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Abstract: Restricted preemption plays a crucial role in reducing total completion time while

controlling preemption overhead. A typical version of restricted preemptive models is k-restricted
preemptive scheduling, where preemption is only allowed after a task has been continuously

processed for at least k units of time. Though solving this problem of minimizing the makespan on

parallel machines is NP-hard in general, it is of vital importance to obtain the optimal solution for

small-sized problems, as well as for evaluation of heuristics. This paper proposes optimal strategies

to the aforementioned problem. Motivated by the dramatic speed-up of Boolean Satisfiability

(SAT) solvers, we make the first step towards a study of applying a SAT solver to the k-restricted
scheduling problem. We set out to encode the scheduling problem into propositional Boolean

logic and determine the optimal makespan by repeatedly calling an off-the-shelf SAT solver.

Moreover, we move one step further by encoding the problem into Partial Maximum Satisfiability

(PMS), which is an optimized version of SAT, so that the explicit successive calls of the solver

can be eliminated. The optimal makespan of the problem and the performance of the proposed

methods are studied experimentally. Furthermore, an existing heuristic algorithm is evaluated by

the optimization methods.
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1 Introduction

In this paper, we propose optimization methods for the k-restricted preemptive scheduling
problem on parallel identical machines, where preemptions are only allowed after a task
has been continuously executed for at least k units of time. The goal of the optimization
is to minimize the makespan C, i.e., the maximum completion time on all the machines.
In the three-field notation [Graham et al. 1979], this deterministic scheduling problem is
denoted by P |k − pmtn|Cmax [Ecker and Hirschberg 1993].

The scheduling problem involves processing n tasks T = {T1, T2, . . . , Tn} on m
identical machines1M = {M1,M2, . . . ,Mm}. Each machine can handle only one task
at a time, and each task cannot be processed in parallel. Processing time of task Tj ∈ T
is given by pj , which is known as priori. Preemptions are restricted by granularity
k ∈ N, meeting the following condition: ∀Tj ∈ T , if pj is less than or equal to k,
then preemption is prohibited, otherwise preemption may take place after Tj has been
continuously processed for at least k units of time.

Ecker and Hirschberg [Ecker and Hirschberg 1993] revealed that the problem P |k−
pmtn|Cmax is NP-hard, except for some special cases on two identical machines. For
example, Pieńkosz and Prus [Pieńkosz and Prus 2015] showed that the two-machine
problem can be solved in O(n) time if one task has a processing time of at least 4k, or
if one task has a processing time of at least 2k and another has a processing time of at
least 3k. Knust et al. [Knust et al. 2019]2 presented an O(n) algorithm for two identical
machines, assuming all tasks’ processing time to be at least 2k.

From the best of our knowledge, except for the special cases on two identical
machines, there are few studies of optimal algorithms in consideration of the P |k −
pmtn|Cmax problem in the available literature. Alternatively, several approximation
methods [Pieńkosz and Prus 2015, Barański 2011] were developed to produce sub-optimal
solutions. Approximation methods can find near-optimal solutions that are acceptable in
some situations (e.g. [Duo et al. 2020]), particularly when the number of tasks is huge.
However, when faced with small-sized problems, obtaining global optimum is desir-
able, especially for critical systems where the scheduled application is executed many
times. Another important application of optimal algorithms is to evaluate the schedules
constructed by heuristic methods. If optimal solutions are available for comparison, the
quality of solutions output by heuristics can be better judged [Malik et al. 2018].

To this end, this paper considers to optimally solve the P |k − pmtn|Cmax problem
with the aid of Boolean Satisfiability (SAT) and its optimized extension. SAT is the first
problem shown to be NP-complete [Cook 1971], which aims to determine whether there
exists an assignment of Boolean variables that makes a propositional Boolean formula
evaluate true. An algorithm for solving the SAT problem is called a SAT solver. In the
last decade, we have witnessed major advances of SAT solvers: problems with thousands
of variables are now solved in milliseconds by the state-of-art SAT solvers. Recently, a
simple and unified incremental interface to a number of SAT solvers are provided by
Python package PySAT [Ignatiev et al. 2018], equipped with a range of propositional
encodings for linear (cardinality and pseudo-Boolean) constraints. Motivated by the great
potential of SAT technology, in this work, we set out to reduce the P |k − pmtn|Cmax

problem to propositional logic and exploit corresponding solvers to acquire the optimal

1 The term “machine” can refer to any actual or abstract machine or processor that executes tasks.
In this paper, we do not distinguish “machines” and “processors”.

2 Knust et al. [Knust et al. 2019] showed that the algorithm presented for problems with pliability
also applies for those with k-restricted preemptions in special cases.
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solutions. Specifically, we make the following contributions:

– We present several rules to encode the scheduling problem into a set of propositional
Boolean formulas that can be tackled by any off-the-shelf SAT solver. Then binary
search is conducted by calling the solver repeatedly until the optimal solution is
identified.

– To eliminate the explicitly repeated calls of the solver, we reformulate the scheduling
problem as an optimized problem of SAT, i.e., Partial Maximum Satisfiability (PMS).
Thanks to the PMS characteristics that satisfy all hard constraints and maximum
number of satisfied soft constraints, the optimal schedule can be acquired by running
the PMS solver only once.

– We investigate how the optimal makespan changes with varying preemption gran-
ularity and changing number of machines. This is the first attempt to explore the
optimal solution to the P |k− pmtn|Cmax problem. Moreover, the factors affecting
the performance of the presented methods are also studied in extensive experiments.

– We evaluate an existing heuristic algorithm 2RS [Pieńkosz and Prus 2015] on two
parallel identical machines, revealing that the heuristic 2RS can produce approximate
solutions of high quality. This paves the way for evaluation of other heuristics, which
can be accurately assessed in a similar manner.

This paper is structured as follows. Section 2 formalizes the parallel identical schedul-
ing problem with k-restricted preemptions. Section 3 surveys several preemption models
and algorithms for scheduling problems. Section 4 introduces a SAT-based optimization
framework for encoding theP |k−pmtn|Cmax problem into a collection of propositional
Boolean formulae that can be tackled by any SAT solver. Section 5 exhibits how to
represent the P |k − pmtn|Cmax problem as a PMS problem to eliminate the solver’s
repeated calls. Section 6 studies the optimal solution and assesses the performance of the
presented methods. Section 7 evaluates a heuristic algorithm using the optimal methods.
Finally, Section 8 concludes the paper.

2 Problem Formulation

In the k-restricted preemptive scheduling model, preemption is permitted when a task
is processed continuously for at least k units of time. That is, any task Tj ∈ T can

be replaced by a chain of precisely `j = dpj/ke indivisible subtasks 〈T 1
j , . . . , T

`j
j 〉.

The processing times of subtasks must adhere to two constraints. On the one hand,
∀Tj ∈ T , T i

j ∈ Tj\{T`j}, where `j = dpj/ke, the processing time of T i
j , represented

by pij , is either no less than k or equal to 0. In particular, if pij = 0, T i
j is void and cannot

be allocated to any machine. Alternatively, if pij > 0, T i
j is valid and must be processed

by a single machine. On the other hand, the sum of processing times of all subtasks in
Tj equals pj , i.e., ∀Tj ∈ T ,

∑
T i
j∈Tj

pij = pj . To simplify the problem at hand, several

predefined constraints should be satisfied as follows.

– Tasks are independent and all available at time 0.

– Each machine can process at most one subtask at a time.
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– Subtasks of each task should be processed one after another in form of a chain.

– Processing times of tasks are all integers.

Given a set of tasks T and that of identical machinesM, solving the scheduling
problem is equivalent to identifying the following critical information:

– the start execution time sij of each subtask T
i
j ∈ Tj in T ,

– the processing time pij of each subtask T
i
j ∈ Tj in T ,

– the mapping from each valid subtask T i
j ∈ Tj in T to a machine inM.

The objective of scheduling is to minimize the makespan C, which can be defined as
the time difference between the start time of the earliest task and the completion time
of the latest one. Assume that the earliest task starts at time 0, then the makespan C is

given by C = max
{
(s

`j
j + p

`j
j ) | Tj ∈ T

}
. The optimal makespan is represented as

C∗ = Min
(
max

{
(s

`j
j + p

`j
j ) | Tj ∈ T

})
. The range of the optimal makespan C∗ can

be estimated as follows.
If the preemption granularity k is equal to 0, the k-restricted preemptive scheduling

is equivalent to fully preemptive scheduling, which is polynomially solvable by Mc-
Naughton’s wrap-around rule [McNaughton 1959]. The optimal makespan for P |0−
pmtn|Cmax is:

C∗ = max{pmax,
∑
Tj∈T

pj/m}, (1)

where pmax is the longest processing time of all the tasks, and
∑

Tj∈T pj/m represents

the average machine load. Formula (1) is usually used to compute the lower bound of
C∗ for any k > 0 [Pieńkosz and Prus 2015, Barański 2011], which is represented by Clb

in this paper.
The upper bound of the makespan C, denoted by Cub, can be estimated by various

heuristics, such as LPT (Longest Processing Time first) and LPT-modified algorithms
[Ecker and Hirschberg 1993]. The former allocates tasks in a non-preempted manner to
the first machine that becomes idle in the longest processing time order, and the latter
is a modification of the LPT algorithm, which assigns part of Tj of length k to the first
machine that becomes idle.

Consequently, the optimal makespan C∗ is limited to the range [Clb, Cub].

(a) Without preemption (b) Arbitrary preemption (c) 2-restricted preemption

Figure 1: Example schedule of no preemption, fully arbitrary preemption and 2-restricted
preemption
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Example. Let a task set T = {T1, T2, T3, T4}. Each task has a processing time of 3,
i.e., ∀Tj ∈ T , pj = 3. Suppose that the preemption granularity k is 2. That is, each
task should be continuously executed for k = 2 units of time before being preempted.
Figure 1 compares the optimal results of non-preemptive scheduling, fully preemptive
scheduling and 2-restricted preemptive scheduling on three identical machines. Figure
1(a) shows the schedule generated by executing tasks without preemption, producing
a makespan of 6. Figure 1(b) displays an average machine load with no constraints on
preemptions, resulting in a makespan of 4. Note that the schedule in Figure 1(b) is not
feasibly 2-restricted since the red task T1 is preempted after just one time unit. Figure
1(c) exhibits a feasible 2-restricted schedule with a makespan equal to 5. This is also the
shortest makespan for the exemplified 2-restricted preemptive scheduling problem.

In the 2-restricted preemptive example, each task is divided into d3/2e = 2 subtasks,
i.e., ∀Tj ∈ T , Tj = 〈T 1

j , T
2
j 〉. According to the optimal schedule illustrated in Figure

1(c), the start execution time, processing time, and mapping from subtask to machine
are summarized in Table 1. Subtasks T 2

1 , T
2
2 and T 2

4 are void, thus the start times and
machine identifiers that execute these subtasks, are marked by slashes.

Subtask 1 Subtask 2

StartTime ProcessingTime MachineID StartTime ProcessingTime MachineID

T1 0 3 1 / 0 /

T2 0 3 2 / 0 /

T3 0 2 3 3 1 2

T4 2 3 3 / 0 /

Table 1: Critical information of 2-restricted preemptive scheduling in Figure 1(c)

3 Related Research

This section first introduces various preemption models and then investigates existing
works of solving scheduling problems.

3.1 Preemption Models

In fully preemptive scheduling models, if preemption is allowed, it is assumed that any
task can be preempted at any time and any finite number of times with negligible costs.
This model is commonly accepted in many preemptive scheduling problems. The entry
“pmtn” in the classical three-field notation α|pmtn|γ [Graham et al. 1979] stands for
the admission of unlimited preemption. McNaughton’s wrap-around rule [McNaughton
1959] was presented to optimally address the P |pmtn|Cmax problem in O(n) time. The
optimal makespan C∗ is defined in Formula (1).

Considering that preemptions are not always free of cost, variants of preemption
models were proposed as an alternative to avoid immoderate task preemptions. Ecker and
Hirschberg [Ecker and Hirschberg 1993] presented two types of restricted preemptive
models, called k-restricted preemptive and exact k-restricted preemptive models. In the k-
restricted preemptive model, preemption is allowed when a task is processed continuously
for at least k units of time, while in the exact-k-preemptive model, preemption is allowed
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when a task has been continuously executed exactly an integer multiple of k time units.
Except for some special cases for two identical machines, the problem with arbitrary k
is NP-hard for both the k-restricted and exact-k-restricted preemptive models. Braun
and Schmidt [Braun and Schmidt 2003] defined an i-preemptive scheduling to bound
the maximum number of preemptions by a nonnegative integer number i, demonstrating
that the ratio of the optimal i-preemptive makespan versus the optimal fully preemptive
makespan is bounded by 2m/(m+ i− 1). The worst case ratio can be guaranteed by a
linear algorithm [Jiang et al. 2014]. Soper and Strusevich [Soper and Strusevich 2019]
studied the problem with at most one preemption, revealing that the problem is NP-hard
on three or more parallel machines. Parametric analysis of the solution quality with at
most one preemption was reported in [Soper and Strusevich 2021]. Knust et al. [Knust
et al. 2019] developed the concept of pliability to set the lower and upper bounds for the
execution length of all operations in flow shop and open shop models, suggesting that
most problems with pliability are NP-hard even in the case of two machines. Coffman
and Even [Coffman and Even 1998] introduced the concept of limited preemption, where
a preempted task cannot be moved from one machine to another. They showed that the
worst case ratio of the makespan with no preemption to that with limited preemption
is 4/3, and the worst case ratio of the makespan with limited preemption to that with
unlimited preemption is 4/3 as well.

The vast majority of studies are only applicable to problems with fixed processing
times. Recently, a preemptive model with variable position-dependent processing times
has emerged, in which job processing times are non-increasing functions of job positions.
Hence, preemption of a job reduces its processing time. Żurowski [Żurowski 2017]
presented a two-machine preemptive scheduling model with variable position-dependent
processing times, assuming that an arbitrary job can be preempted at most once. Two
exact methods were developed to find optimal schedules for medium-sized instances in
a relatively short time [Żurowski and Gawiejnowicz 2019].

3.2 Scheduling Algorithms

Attempts at finding optimal solutions to scheduling problems are mainly focused on
dynamic programming and branch and bound algorithms [Kravchenko and Werner
2011, Adamu and Adewumi 2013]. In the last decade, formalizing scheduling problems
as a class of generalized models, such as mathematical programming [Venugopalan and
Sinnen 2014, Hung et al. 2019, Ying et al. 2019, Meng et al. 2020, Bofill et al. 2022],
satisfiability modulo theory [Cheng et al. 2017, Malik et al. 2018, Bofill et al. 2020, Lee
et al. 2022], SAT [Crawford and Baker 1994, Koshimura et al. 2010, Horbach 2010, Liu
et al. 2011, Nieuwenhuis et al. 2021] and PMS [Bofill et al. 2015, Liao et al. 2019,
Demirovic et al. 2019, Liao et al. 2021, Bofill et al. 2022], has received considerable
attention. Motivated by the tremendous progress in academically and commercially
available software for tackling these generalized problems, the scheduling problem
can be efficiently addressed in an out-of-the-box manner without further knowledge in
scheduling or coding experience from the user [Ying et al. 2019]. Refer to [Pinedo 2016]
for a comprehensive understanding of deterministic scheduling models and the related
combinatorial problems. The rest of this section surveys literature related to SAT and
MaxSAT solving techniques applied to scheduling.

As a pioneering work in SAT formalization adapted in the scheduling community,
Crawford and Baker [Crawford and Baker 1994] first encoded scheduling problems into
propositional logical formulas, paving the way for subsequent work [Koshimura et al.
2010] that solved six types of open job-shop scheduling problems. Horbach [Horbach
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2010] formulated the resource-constrained project scheduling problem as a SAT problem,
closing several previously unsolved benchmark instances. Liu et al. [Liu et al. 2011]
presented a SAT-based framework to address task graph scheduling with communication
costs, outperforming mixed-integer linear programming-based approaches [Jin et al.
2005] by more than an order of magnitude.

More recently, the SAT- and MaxSAT-based technology has shown its great po-
tential in a variety of scheduling applications, such as business-to-business scheduling,
employee scheduling and course scheduling problems. Nieuwenhuis et al. [Nieuwenhuis
et al. 2021] considered the employee scheduling of a car rental company, which assigns a
work schedule to each employee, so that demands, legal and contractual constraints are all
met. Experiments demonstrated that modern SAT-based technology can beat the mature
branch-and-cut solving methods implemented in well-known state-of-the-art commercial
solvers such as CPLEX or Gurobi. Demirovic et al. [Demirovic et al. 2019] provided
the first weighted partial maxSAT formulation for the employee scheduling and nurse
rostering problem. Challenging instances were presented to test and improve results of
MaxSAT solvers in the MaxSAT community. Bofill et al. [Bofill et al. 2015] proposed a
partial MaxSAT formulation for the problem of scheduling business-to-business meet-
ings, aiming at minimizing the number of idle time periods in the participants’ schedule.
The comparative study [Bofill et al. 2022] showed that the MaxSAT approach is signifi-
cantly superior to other formulations, such as mixed-integer programming and constraint
programming, sometimes even achieving orders of magnitude shorter time than its com-
petitors. [Achá and Nieuwenhuis 2014] applied SAT solvers to the curriculum-based
course timetabling problem, yielding the best known solutions for 21 out of 32 standard
benchmark instances and improving the previously best known solutions for 9. Addition-
ally, 18 new lower bounds were obtained by applying a partial MaxSAT approach. Lemos
et al. [Lemos et al. 2022] developed a tool UniCorT, equipped with pre-processing, a
MaxSAT solver and a local search procedure to solve university course timetabling
problems, winning the 5th place in 2019 International Timetabling Competition.

The aforementionedworks schedule tasks in a non-preemptive way to achieve specific
scheduling objectives. The limited preemptive counterpart on a single machine was
tackled by SMT [Cheng et al. 2017, Wang et al. 2020] and PMS [Liao et al. 2019, Liao
et al. 2021], where each task is predefined as a chain of several indivisible fragments, and
preemptions are permitted only at fragments’ boundaries. In contrast to the model with
fixed preemption points, this paper considers a more flexible model with k-restricted
preemption, in which the granularity k is introduced to ensure that the length of all
portions in a task, except for the last one, is not less than k units. The current research
state on this problem is summarized in Table 2. As far as we know, no optimal algorithms
for this problem have been explored earlier, and we take the first step towards solving
this problem with SAT and PMS techniques.

4 Boolean Satisfiability (SAT) formulation

The SAT problem is the first problem shown to be NP-complete [Cook 1971], which
aims to determine whether there exists an assignment of Boolean variables that makes a
propositional Boolean formula evaluate true. If such an assignment exists, the formula is
satisfiable, otherwise, the formula is unsatisfiable. A propositional Boolean formula is
typically written in Conjunction Normal Form (CNF), a widely-used expression joined
by a conjunction (logic and) of one or more clauses. A clause is a disjunction (logic or)
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Conditions Complexity Solution quality Literature

General cases NP-hard* Optimal [Ecker and Hirschberg 1993]

General cases O(n · log(n)) Subptimal [Barański 2011]

General cases withm = 2 Open Optimal [Knust et al. 2019]

General cases withm = 2 O(n2) Suboptimal [Pieńkosz and Prus 2015]

General cases withm = 2 O(n · log(n)) Suboptimal [Pieńkosz and Prus 2015]

m = 2 and k is fixed. O(n) Optimal [Ecker and Hirschberg 1993]

m = 2, p1 ≥ 1
2

∑
Tj∈T pj O(n) Optimal [Ecker and Hirschberg 1993]

m = 2, p1 ≥ 4k O(n) Optimal [Pieńkosz and Prus 2015]

m = 2, p1 ≥ 2k, p2 ≥ 3k O(n) Optimal [Pieńkosz and Prus 2015]

m = 2, pj ≥ 2k O(n) Optimal [Knust et al. 2019]

*No optimal algorithm is given.

Table 2: Research status of P |k − pmtn|Cmax problem

of one or more literals, where a literal is an occurrence of a Boolean variable (e.g., x) or
its negation (e.g., ¬x).

To encode theP |k−pmtn|Cmax problem into Boolean propositional logical formulas,
we introduce fives types of Boolean variables.

– bi,uj (1 ≤ j ≤ n, 1 ≤ i ≤ `j , 1 ≤ u ≤ m), which is true if T i
j is allocated to

machineMu.

– sdi,vj (1 ≤ j ≤ n, 1 ≤ i ≤ `j , 0 ≤ v ≤ blog2 Cc) for each sij , where C is the

schedule length by which all tasks are expected to be completed. sdi,vj is true if the

v-th digit of sij is 1 in the binary number, otherwise, the v-th digit of sij is 0. That is,

sij =
∑blog2 Cc

v=0 2v · sdi,vj .

– pdi,vj (1 ≤ j ≤ n, 1 ≤ i ≤ `j , 0 ≤ v ≤ blog2 pjc) for each pij , which is true if the

v-th digit of pij is 1 in the binary number, otherwise, the v-th digit of pij is 0. That is,

pij =
∑blog2 pjc

v=0 2v · pdi,vj .

– pkij (1 ≤ j ≤ n, 1 ≤ i ≤ `j), which is true if p
i
j > 0, otherwise, pij = 0.

– prx,yi,j (1 ≤ i ≤ n− 1, i+1 ≤ j ≤ n, 1 ≤ x ≤ `i, 1 ≤ y ≤ `j), which is introduced

for the case that T x
i and T y

j are executed by the same machine u. prx,yi,j = 1 if T x
i

precedes T y
j when bx,ui ∧ by,uj , otherwise, T y

j precedes T x
i .

Making use of the above Boolean variables, we design several rules to encode the
P |k − pmtn|Cmax problem into a set of clauses. PB(Exp) is a collection of clauses
created by SAT encoding of the linear pseudo-Boolean expression Exp of the form∑

j aj lj{≥,≤,=}b, where aj and b are integers and lj are literals. Pseudo-Boolean
constraints arise in a number of important practical applications, and many approaches
are devoted to the conversion of a pseudo Boolean formulations to CNF formulas [Roussel
and Manquinho 2021], including BDD, sequential weight counters, sorting networks,
adder networks and and binary merge. These encodings are all integrated in Python
toolkit PySAT [Ignatiev et al. 2018].
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(S1) ∀Tj ∈ T , ∀T i
j , T

i+1
j ∈ Tj , T

i
j precedes T

i+1
j :

PB
( blog2 Cc∑

v=0

2v · sdi+1,v
j ≥

blog2 Cc∑
v=0

2v · sdi,vj +

blog2 pjc∑
v=0

2v · pdi,vj
)

(2)

(S2) ∀Ti, Tj ∈ T (i < j), ∀T x
i ∈ Ti, ∀T y

j ∈ Tj , ∀Mu ∈ M, if T x
j and T y

j are

assigned to the same machine, then T x
j precedes T y

j or T y
j precedes T x

j :

¬bx,ui ∨ ¬by,uj ∨ prx,yi,j ∨ C (∀C ∈ P1)

¬bx,ui ∨ ¬by,uj ∨ ¬prx,yi,j ∨ C (∀C ∈ P2)
(3)

where

P1 = PB
( blog2 Cc∑

v=0

2v · sdy,vj ≥
blog2 Cc∑
v=0

2v · sdx,vi +

blog2 pic∑
v=0

2v · pdx,vi

)

P2 = PB
( blog2 Cc∑

v=0

2v · sdx,vi ≥
blog2 Cc∑
v=0

2v · sdy,vj +

blog2 pjc∑
v=0

2v · pdy,vj

) (4)

(S3) ∀Tj ∈ T , ∀T i
j ∈ Tj , if T

i
j is valid, i.e., p

i
j > 0, then T i

j is allocated and executed

on a single machine:

¬pkij ∨
∨

Mu∈M
bi,uj (5)

Furthermore, if a valid subtask T i
j is not the last subtask of Tj , i.e., T

i
j ∈ Tj\{T `

j },
then pij ≥ k:

¬pkij ∨ C (∀C ∈ PB(

blog2 pjc∑
v=0

2v · pdi,vj ≥ k)) (6)

(S4) ∀Tj ∈ T , ∀T i
j ∈ Tj , if T

i
j is void, i.e., pij = 0, then T i

j cannot be allocated on

any machines3:

pkij ∨ ¬b
i,u
j (∀Mu ∈M) (7)

Furthermore, ∀v ∈ {0, 1, . . . , blog2 pjc}, pd
i,v
j = 0 for any void subtask T i

j :

pkij ∨ ¬pd
i,v
j (8)

3 Assigning void subtasks to machines is possible, but this would increase computation time
especially for small k. The reason is explained as follows. That k is small means that tasks can
be split into a large number of small pieces, thus much effort has to be made to allocate these
(valid and void) subtasks. The rule (S4) prevents void subtasks from being executed, thus the
solver does not bother to consider the allocation of these subtasks.
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(S5) ∀Tj ∈ T , the sum of processing time of all subtasks in Tj is equal to pj :

PB
( ∑

T i
j∈Tj

blog2 pjc∑
v=0

2v · pdi,vj = pj

)
(9)

(S6) ∀Tj ∈ T , Tj should end by C:

PB(

blog2 Cc∑
v=0

2v · sd`,vj +

blog2 pjc∑
v=0

2v · pd`,vj ≤ C) (10)

Up to this point, the P |k − pmtn|Cmax problem has been encoded as Boolean
formulas that can be converted to a set of clauses. All of these clauses are conjuncted
with logic and to form a Boolean propositional formula in CNF, and an off-the-shelf
SAT solver is invoked to determine whether the formula is satisfiable. The initial value
of makespan C is set to Clb. If the solver returns a non-empty solution model, it indicates
that the solver has successfully found a variable assignment that satisfies the input
formula, thereby the optimal makespan is equal to Clb. Otherwise (i.e., the solver returns
an empty model), the given makespan Clb is too short to complete all of the tasks. In
this situation, we rescale the value of C by performing a binary search in the region[
Clb + 1, Cub

]
to identify the optimal makespan C∗. The process of searching for the

optimal makespan is summarized in Algorithm 1.
The input is a P |k − pmtn|Cmax problem denoted by {T ,m, k}, where T is a set

of tasks with definite processing times.m = |M| is the number of identical machines
and k is the preemption granularity. The output is the best solution to the scheduling
problem, which includes a schedule S and a mappingM. Schedule S assigns an exact start
execution time and processing time to each subtask in Tj ∈ T , andM gives a mapping
from each valid subtask in Tj ∈ T to a machine inM. Function Encoding(T ,m, k, C)
yields a set of clauses created by constraints (S1)∼(S6), and CallSATSolver(C) calls
a SAT solver to find a solution modelD that satisfies all the clauses in C. If such a model
exists, it will be returned by CallSATSolver(C), otherwise, an empty model ∅ will be
returned.

Initially, we encode the problem {T ,m, k, Clb} into a set of clauses C, assuming
that all tasks can be finished with the minimum schedule length Clb (line 1). A SAT
solver is called to evaluate whether there exists a solution model that satisfies C (line 2).
If a non-empty model D is returned (line 3), the optimal makespan is equal to Clb. The
variable assignment stored in D can produce the associated schedule S and makespan
M (line 4). In particular, from the assignment of Boolean variables sd and pd, the start
execution time and processing time of each subtask in Tj ∈ T can be calculated. If T i

j is

valid, pointed out by pkij = 1, then there must exist a Boolean variable bi,uj equal to 1,

indicating that T i
j is processed byMu. Otherwise, ∀Mu ∈M, bi,uj = 0.

Lines 6-18 tackles the situation where C∗ > Clb. First, we define the lower and
upper bounds of the optimal makespan as left and right, which are initialized to Clb+1
and Cub, respectively (line 6), and then search for the optimal makespan in the region
[left, right]. Givenmid = (left+ right)/2, we explore whether a non-empty model
can be returned with the makespan mid (lines 8-10). If a non-empty solution model
is returned (line 11), suggesting that any makespan greater than mid can satisfy the
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Algorithm 1 Optimal Makespan Identification by SAT Formulation

Input:

A parallel-machine k-restricted preemptive scheduling problem {T ,m, k}.
T is a set of tasks;

m = |M| is the number of identical machines;

k is the preemption granularity.

Output:

Schedule S and mappingM.

1: C = Encoding(T ,m, k, Clb)
2: D = CallSATSolver(C)
3: if D 6= ∅ then

4: return {S,M} based on model D
{Clb is the optimal makespan.}

5: end if

6: left← Clb + 1; right← Cub

{Perform binary search for satisfaction between [Clb + 1, Cub].}
7: while left < right do
8: mid← bleft+ rightc/2
9: C = Encoding(T ,m, k,mid)
10: D = CallSATSolver(C)
11: if D 6= ∅ then

12: right = mid
13: else

14: left = mid+ 1
15: end if

16: end while

17: C∗ ← right
18: return {S,M} based on model D

problem, then the search space can be narrowed by reducing the upper bound tomid (line
12). Conversely, if the returned model is empty (line 13), indicating that any makespan
less thanmid is too small to complete all the tasks, the search space can be reduced by
increasing the lower bound tomid+ 1 (line 14). The search for the optimal makespan is
repeatedly performed until the entire space in [left, right] is traversed (line 7). Finally,
the identified optimal makespan is equal to right (line 17), meeting both of the following
conditions:

(1) C∗ makes the SAT solver output SAT.

(2) C∗ − 1 makes the SAT solver output UNSAT.
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5 Partial Maximum Satisfiability (PMS) formulation

As can be seen from the SAT encoding given in Section 4, if the optimal makespan is
larger than Clb, repeated calls of the SAT solver are inevitable to search for the optimal
makespan in region [Clb + 1, Cub]. This is because that a SAT solver only determines
whether a propositional Boolean formula is satisfiable and returns an empty model with
no more information if the formula is unsatisfiable. In this section, we develop a Partial
Maximum Satisfiability (PMS) formulation to eliminate the solver’s repeated calls. PMS
is an optimized version of SAT that distinguishes between hard and soft clauses in a
propositional Boolean formula. Solving PMS amounts to finding an optimal assignment
that satisfies all hard clauses and the maximum number of soft clauses. To formulate
P |k − pmtn|Cmax problem with PMS, we introduce three types of Boolean variables.

– xi,j,t (1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ t < Cub), which is true if machineMi handles
task Tj from time t to t+ 1.

– yj,t (1 ≤ j ≤ n, pj ≤ t ≤ Cub), which is true if task Tj finished by time t.

– zt (Clb ≤ t ≤ Cub), which is true if all tasks in T finish by time t.

In what follows, we introduce several rules to encode the problem into a set of
hard and soft clauses. Rules (H1) ∼ (H7) generate hard clauses that should be strictly
satisfied, and (S) generates a set of soft clauses that are expected to be satisfied as many
as possible. CNF (Expr) represents a CNF formula encoded from cardinality constraint
Expr. A cardinality constraint is a special type of pseudo-Boolean constraint that limits
the number of literals evaluating true from a given set of literals [Roussel and Manquinho
2021].

(H1) Each machine can handle only one task at a time:

CNF (

n∑
j=1

xi,j,t ≤ 1) (1 ≤ i ≤ m, 0 ≤ t < Cub) (11)

(H2) Each task cannot be processed in parallel:

CNF (

m∑
i=1

xi,j,t ≤ 1) (1 ≤ j ≤ n, 0 ≤ t < Cub) (12)

(H3) Processing time of task Tj is pj :

CNF (

m∑
i=1

Cub−1∑
t=0

xi,j,t = pj) (1 ≤ j ≤ n) (13)

(H4) Each portion of the preempted task is processed continuously for at least k unit of
time, except for the last portion:
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¬xi,j,0 ∨ yj,p if p = pj ,

¬xi,j,0 ∨ xi,j,p otherwise. (14)

xi,j,t ∨ ¬xi,j,t+1 ∨ xi,j,(t+1)+p ∨ yj,(t+1)+p if t+ p+ 1 ≥ pj ,

xi,j,t ∨ ¬xi,j,t+1 ∨ xi,j,(t+1)+p otherwise. (15)

(1 ≤ i ≤ m, 1 ≤ j ≤ n)

(0 ≤ t < Cub − p− 1, 0 < p < min{k, pj + 1})

Formulas (14) and (15) make restrictions for the processing times of subtasks which
start from t = 0 and t > 0, respectively. In particular, for each p ∈ (0,min{k, pj +
1}), formula (14) states that if Tj starts from time 0, it should keep its execution state
at time p, unless Tj is completed by p; on the other hand, formula (15) states that
if a subtask of Tj starts from time t+ 1 (0 ≤ t < Cub − p− 1), then its execution
state should be maintained at t+ p+ 1, unless it is completed by t+ p+ 1.

(H5) If task Tj finishes by time t, then it must finish by t+ 1:

¬yj,t ∨ yj,t+1 (1 ≤ j ≤ n, pj ≤ t < Cub) (16)

(H6) If task Tj finishes by time t, then it must start before time t:

¬yj,t ∨ ¬xi,j,t (1 ≤ i ≤ m, 1 ≤ j ≤ n, pj ≤ t < Cub) (17)

(H7) Relationship between yj,t and zt:

¬zt ∨ yj,t
(Clb ≤ t ≤ Cub, 1 ≤ j ≤ n)

(18)

(S) All tasks in T are expected to complete by time t:

zt (Clb ≤ t ≤ Cub) (19)

Connecting all the hard clauses in (H1) ∼ (H7) and soft clauses in (S) with logic
operator and, we convert the scheduling problem to a PMS problem that can be solved by
any off-the-shelf PMS solver. If all the soft clauses are satisfied, the optimal makespan is
Clb, otherwise, the optimal makespan is larger than Clb. Assume the number of satisfied
soft clauses to be ns, then the optimal makespan isC∗ = Cub−ns+1. The corresponding
schedule and mapping can be derived from the assignment of Boolean variables xi,j,t

(1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ t < Cub).

6 Experiments

In this section, we investigate the optimal makespan and evaluate the performance of the
proposed methods. Solvers for SAT and PMS are Glucose (version 3.0) and LSUPlus,
respectively. Both solvers are integrated in Python toolkit PySAT [Ignatiev et al. 2018].
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Glucose [Audemard et al. 2013] is a standard incremental SAT solver based on Minisat
[Eén 2003], and LSUPlus is an extension of Linear search SAT-UNSAT algorithm
(LSU) [Morgado 2013] for Maximum Satisfiability that supports native cardinality
constraints provided by MiniCard solver [Liffiton and Maglalang 2012]. In contrast to
most encodings that represent constraint

∑n
i=1 xi ≤ k as a list of clauses, the native

encoding produces only one clause for the constraint, which is suitable to encode the
cardinality constraints introduced in Section 5. All the experiments were carried out on
the Ubuntu-20.04 virtual platform, equipped with a 3.0-GHz Intel i7-9700 processor and
16-GB RAM.

6.1 Experimental design

The performance is tested on a set of randomly generated problem instances. In the
base case, the number of tasks n is set to 10 and that of machines m is set to 4. The
processing time pj of each task Tj ∈ T is chosen at random from 10 to 20, and preemption
granularity k is set to 9.

Changes in the values of parameters in the base case may affect the performance
of SAT and PMS techniques. We construct different scenarios to test these possible
changes. Parametric settings of these scenarios are summarized in Table 3. In the P |k −
pmtn|Cmax problem, preemption granularity k and number of machinesm are the most
important parameters. We will examine the changing trend of the optimal makespans
and the solving efficiency under different values of k and m. Specifically, scenario 1
investigates the impact of k, where k is enumerated from 5 to 19. If k is larger than 19,
no task can be preempted, which is beyond the scope of our discussion4. Scenario 2
examines the influence ofm, which is set from 2 to 10. In order to test the scalability
of the methods, we establish another two scenarios with expanding number of tasks
and processing time. In scenario 3, the number of tasks n is extended from 10 to 25 in
increments of 5. In scenario 4, the processing time of each task is enlarged. For each task
Tj ∈ T , pj is randomly selected from t to 2t, with t ranging from 10 to 50 in increments
of 10. Given each specified interval of processing time [t, 2t], the value of k is fixed to
t/2 so that each task can be preempted at least once while not being too small to make
the problem trivial.

Scenario k m n pj

1 5, 6,. . ., 19 4 10 DU(10, 20)
2 9 2, 3, . . ., 10 10 DU(10, 20)
3 9 4 10, 15, . . ., 25 DU(10, 20)
4 0.9t 4 10 DU(t, 2t), t = 10, 20, . . . , 50

Table 3: Experimental design

6.2 Evaluation on the optimal makespan

For better clarity and concise presentation, we combine scenarios 1 and 2 to show how
the optimal makespan changes with variable preemption granularity (where k ranges

4 The reason why we increase the value of k from 5 is that the heuristics [Barański 2011, Pieńkosz
and Prus 2015] can easily find the optimal solution when k is less than the half of the processing
time.
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from 5 to 19 in increment of 2) and number of machines (wherem ranges from 2 to 10).
For each fixed parameter configuration, 10 instances were generated. Thus, a total of
9× 8× 10 = 720 instances were evaluated. Figure 2 displays the result, where each data
point represents the average makespan of 10 instances. The lower bound is computed
by McNaughton’s wrap-around rule with arbitrary preemption, and the upper bound is
estimated by two heuristics, i.e., the LPT algorithm that disallows preemption and the
LPT-modified algorithm that allows preemption to occur at boundaries of subtasks of
length k.
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Figure 2: Optimal makespan under the setting of n = 10 and pj ∼ DU(10, 20)

As shown in Fig. 2, given a fixed k, the optimal makespan C∗ decreases as m
increases. This is naturally anticipated since more machines would enable more tasks to
be processed in parallel and completed in a shorter time span. It can be also observed that
with the increase ofm, tasks have to be split into smaller pieces to guarantee C∗ = Clb.
For instance, when m ≤ 6, limiting k to no larger than 9 can guarantee an average
machine load that achieves C∗ = Clb, while whenm = 7, the upper limit of k is reduced
to 7 to make C∗ = Clb, and further decreased to 5 when m ≥ 8. The case of m = 10
(which equals n) is trivial since each task can be scheduled on a single machine from
time 0 and processed to completion without preemption. In consequence, the lower and
upper bounds, as well as the optimal makespan, all overlap. In the rest of this section,
we omit the special case thatm equals n.

Given a fixed m where 2 ≤ m ≤ 9, the optimal makespan presents an increasing
trend and gradually deviates from Clb as k goes up. We explain the reasons as follows.
When k is small enough (e.g., k = 5), tasks can be divided into a large number of
small pieces to ensure that all machines’ loads (schedule lengths) are identical. At this
point, finding a feasible schedule that makes C∗ = Clb is an easy task. As k grows, the
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Figure 3: Statistics with various preemption granularities k (scenario 1)

number of subtasks decreases while the length of each subtask increases. In this situation,
finding an average machine load becomes impossible, leading to a longer makespan that
is greater than Clb.

The optimization methods can be exploited to evaluate approximation algorithms.
As can be seen in Fig. 2, the LPT-modified algorithm performs no worse than the LPT
algorithm in all cases. By comparing the solution of the LPT-modified algorithm with
the optimal makespan C∗, we can safely conclude that the LPT-modified algorithm is
able to produce the optimal solution when m = 9. In Section 7, more details will be
revealed on the evaluation of heuristics.

6.3 Evaluation on critical parameters

In this subsection, we test the impact of critical parameters k andm on the performance
of SAT and PMS techniques. Clb and Cub are calculated by McNaughton’s rule and
the LPT-modified algorithm, respectively. For each fixed parameter configuration, 50
instances were generated. Overall, we built 1150 instances in total for testing, with 750
and 400 instances generated for scenarios 1 and 2, respectively. A time limit of 300
seconds is imposed on each instance. If a method fails to produce the optimal result within
the time limit, it is terminated and applied to the next instance. Metrics for comparison
include (1) the proportion of instances solved within the time limit and (2) the average
computation time spent on the solved instances.

6.3.1 Study on preemption granularity k

This subsection discusses the effect of preemption granularity k on the performance of
SAT and PMS formulations. The summary information is depicted in Fig. 3. Figure 3(a)
shows the solving efficiency of two methods, in which each data point is the average
computation time of 50 instances. Generally, when k ≤ 11, performances of both SAT
and PMS enhance with the increase of k. By contrast, when k ≥ 12, the average runtime
of SAT presents an up-down trend, while that of PMS jumps considerably as k goes up.
In what follows, we will elaborate on the reasons of such performance changes.

When k is small enough (k ≤ 11), tasks can be split into small pieces to guarantee a
machine load balanced schedule. Figure 3(b) shows that when k ≤ 11, C∗ is equal to
Clb without exception. In this case, the SAT-based method only needs to call the solver
once to verify that Clb is large enough to make all the clauses satisfiable. Similarly,
PMS can also satisfy all the clauses (including hard and soft clauses). Therefore, the
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Figure 4: Numbers of variables and clauses generated by SAT formulation in scenario 1
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Figure 5: Numbers of variables and clauses generated by PMS formulation in scenario 1

solving efficiency of SAT and PMS is solely dependent upon the time taken to identify
the satisfiable solution, which is affected by the search space and related constraints. In
SAT, as depicted in Fig. 4, fewer Boolean variables and clauses are generated when k
gets larger. The reduction on the number of variables and clauses decreases the problem
size and thus improves the search speed. For PMS, as shown in Fig. 5, when k ≤ 11, the
number of variables fluctuates without substantial increase5, while that of clauses grows
gradually. The constant number of variables reflects the limited scope of the search
space, and the increasing number of clauses constrain the search direction more strictly.
This enables the solver to prune the search space more efficiently, thereby reducing the
average computation time effectively. Therefore, as shown in Fig. 3(a), when k ≤ 11,
the overall performance of both SAT and PMS improves as k goes up.

When k is increased to larger than 11, the optimal makespan C∗ gradually deviates
from the lower bound Clb (as shown in Fig. 3(b)). This leads to a situation that is more
complicated. In SAT, to precisely find out the minimummakespan that makes the formula
satisfiable, the SAT solver has to be called repeatedly and indicate that not all the clauses
can be satisfied when the tested makespan is between Clb and C

∗− 1. Likewise, in PMS,
not all the soft clauses zt(Clb ≤ t ≤ Cub) can be satisfied whenC

∗ > Clb. To prove that
all the clauses are satisfiable (i.e., to report satisfiability), the solver only needs to find
one of the feasible solutions to make the given CNF formula true and stops searching as
soon as the solution has been identified. In comparison, to declare that not all the clauses
are satisfiable (i.e., to report unsatisfiability), the solver has to traverse the entire search
space to ensure that no variable assignment can satisfy the given formula. Apparently,

5 The number of variables is closely related to Clb and Cub. If both Clb and Cub are independent
of k, the number of variables is constant. The reason why the number fluctuates here is that Cub

computed by LPT-modified algorithm undulates with the increase of k.
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when k ≥ 12

it can be inferred that reporting an unsatisfiable result is more time-consuming than
searching for a satisfiable one in a space of the same size. In what follows, we will collect
the time of tackling satisfiable and unsatisfiable instances to demonstrate the great impact
of reporting unsatisfiability on the solving efficiency of SAT and PMS. Statistics of SAT
and PMS are shown in Figs. 6 and 7, respectively.

In the SAT-based method, to solve an instance with C∗ > Clb, the SAT solver may
report unsatisfiability several times during binary search. Figure 6(a) shows that there is
no huge gap between the numbers of satisfiable and unsatisfiable reports, and Figure
6(b) shows that in each round of calls, the average time of declaring unsatisfiability is
substantially longer than that of reporting satisfiability, although the time of reporting
unsatisfiability generally shows a downward trend. Such decline is due to the reduced
search space led by the decreasing number of variables and clauses (as shown in Fig.
4). Overall, Figure 6(c) compares the total time taken to report satisfiability and unsat-
isfiability at each k ≥ 12, suggesting that it is the time of declaring unsatisfiability for
instances with C∗ > Clb that has a greater impact on the solving efficiency of the SAT
technique. The up-down trend of the total runtime is jointly led by the increasing number
of unsatisfiable reports and the decreasing time of each unsatisfiable report.

Figure 7 compares the PMS’s total time of solving different types of instances when
k ≥ 12. Solving instances with C∗ > Clb requires identifying the minimum number
of unsatisfiable soft clauses while solving those with C∗ = Clb only needs to give a
feasible variable assignment that satisfies all the clauses. Evidently, as shown in Fig.
7, the total time spent on instances with C∗ > Clb is significantly longer than solving
instances with C∗ = Clb, which always stands at a very low level. This demonstrates
that the time of solving instances with C∗ > Clb is the dominant factor to affect the
PMS’s computation time.
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Figure 8: Statistics with various numbers of machinesm (scenario 2)
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Figure 9: Numbers of variables and clauses generated by SAT in scenario 2

6.3.2 Study on number of machinesm

This subsection discusses the solving efficiency of SAT and PMS with changing number
of machinesm. Although Fig. 2 shows that whenm = 9, the heuristic LPT-modified
algorithm can output the optimal schedule, we still evaluate the performance of SAT
and PMS in this case to maintain the integrity of evaluation. The summary statistics
when m ranges from 2 to 9 is exhibited in Fig. 8. Figure 8(a) depicts the change of
performance with variousm, in which each data point is the average computation time
of the solved problem instances. A number with an arrow in the figure denotes the
proportion of instances solved within the time limit and is omitted if the solver addressed
all the 50 instances. Generally, Figure 8(a) shows that the performance of SAT fluctuates
significantly, while that of PMS remains relatively stable with the increasingm. In what
follows, the performance variations of both methods will be analyzed.
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Figure 10: Numbers of variables and clauses generated by PMS in scenario 2
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Figure 11: Time of reporting satisfiability and unsatisfiability by SAT solver for each
instance whenm = 7, 8, 9

As depicted in Fig. 8(b), when m ≤ 6, C∗ is equal to Clb, which means that the
SAT-based method only needs to call the SAT solver once to determine the optimal
solution. Figure 8(a) shows that in this situation, the average computation time of SAT
presents a slight decrease from 0.5 to 0.2 seconds. The gradual decrease in runtime is due
to the reduced search space. As shown in Fig. 9, the number of variables generated by
SAT shows an overall decline, while that of clauses presets a steady rise. The reduction
of the number of variables cuts down the search space, and the increase of the number of
clauses sets more constraints for a limited number of variables. This enables the solver
to trim the search space more efficiently, so as to speed up the process of finding out a
feasible assignment of variables.
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Figure 12: Total time of solving instances with C∗ = Clb and C
∗ > Clb by PMS solver

with variousm

When m ≥ 7, the optimal makespan C∗ deviates from Clb (as depicted in Fig.
8(b)), and the performance of SAT goes unstable accordingly (as shown in Fig. 8(a)).
To investigate the main factors that influence the performance, in Fig. 11, we collect
the runtime of each unsatisfiable and ununsatisfiable report for each instance when
m = 7, 8, 9. If the solver failed to report a result within the time limit, its runtime
is marked with a red triangle at 300 seconds. Clearly, according to Fig. 11, the time
spent in reporting unsatisfiability is considerably longer than that taken by reporting
satisfiability, which suggests that reporting unsatisfiability by traversing the search space
is the main reason that affects the efficiency. Another worth noting fact is that the solver
accomplished the majority of instances within the time limit whenm = 7, while suffered
timeout when trying to report every unsatisfiable result whenm = 8 andm = 9. This
is because that the case of m = 7 generates fewer variables and clauses than that of
m = 8 and m = 9 (as depicted in Fig. 9), resulting in smaller-sized problem to be
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tackled. Therefore, declaring unsatisfiability whenm = 7 takes less time than the other
two cases.

In PMS, Figure 8(a) shows that the performance levels off with increasingm. The
average computation time of PMS is mainly influenced by the number of variables and
clauses (as shown in Fig. 10), which maintains the same down and up trend asm goes
up. It is worthy to be noted that when m = 9, the number of variables and clauses is
significantly less than that when m = 2 (as shown in Fig. 10), while the computation
time in these two cases is almost identical (as shown in Fig. 8(a)). The reason can be
explained by observing Fig. 12, which compares the total time spent in solving instances
with C∗ = Clb and C∗ > Clb. When m ≤ 6, the computation time of PMS is solely
determined by the time of solving instances with C∗ = Clb, while whenm > 6, the time
of solving instances with C∗ > Clb accounts for a major part of the total computation
time. When C∗ > Clb, the solver has to figure out the minimum number of unsatisfiable
soft clauses, which is more time-consuming than proving a satisfiable formula even
given the search space of the same size. This explains why the search space ofm = 9 is
much smaller than that ofm = 2, while the total computation time of PMS in these two
cases is almost the same.

6.4 Evaluation on Scalability
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Figure 13: Performance evaluation on scalability

This subsection investigates the scalability of SAT- and PMS-based methods when
the number of tasks and the range of processing time are extended. Parametric settings are
consistent with scenarios 3 and 4 described in Subsection 6.1. For each fixed parametric
configuration, 10 instances are generated.

Figure 13 displays the performance evaluation with various task numbers and process-
ing time ranges. Obviously, as depicted in Fig. 13(a), with the increase of n, the solving
efficiency of both SAT and PMS techniques deteriorates so seriously that no instances
can be solved when n reaches 25. This indicates that the SAT- and PMS-based methods
are both inappropriate for solving scheduling with large number of tasks. With respect
to the expanding processing time ranges, Figure 13(b) shows that with the increase of
processing time, the average runtime of PMS soars rapidly and no instances can be solved
within the time limit when t is increased to 40, whereas that of SAT increases moderately
from 0.2 to 2 seconds.
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Figure 14: Numbers of variables and clauses generated by SAT in scenarios 1-4
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Figure 15: Numbers of variables and clauses generated by PMS in scenarios 1-4

The optimal makespanC∗ of each instance in scenarios 3 and 4 is equal toClb without
exception, thus both SAT- and PMS-based methods only need their corresponding solvers
to find a feasible variable assignment to satisfy all the clauses. The computation time
is mainly affected by the search space and the associated constraints, embodied in the
number of Boolean variables and clauses. Figures 14 and 15 exhibit the numbers of
variables and clauses generated by SAT and PMS. To observe the results more clearly,
we compare the problem scales in all the four scenarios. As illustrated in Figure 14 (red
curves), the numbers of variables and clauses increase dramatically with the increasing
number of tasks, but remains reasonably modest with the expansion of processing time
ranges. This explains why the performance of SAT degenerates drastically as the number
of tasks increases while keeps efficient with expanding ranges of processing time. Figure
15 (red curves) shows that the numbers of variables and clauses generated by PMS
increase noticeably when either the number of tasks or the processing time increases. As
a result, in scenarios 3 and 4, the performance of PMS suffers from sharp degeneration
accordingly.
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7 Evaluating heuristics

´Pienkosz et al. [Pieńkosz and Prus 2015] presented the 2RS heuristic algorithm, which
considers the k-restricted preemptive scheduling problem on two parallel identical ma-
chines, denoted byP2|k−pmtn|Cmax. They found that when the preemption granularity
k is relatively small, the makespan of schedules computed by 2RS is equal to Clb, imply-
ing that the makespan found by 2RS is optimal. However, as k increases, the makespan
output by 2RS becomes larger than Clb. Due to the lack of the optimal solution, the
quality of the reported makespan is uncertain in this case.

In this section, we evaluate the performance of 2RS on 80 randomly generated
instances using the optimizationmethods. Each instance contains 10 tasks with processing
times randomly generated from 10 to 20. The value of k is enumerated in increments of
2 from 5 to 19. As described in [Pieńkosz and Prus 2015], the computational complexity
of 2RS is O(n2). In our experiments, 2RS produces approximate solutions in around 1.5
milliseconds, which is substantially faster than the optimal methods.

Figure 16(a) displays the average values of the makespan obtained by heuristics for
different k values. Each data point represents the average makespan of 10 instances.
For better comparison, we collect the lower bound computed by McNaughton’s rule
and two makespans output by two classical heuristics, i.e., the LPT algorithm and its
modification, denoted by LPT and LPT-m in Fig. 16(a), respectively. It is obvious from
Fig. 16(a) that though 2RS is always superior to LPT and LPT-modified algorithms no
matter how k is changed, it performs worse when addressing problems with larger k. To
be specific, when k is small (i.e, k ≤ 7), the makespan computed by 2RS is equal to C∗,
while when k ≥ 9, 2RS’s solution becomes larger than C∗.

Figure 16(b) depicts the difference between 2RS’s output and C∗ on each instance.
When k ≤ 7, 2RS managed to findC∗ for all the instances, while when k = 9, 2RS failed
to identify C∗ in one out of 10 instances. More seriously, when k ≥ 11, 2RS could only
identify C∗ for merely about half of the instances. Though the percentage of instances
optimally solved by 2RS is less satisfactory, the maximum difference between 2RS’s
output and C∗ is just 1.5, which is quite small when compared to C∗. This demonstrates
that 2RS is capable of obtaining high-quality approximation solutions, even if such
solutions are not exactly equivalent to the optima.
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8 Conclusions

In this paper, we studied the problem P |k − pmtn|Cmax, i.e., the parallel-machine k-
restricted preemptive scheduling problem to minimize the makespan. In order to obtain
the optimal solution, we presented two optimization methods based on the formulations
of Boolean Satisfiability (SAT) and Partial Maximum Satisfiability (PMS). This is
the first attempt at finding the optimal makespan for the P |k − pmtn|Cmax problem.
Through a series of experiments, we made a detailed presentation on how the optimal
solution changes with various values of preemption granularity and machine number. In
addition, the factors that affect the solving performance of the proposed methods were
discussed. Finally, existing heuristic algorithms LPT, 2RS was evaluated. With the help
of optimization methods, the quality of solutions output by heuristic algorithms can be
accurately judged.
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