearest-Neighbour v4.2 C1 30s 99.82

2 K-Nearest-Neighbour v4.2 C2 30s 99.43

3 K-Nearest-Neighbour v4.2 C1 15s 99.16

4 K-Nearest-Neighbour v4.2 C3 30s 99.04

5 Random Forest v4.2 C4 30s 98.56

6 Decision Tree v4.2 C4 30s 98.53

7 K-Nearest-Neighbour v4.2 C4 30s 98.41

8 K-Nearest-Neighbour v4.2 C3 15s 98.35

9 K-Nearest-Neighbour v4.2 C2 15s 98.32

10 K-Nearest-Neighbour v5.0 C1 1s 97.6

Table 1: Top 10 results of the experimentation
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K-Nearest-Neighbour

PBLE SA SW Acc

v4.2 C1 1 0.9230

5 0.9613

15 0.9916

30 0.9982

C2 1 0.8981

5 0.9484

15 0.9832

30 0.9943

C3 1 0.9149

5 0.9574

15 0.9835

30 0.9904

C4 1 0.9047

5 0.9484)

15 0.9736

30 0.9841

v5.0 C1 1 0.9760

5 0.9159

15 0.8914

30 0.9319

C2 1 0.9567

5 0.8888

15 0.8458

30 0.8670

C3 1 0.9561

5 0.9150

15 0.8859

30 0.8916

C4 1 0.9387

5 0.8986

15 0.8775

30 0.90

Decision Tree

PBLE SA SW Acc

v4.2 C1 1 0.8864

5 0.9221

15 0.9319

30 0.9524

C2 1 0.7966

5 0.8583

15 0.9146

30 0.9481

C3 1 0.8280

5 0.9115

15 0.8660

30 0.8505

C4 1 0.8768

5 0.9365

15 0.97

30 0.9853

v5.0 C1 1 0.8186

5 0.8416

15 0.8475

30 0.7625

C2 1 0.7736

5 0.7474

15 0.7146

30 0.7072

C3 1 0.7784

5 0.8154

15 0.7883

30 0.7273

C4 1 0.9547

5 0.9066

15 0.8800

30 0.8963

Random Forest

PBLE SA SW Acc

v4.2 C1 1 0.9014

5 0.9385

15 0.9661

30 0.9622

C2 1 0.8814

5 0.9329

15 0.9607

30 0.9598

C3 1 0.9032

5 0.9268

15 0.9634

30 0.9604

C4 1 0.9070

5 0.9517

15 0.9745

30 0.9856

v5.0 C1 1 0.8893

5 0.8516

15 0.7250

30 0.7128

C2 1 0.8110

5 0.7515

15 0.6983

30 0.69

C3 1 0.8501

5 0.7579

15 0.7131

30 0.7156

C4 1 0.9583

5 0.9312

15 0.9059

30 0.9167

Table 2: Percentage of accuracy achieved for each configuration
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First, an analysis of the best BLE version is presented. For these experiments, it should
be noted that two different versions were used: 4.2 and 5.0. From the results, it can be
observed that 4.2 provides the best results in this case. In most of the configurations, the
older version significantly outperforms the newer version, except for the configurations
without time windows (one second), in which version 5.0 always achieves better accuracy.

Although version 5.0 gives us a higher coverage (quadruple the range), this can be
a problem for the system. In the literature, BLE devices are often used with a range of
just a few metres. This can be seen in Figure 7, where the results are shown in two line
graphs: for KNN algorithm version 4.2 and KNN algorithm version 5.0.

As for the size of the time windows, in configurations using BLE 4.2, the accuracy
obtained by the classifier improves as the time window increases. However, this is not
the case for BLE 5.0. Figure 7 illustrates how the results in version 4.2 improve as the
size of the time window increases.

Figure 7: Graphs comparing the accuracy of the KNN classifier with different window
sizes in each configuration: a) BLE 4.2 and b) BLE 5.0

The different location anchor configurations and classification algorithms have been
evaluated. The best accuracy values are obtained for the options C1 and C4. As for the
classifier algorithm, the strongest option is K-Nearest-Neighbour, which appears in 80%
of the top 10 results.

Finally, the OBLEA methodology proposed in this paper provides an accuracy of
99.82% with BLE 4.2, configuration 1 (4 location anchors), 30-second time windows
and K-Nearest-Neighbour. Although this combination has the best score, we can reduce
the number of anchors to only three and cut costs by changing the C1 configuration to
C2 with a loss of accuracy of only 0.39% (99.43%).

4.3 Limitations

Only time windows with a maximum size of 30 seconds were considered. Since this
paper considers real-time location in a context where the safety of the elderly people is a
priority, we considered it important not to use larger window sizes. In other contexts where
immediacy is not a priority, window size could be extended and other configurations
could be used for potentially higher accuracy.

Due to the need for immediacy in real-time location, the arithmetic mean operator
has been used to aggregate RSSI values in the anchored BLEs across time windows.
Other aggregation operators could be studied, although their impact will be related to
the size of the time window (more than 30 seconds).
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In this case study, the maximum number of anchors has been limited by the number of
sockets available. A greater number of anchors could be included by using plug adaptors
or external batteries. However, these options were not allowed by the nursing home
because, on the one hand, there was a fear that the elderly inhabitants could trip over the
extension cords and, on the other hand, the external batteries did not have the required
autonomy.

Finally, it is noteworthy that this case study does not address possible failures within
the network. To address this fact, the OBLEA methodology could be combined with the
methodology proposed in [Espinilla et al., 2017].

5 Alignment with the Sustainable Development Goals

Technology and smart systems, such as the one presented in this paper, are crucial
elements to achieve the highest sustainability standards. In this section, the alignment
and compliance of our system with the SDGs are tested. To carry out the assessment,
the 231 indicators and 169 targets have been analysed according to the taxonomy of the
Global Indicator Framework Report for the SDGs and the 2030 Agenda for Sustainable
Development targets [United Nations, 2021]. It is concluded that the SDGs particularly
relevant to the analysis of this paper are:

1. Goal 3. Ensure healthy lives and promote well-being for all at all ages.

2. Goal 7. Ensure access to affordable, reliable, sustainable and modern energy for all.

3. Goal 9. Build resilient infrastructure, promote inclusive and sustainable industriali-
sation and foster innovation.

4. Goal 11. Make cities and human settlements inclusive, safe, resilient and sustainable.

5. Goal 12. Ensure sustainable consumption and production patterns.

Therefore, it can be assured that the presented system takes into account the require-
ments set by the United Nations for compliance with the SDGs.

6 Conclusions

The aim of this paper was to offer a new approach on how to optimise the configuration of
BLE anchors in multi-occupancy location systems in a flexible and transferable way. This
paper has presented the OBLEA methodology for the Optimisation of Bluetooth Low
Energy (BLE) Anchors in indoor location systems, considering multiple BLE variables
to obtain the best performing configuration with a minimum number of anchors.

To do so, first, a flexible framework for indoor spaces was proposed where the
inhabitants to be monitored are equipped with wrist activity bracelets (beacon) and
BLE anchors are deployed. Then, the architecture was presented, which includes all the
elements of the framework, where the BLE anchors perform an aggregation process
based on time windows and send the computed data to a fog node by MQTT. Finally,
an optimisation and inference method for indoor location was presented. The inference
method proposed is based on data-driven approach. First, a dataset is generated with the
maximum number of anchors in the indoor environment. The different configurations
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are then trained and tested based on this dataset. Finally, the configuration with the best
balance between a low number of anchors and high accuracy is selected.

Furthermore, the proposed methodology was optimised and evaluated in a real case
study in a nursing home in Alcaudete, Jaén (Spain) where an experiment was carried
out with 7 inhabitants in four shared double rooms. As a result of the optimisation in
this case study, it has been possible to locate the inhabitants in real time with 99.82%
accuracy using a classifier based on the K-Nearest-Neighbour algorithm and aggregating
the RSSIs in 30-second time windows.

Finally, the sustainable development goals that are aligned with the proposed method-
ology have been identified. Specifically, goals 3, 7, 9, 11 and 12 of the 2030 agenda set
by the United Nations.
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