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Abstract: Knowing the behavior of solar energy is imperative for its use in photovoltaic systems; 
moreover, the number of weather stations is insufficient. This study presents a method for the 
integration of solar resource data: images and datasets.  For this purpose, variables are extracted 
from images obtained from the GOES-13 satellite and integrated with variables obtained from 
meteorological stations. Subsequently, this data integration was used to train solar radiation 
prediction models in three different scenarios with data from 2012 and 2017. The predictive 
ability of five regression methods was evaluated, of which, neural networks had the highest 
performance in the scenario that integrates the meteorological variables and features obtained 
from the images. The analysis was performed using four evaluation metrics in each year. In the 
2012 dataset, an R2 of 0.88 and an RMSE of 90.99 were obtained. On the other hand, in the 2017 
dataset, an R2 of 0.92 and an RMSE of 40.97 were achieved. The model integrating data improves 
performance by up to 4% in R2 and up to 10 points less in the level of dispersion according to 
RMSE, with respect to models using separate data. 
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1 Introduction  

The sun provides us with a source of energy that can be harnessed to produce electricity 
[Acciona, 21]; sunlight can be transformed into electric power using photovoltaic 
systems and the heat of the Sun; however, the Sun radiation that arrives at the surface 
of Earth undergoes a weakening process due to several dispersion, reflection and 
absorption factors, as can be observed in [IDEAM, 21]. Therefore, it is important to 
understand the solar power levels at a location to determine the size of systems that 
allow its utilization. 

There are various types of instruments that measure solar radiation [Kipp & Zonen, 
21] and some organizations interested in monitoring the meteorological conditions of a 
region have at their disposal a limited number of measurement stations to make 
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observations regarding the behavior of the characteristics that determine the weather. 
In Colombia, IDEAM is a government entity dependent on the Minister of Environment 
and Sustainable Development and oversees handling the scientific information related 
to the environment; likewise, there are other entities [Alcaldía de Santiago de Cali, 21], 
[Agroclima, 21] in the public and private spheres that also make these kinds of 
measurements. 

Although there are various organizations that monitor weather conditions, the total 
number of weather stations [IDEAM, 20], is not sufficient to cover the Colombian 
territory, since they imply additional costs for maintenance and surveillance [Stel et al., 
19]. Additionally, many stations do not capture radiation values due to the adverse 
conditions they are exposed to [Rodríguez Gómez, 19]. Therefore, several researchers 
have developed different physical, statistical, and artificial intelligence models to 
estimate solar radiation supported by terrestrial and satellite measurement instruments. 
Likewise, integrating data and models can enhance algorithm performance and yield 
more dependable estimation outcomes. 

According to the research of [Suárez Vargas, 13], physical and statistical models 
are based on an energy balance between the radiation reaching the top of the atmosphere 
and the radiation reflected by the satellite. On the other hand, physical models use 
parameters of absorption, spreading, cloud albedo and superficial albedo, although the 
difficulty of these models lies in knowing these atmospheric values at a local level, 
according to the research of [Zarzalejo et al., 06]. In the case of statistical models, 
regressions are used between the radiometric measurements on the surface and the 
information recorded by the satellite, as observed in the work of [Poveda Matallana, 
20]. 

Many studies have used satellite images to calculate solar radiation; the work of 
[Doncel Ballén, 11] used the Heliostat 1 algorithm to estimate solar irradiance using 
images from the GOES satellite over the Cundiboyacense region in Colombia; in a 
similar way, the research of [Albarelo et al., 15] used a modification of the Heliosat-II 
method, developed to process images from the Meteostat satellite, for its use with 
images from the GOES satellite in solar radiation estimation over the French Guyana; 
in the same way, the work of [Pagola et al., 14] implemented a combination between 
the Heliostat 1 and Heliostat 2 methods to estimate solar radiation in Spain, using 
images coming from the second generation Meteostat satellite. The Heliostat method 
has also been used to estimate solar radiation in research developed by [Hammer et al., 
01], [Hammer et al., 03], [Kallio-Myers et al., 20], [Lorenz et al., 12], [Lorenz et al., 
04], [Rigollier et al., 04] and [Zarzalejo et al., 06]. 

Other researchers have used the Angström-Prescott method to calculate solar 
power using radiometric stations. According to the [Prescott, 40], the model relates the 
monthly average with the solar radiation on a clear day using the hours of daily sunlight. 
Research by [Poveda Matallana, 20] validated the solar radiation on the surface over 
Orinoquía from images obtained from the GOES satellite. The research indicated that 
the Angström-Prescott coefficients depend on geographic and climatic parameters and 
on dynamic, spatial and physical properties of the atmosphere, which explains the need 
for radiation data and sunshine obtained by measurement stations on earth. In the same 
way, the work of [Guzman M. et al., 21] utilized the Angström-Prescott coefficients to 
estimate global solar radiation using sunshine data in the coffee zone in Colombia. 

In the research of [Nwokolo et al., 22], predictions of global solar radiation 
potential were made using probabilistic methods. Twenty-nine Angström-Prescott (AP) 
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empirical models were analyzed. The M1-M13 models were fitted using generalized 
datasets by altering the original model. Models M14-M20 were taken from the 
literature. Models M21-M29 used datasets from meteorological stations in Nigeria. 
Model M13 achieved the highest performance with an RMSE of 0.0001, an rRMSE of 
0.0176%, a maximum R2 value of 0.990 and a global performance indicator GPI of 
0.9321. 

[Geetha et al., 22], performed solar radiation estimates in India using neural 
network methods. The best neural network model was adjusted with 12 hidden layers 
and showed an R2 of 0.9340. [Oyewola et al., 22] demonstrated that air temperature and 
humidity improve solar power predictions. Twenty (20) models were adopted based on 
historical data captured over 35 years (1984-2018) at 6 monitoring stations in the Fiji 
Islands. The MD17 model achieved the one with the highest performance with an R2 
0.988. 

In this review, we also found studies that used artificial intelligence techniques to 
evaluate solar resources using historical climatic data or images provided by 
geostationary satellites. The studies of [Eissa et al., 13], [Hammer et al., 01], [Linares-
Rodriguez et al, 13], [Linares-Rodriguez et al., 15], [Martín Pomares et al, 06], 
[Mazorra Aguiar et al., 15], [Ordoñez-Palacios et al., 20], [Gürel et al., 20], [Jumin et 
al., 21] and [Ağbulut et al, 21], used machine learning algorithms. On the other hand, 
the studies of [Alzahran et al., 17], [Jiang et al., 19], [Jiang et al., 20], [Kaba et al., 18], 
and [Chandola et al., 20] utilized deep learning techniques. 

The work of [Ordoñez Palacios et al., 22] uses machine learning algorithms to 
evaluate the solar resource from satellite images. It compares the results obtained from 
models trained with datasets from different altitudes in Colombia. The best result was 
achieved with Random Forest in the M1-M5 models using 100% of the data. An R2 of 
0.82 and an RMSE of 107.05 were obtained. In contrast, this research achieves superior 
performance in solar radiation prediction because it integrates two dimensions of 
information. The neural networks achieved a performance of 0.92 in R2 and 40.97 in 
RMSE. 

This research uses a mixed model. It uses a mathematical method to extract features 
from satellite imagery, then integrates them with meteorological variables and 
implements a machine learning model to estimate solar radiation. 1447x1636 pixel 
images taken from the GOES-13 meteorological satellite from 2012 and 2017 were 
processed [US Department of Commerce, 21] using Python libraries (Rasterio, Pyproj) 
and mathematical equations. It is important to highlight that (i) a model was built based 
on the empirical Ångström-Prescott method for calculating solar radiation from 
historical solar brightness data; (ii) a solar radiation prediction scenario was proposed 
based on variables extracted from the images; (iii) a solar radiation prediction scenario 
was constructed using meteorological variables; (iv) a scenario was implemented to 
estimate solar radiation incorporating two dimensions of information: variables 
extracted from the images and meteorological variables. 

This paper contains the sources of information and methodology used, the results 
of the research, discussion of the results, conclusions, and future work. 
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2 Materials and methods 

The following are the questions that guided the research, the sources of information, 
the data processing and the models used to evaluate the integration of data for solar 
radiation prediction. 

2.1 Questions of interest 

Solar power is a renewable resource that can be transformed into electric power using 
photovoltaic systems; therefore, it is fundamental to understand its behavior regarding 
the radiation levels reaching the Earth, either by measurement instruments, satellite 
images or artificial intelligence predictive models. 

Considering that the number of measurement stations in Colombia is insufficient 
and that they are exposed to constant risks, such as to crime issues, geographic location, 
and adverse climatic conditions, it is necessary to evaluate existing methods for 
estimation; therefore, questions such as the following are important: what is the process 
to calculate solar radiation from images and what other variables are obtained? What 
techniques of machine learning can be utilized to predict solar radiation, and which 
have a better performance? What are the results obtained by utilizing meteorological 
variables extracted from the images or the integration of both? These questions will be 
answered throughout this paper. 

2.2 Information sources 

For this research, historical images of the visible channel were utilized, obtained from 
the GOES-13 meteorological satellite during 2012 and 2017; additionally, two sets of 
data from air quality stations (Republic of Argentina School –ERA– and Compartir) of 
the Administrative Department of Environment Management from the Mayoralty of 
Cali and a dataset of daily sunshine from the Univalle station provided by IDEAM were 
obtained. 

The images were captured by the satellite every hour and a half, and for this 
research, the pictures obtained from 6 am to 6 pm were utilized; however, it is important 
to highlight that only a few days throughout the year account for all the images; on the 
other hand, both sets of air quality data (ERA and Compartir) include historical 
observations of wind speed and direction, temperature, rain, humidity and solar 
radiation recorded every hour. Tables 1 and 2 show the metadata of the images and 
datasets utilized. 

 
ID Year Images Size Total 

1 2012 1991 out of 4758 9.6 MB 19.11 GB 
2 2017 2135 out of 4745 9.6 MB 20.50 GB 

Table 1: GOES-13 Satellite images 

Station ERA Univalle Compartir 
Latitude 3.44779 3.3780 3.4282312578 
Longitude -76.51918 -76.53388889 -76.4665448467 
Year 2012 2012 2017 
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Registers 8634 out of 8784 329 out of 366 8166 out of 8760 
Interval Hourly Daily Hourly 
Percentaje 98.3% 89.9% 93.2% 

Table 2: Datasets from the air quality stations 

The images were taken by the government agency for Oceanic and Atmospheric 
Administration (NOAA) [NOAA Class, 21]. In this research, a web tracker was 
developed for the automatic download of satellite images, files with a goal extension 
were filtered, and images from channels other than the visible channel. The images 
obtained from the satellite were processed with the software Weather and Climate Tools 
from the NOAA (WTC) [NOAA, 21] to visualize and export the data to the NetCDF 
format, which was used for the model developed in the programming language Python 
to calculate solar irradiance using the Angström-Prescott method. 

Estimation of solar radiation (𝐻) of a geographic location using the Angström-
Prescott model requires calculation of the coefficients a and b, the cloudiness index 
(𝑛!) and solar radiation at the boundary of the earth's atmosphere (𝐻"#$), according to 
research by [Poveda Matallana, 20]. The coefficients are obtained from the relationship 
between the number of hours of sunlight and global solar radiation, with both 
parameters captured on the surface, according to [Guzman M., 21]. In this sense, to 
obtain the cloudiness index, first, it is necessary to transform the images to the TIFF 
format using the libraries Rasterio and PyProj from Python. The research by [Ordoñez 
Palacios et al., 22] presents the process to obtaining the variables involved in the 
calculation of the cloudiness index (𝑛!). 

Estimating solar radiation from satellite imagery requires solar radiation and 
brightness data captured by ground-based measurement stations; however, the air 
quality datasets from the DAGMA (ERA and Compartir) contain only solar radiation. 
Consequently, sunshine data was requested from a nearby IDEAM station. In this case, 
they provided data from the Univalle station, located 9.3 km from the Compartir station, 
and 7.8 km from the ERA station. Later, the sunshine data were integrated into the ERA 
station, although it was not possible to do the same for the data from the Compartir 
station, since IDEAM does not have data on sunshine for 2017. 

2.3 Methodology 

This work is based on the CRISP-DM methodology. Some manuscripts such as that of 
[Solano et al., 22], [Plotnikova et al., 22] and [Huber et al., 19], are also based on the 
same methodology for building data mining models. The process for extracting the 
satellite image features, data processing and hyperparameter fitting can be seen in 
[Ordoñez Palacios et al., 22]. The empirical Angström-Prescott method was used to 
obtain solar radiation from solar brightness data. Then, three scenarios were built to 
predict irradiance based on meteorological data, data extracted from satellite images 
and the integration of the variables from both cases. 

Five regression methods were developed and applied to each of the proposed 
scenarios. The regression models were developed in the Python programming language 
and their performance was evaluated using four metrics described below. The analysis 
of the results obtained in the research can be seen in the discussion and conclusions. 
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The MinMaxScaler method was used to regulate the data between 1 and 0. 
Regression algorithms such as multiple linear regression, artificial neural networks, and 
the ensemble methods XGBoost for regression, gradient boosting regressor and random 
forest regressor were used. 

2.3.1 Linear Regression 

This algorithm fits a linear model with coefficients to minimize the residual sum of 
squares between the targets observed in the data set and the targets predicted by the 
linear approximation [Scikit-learn, 07)]. 

2.3.2 Gradient Boosting for regression 

Is a estimator builds an additive model in a forward stage-wise fashion; it allows for 
the optimization of arbitrary differentiable loss functions. In each stage a regression 
tree is fit on the negative gradient of the given loss function [Scikit-learn, 07)]. 

2.3.3 Random Forest regressor 

Is a meta estimator that fits a number of classifying decision trees on various sub-
samples of the dataset and uses averaging to improve the predictive accuracy and 
control over-fitting [Scikit-learn, 07)]. 

2.3.4 Neural networks 

In terms of neural networks, the Multi-layer Perceptron (MLP) is a supervised learning 
algorithm that learns a function 𝑓(. ): 𝑅% → 𝑅& by training on a dataset, where 𝑚 is the 
number of dimensions for input and 𝑜 is the number of dimensions for output. Given a 
set of features 𝑋 = 𝑥', 𝑥(, … , 𝑥% and a target 𝑦, it can learn a non-linear function 
approximator for either classification or regression [Scikit-learn, 07)]. 

2.3.5 XGBoost for regression 

According to the documentation, XGBoost is an optimized distributed gradient 
boosting library designed to be highly efficient, flexible, and portable. It implements 
machine learning algorithms under the Gradient Boosting framework. XGBoost 
provides a parallel tree boosting (also known as GBDT, GBM) that solve many data 
science problems in a fast and accurate way [XGBoost, 22]. 

2.3.6 Hyperparameter fitting 

In the matter of neural networks, the Multilayer Perceptron was used and tested with 
the 2012 data, about 4000 different configurations in 7 hyperparameters, establishing a 
search space of 3 to 7 different values in each hyperparameter as shown in table 3. In 
this work we have used the hyperparameter fitting method based on the random search 
of the scikit-learn library. The hyperparameter search space, the description taken form 
[Scikit-learn, 07)], and best estimator values used in the artificial neural networks are 
presented in Table 3. 
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ID Hyper-
parameter Description Search space Found value 

1 Optimization 
algorithm 

Is used to fit a neural 
network model to a 
training data set. 

["lbfgs", 
"adam", "sgd"] Adam 

2 Number of 
hidden layers 

Refers to the number of 
hidden layers that 
represent higher level 
characteristics or 
attributes of the data. 

[[125, 100, 75, 
50, 10], [100, 
75, 50, 10], 
[100, 75, 50], 
[100, 75]] 

[125, 100, 75, 
50, 10] 

3 
L2 
regularization 
term 

Allows you to reduce the 
value of parameters to 
make them small. 

loguniform(1e-
5, 1e-3) 0.000146232 

4 Activation 
function 

It transmits the 
information generated by 
the linear combination of 
weights and inputs 
through the output 
connections. 

["identity", 
"logistic", 
"tanh", "relu"] 

Relu 

5 Learning rate 

It is a value que affects 
the speed at which the 
algorithm reaches 
(converges to) the 
optimal weights. 

["constant", 
"adaptive", 
"invscaling"] 

Invscaling 

6 
Maximum 
number of 
iterations 

Number of iterations of 
the optimization 
algorithm up to 
convergence. 

[200, 1000, 
5000, 10000] 1000 

7 
Maximum 
number of 
epochs 

For stochastic 
optimization algorithms, 
determine the number of 
times each data point will 
be used, not the number 
of gradient steps. 

[5, 10, 15, 20, 
25, 30, 40] 30 

Table 3: Search space and values of the best model 

2.3.7 Description of variables 

Three regression models were built to evaluate the integration of data for solar radiation 
prediction: the first (M1) used meteorological variables, the second (M2) only included 
the features extracted from the satellite images and the third (M3) integrated both 
groups of variables. Table 4 describes each of the variables used by the different 
models. 
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ID Source Variable Description 

1 

Measurement 
station 

Wind speed 
It refers to the displacement of air at a point 
and at a given moment; it is measured in 
meters per second (m/s). 

2 Wind direction Indicates the direction in degrees (0-360) 
from where the wind is coming. 

3 Temperature 
It is related to the notion of heat in the 
atmosphere and is measured in Celsius 
degrees. 

4 Rain 
It is defined as the amount of water that 
falls per unit of time in each place, 
measured in millimeters (mm). 

5 Humidity It refers to the vapor present in the 
atmosphere. 

6 
Solar Radiation 
(Target 
Variable) 

Energy received from the sun by 
electromagnetic waves, measured in 
W/m². 

7 

Satellite 
images 

Reflectance It corresponds to the value of the solar 
radiation that is reflected by the clouds. 

8 Cloudiness 
index 

It is a value related to the cloudiness 
conditions of clear, partly cloudy, and 
cloudy skies (0-1). 

9 
Solar radiation 
at the edge of 
the atmosphere 

It is the value of the electromagnetic 
radiation emitted by the Sun, before 
entering the atmosphere, measured in 
W/m². 

10 
Number of 
hours of solar 
brightness 

It is the time in hours during which the sun 
has an effective solar brightness. 

Table 4: Description of variables 

2.3.8 Evaluation Metrics 

The predictive ability of the regression methods was calculated using the metrics MBE, 
R2, RMSE and rRMSE. 

 
The MBE metric (1) provides insight into the long-term performance of models 

[Manju, 19]. The closer the MBE value to zero, the better the estimation result [Fan et 
al., 18]. 

	
𝑀𝐵𝐸 =	 '

)
∑ (𝑦* − 𝑥*))
*+'     ( 1 ) 

 
The R2 metric (2) is used to determine how well the regression line approximates 

the actual data points [Gouda et al., 19]. R2 value changes between 0 and 1, and the 
closer this value is to 1, the better the performance of the model. 
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𝑅( = 1 − ,(.!/#!)"

,(#!/##111)"
	 	 	 	 (	2	) 

 
The RMSE metric (3) represents the difference between the estimated and observed 

values [Fan et al., 19]. RMSE takes positive values and the closer the RMSE value to 
zero, the better the estimation result [Bakay and Ağbulut, 21] 

 

𝑅𝑀𝑆𝐸 = ;'
)
∑ (𝑦* − 𝑥*)()
*+'    ( 3 ) 

 
 The rRMSE metric (4) provides a percentage value, the result of dividing the 

RMSE by the mean of the real values. An rRMSE value close to zero explains that the 
models perform better. The success of algorithms according to this metric are ranked 
according to the research of [Ağbulut et al., 21], [Fan et al., 19] and [Bakay and 
Ağbulut, 21]. 
 

𝑟𝑅𝑀𝑆𝐸	 =
2$%∑ (.!/#!)"%

!&$

##111
× 100   ( 4 ) 

2.4 Model architecture 

Figure 1 explains the data flow from satellite and ground-based data sources to solar 
radiation predictions using regression and hyperparameter fitting techniques. 
 

 
Figure 1: Model architecture. Source: Own elaboration 

3 Results 

The empirical Angström-Prescott method uses monthly coefficients a and b obtained 
from the 2012 dataset to calculate solar radiation using regression and considering the 
relationship between solar radiation and solar brightness captured on the ground 
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(Univalle dataset). For 2017, it was not possible to estimate solar radiation because of 
the lack of historical solar brightness data. Table 5 presents the values of the coefficients 
a and b and the performance of the regression to calculate the monthly solar radiation 
according to the determination coefficient R2. 

 
Month a b R2 
1 0.207 0.419 0.758 
2 0.222 0.393 0.648 
3 0.236 0.410 0.740 
4 0.245 0.375 0.603 
5 0.274 0.319 0.611 
6 0.314 0.297 0.540 
7 0.282 0.366 0.647 
8 0.300 0.335 0.712 
9 0.323 0.335 0.795 
10 0.226 0.416 0.550 
11 0.263 0.339 0.521 
12 0.262 0.311 0.623 

Table 5: Results obtained by the empirical Angström-Prescott method for the 2012 
dataset 

Figure 1 shows the scatter diagram obtained from daily solar radiation captured in 
2012 by the measurement station and estimated by the empirical Angström-Prescott 
method with an R2 of 0.552 and an RMSE of 1062.71. The experiment was also 
conducted with hourly solar radiation data; however, the results showed a much lower 
performance. 
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Figure 2: Daily solar radiation observed by the station and calculated from satellite 
images. Source: Own elaboration 

The dataset from the ERA station for 2012 was integrated into the dataset generated 
by processing the images of the GOES-13 satellite taken in 2012; in the same way, the 
dataset of the Compartir station for 2017 was integrated into the dataset of the images 
of the GOES-13 satellite taken in 2017. In both datasets, records were eliminated due 
to the nonexistence of meteorological data of the dates and times in which data from 
the images did exist. Table 6 presents the characteristics of the datasets used in the 
regression models. 

 
ID Datasets Registers Eliminated Total 
1 2012 1991 28 1963 
2 2017 2135 110 2025 

Table 6: Datasets used in the regression 

Tables 7 and 8 show the performance of the regression algorithms applied to the 
2012 and 2017 datasets. In both cases, neural networks had the highest performance; 
likewise, the model that integrates the meteorological variables and the variables 
obtained from the images had a higher performance than the other two models. It is 
important to point out that the machine learning algorithms performed significantly 
better than the empirical model. 

The ensemble methods (gradient boosting, XGBoost regressor and random forest) 
with the default hyperparameters, showed results very close to 1 in training, according 
to the determination coefficient R2, which indicated an overfitting of the algorithms. 
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Therefore, cross-validation was used as a preventive measure against overtraining, 
dividing the data into 5 subsets and training the model iteratively. The results presented 
are the average of the values obtained in each data subset; the regularization technique 
was also used to artificially force the algorithm to be simpler. 

The adjustment of the hyperparameters of each model was performed by random 
search of the scikit-learn library. A search space of between 6 and 10 different values 
was defined in the hyperparameters: n_estimators, max_depth, learning_rate, 
min_samples_leaf. In the case of the learning_rate parameter, a range of values 
between: 1e-3 and 1e-1 was established using the loguniform function of the python 
scipy library. 
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M1 

METEOROLOGICAL 
VARIABLES 

MBE 9.467 -0.269 0.171 0.215 -0.808 
R2 ENT 0.564 0.868 0.863 0.857 0.858 
R2 PRU 0.559 0.824 0.817 0.820 0.849 
RMSE 169.49 116.10 106.91 103.44 98.68 
rRMSE 51.14 33.12 31.43 30.97 29.78 

 
M2 

VARIABLES OBTAINED 
FROM THE IMAGES 

MBE -0.422 -0.249 -1.541 -0.886 1.813 
R2 ENT 0.374 0.852 0.853 0.842 0.836 
R2 PRU 0.432 0.810 0.800 0.807 0.836 
RMSE 192.26 110.97 106.74 108.47 103.27 
rRMSE 58.01 32.56 31.79 31.58 31.16 

 
M3 

METEOROLOGICAL 
VARIABLES + 
VARIABLES OBTAINED 
FROM THE IMAGES 

MBE -0.248 0.993 -2.968 -2.909 -0.051 
R2 ENT 0.669 0.904 0.899 0.884 0.909 
R2 PRU 0.685 0.860 0.848 0.846 0.880 
RMSE 143.19 96.79 94.87 98.10 90.99 
rRMSE 43.21 28.36 27.23 26.78 26.70 

Table 7: Results obtained from the 2012 dataset 

According to Table 7, the neural network algorithm had the best performance in 
most evaluation metrics. In the case of MBE, the M3 model had the value closest to 
zero (-0.051) of all models used in the research, followed by the M1 model (0.171). 
Positive MBE values indicated that the average of the results predicted by the models 
was greater than the average of the actual observations. 

Moreover, the M3 model had a higher performance than the M1 model. In regard 
to training, the model was better by 5%, and in tests, it was also better by 3% according 
to the determination coefficient R2; in addition, the model had 8% a smaller number of 
errors according to the RMSE. The M2 model had the lowest performance of the 3 
models, although it did not require surface-observed data. Considering the relative 
mean square error (rRMSE), the neural networks also had the highest performance; 
however, the estimated results in the M2 model were higher than 30%, which indicated 
a poor performance, and in the case of the M1 and M3 models, the forecast results were 
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between 20% and 30%, which represented a regular performance of the regression 
method. 

Figure 2 shows the scatter diagrams obtained with the multilayer perceptron 
technique for each model, using the actual solar power captured by the station and the 
estimated solar power by the models for 2012. At first glance, the differences between 
the three images are not very evident; however, the M3 model fits the data better and 
represents less variability around the mean. 

 
a) M1. Metorological variables. 

Source: Own elaboration. 
b) M2. Variables obtained from the images. 

Source: Own elaboration. 

  

c) M3. Metorological variables + variables obtained from the images. 
Source: Own elaboration. 

 

Figure 3: Real and estimated solar radiation in 2012 by using the multilayer 
perceptron 

According to the results in Table 8, the neural network algorithm had the best 
performance in most evaluation metrics. In the case of MBE, the M3 model had the 
closest value to zero (-0.146) of all models used in the research, followed by the M1 
model (-0.149). In this case, the MBE value was negative in both cases, which indicated 
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that the average of the results estimated by the models was less than the average of the 
actual observations. 

Moreover, the M3 model also had a higher performance than the M1 model; in 
training, the model was better by 4%; and in tests, it was also better by 3% according 
to the determination coefficient R2, which indicated that the model increased the level 
in the explanation of the variability of the data around the mean and that it fit the data 
better. In addition, the model had 6% less error between the real and estimated datasets, 
according to the RMSE. The M2 model had the lowest performance of the 3 models, 
although it did not require surface-observed data. 

Analyzing the rRMSE metric, the neural networks also had the highest 
performance, and the results estimated by the three models were between 20% and 
30%, which represented a regular performance of the algorithm. The M3 model had the 
best performance in predictions. 
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M1 

 
METEOROLOGICAL 
VARIABLES 

MBE -8.345 -0.452 1.506 -0.149 1.687 
R2 ENT 0.581 0.901 0.900 0.893 0.882 
R2 PRU 0.611 0.870 0.867 0.866 0.890 
RMSE 88.48 49.03 48.19 47.20 46.97 
rRMSE 48.17 28.11 26.48 27.01 25.57 

 
M2 

VARIABLES 
OBTAINED FROM THE 
IMAGES 

MBE -11.715 1.856 -3.739 0.992 -0.748 
R2 ENT 0.349 0.900 0.901 0.889 0.895 
R2 PRU 0.325 0.872 0.868 0.863 0.881 
RMSE 116.58 46.73 46.28 46.36 49.04 
rRMSE 63.46 26.67 25.44 26.22 26.70 

 
M3 

METEOROLOGICAL 
VARIABLES + 
VARIABLES 
OBTAINED FROM THE 
IMAGES 

MBE -8.994 -1.076 -0.298 0.580 -0.146 
R2 ENT 0.657 0.933 0.925 0.916 0.927 
R2 PRU 0.691 0.902 0.891 0.887 0.917 
RMSE 78.85 44.10 47.95 42.59 40.97 
rRMSE 42.92 24.73 25.74 24.92 22.30 

Table 8: Results obtained from the 2017 dataset 

Figure 3 represents the scatter diagrams obtained with the multilayer perceptron 
technique for each model, using the real solar radiation captured by the station and the 
estimated solar radiation captured by the models for 2017. Although visually, the 
differences between the images that represent each model are not very evident, the M3 
model fits the data better and represents less variability around the average. 
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a) M1. Metorological variables. 
Source: Own elaboration. 

b) M2. Variables obtained from the 
images. 

Source: Own elaboration. 

  

c) M3. Metorological variables + variables obtained from the images. 
Source: Own elaboration. 

 

Figure 4: Real and estimated solar radiation in 2017 using the multilayer perceptron 

4 Conclusions 

In this manuscript, we evaluate the predictive ability of five regression algorithms for 
predicting solar radiation in Colombia. The research considers the characteristics 
obtained from the images taken by the GOES-13 satellite in 2012 and 2017, two 
datasets provided by air quality measurement stations (Escuela República de Argentina 
-ERA- and Compartir) from the Mayoralty of Cali and a dataset of daily solar brightness 
from the Univalle station, supplied by IDEAM. 

The time required for the request, download, georeferencing and processing of the 
images to obtain the reflectance of the pixels depends on the internet connection, the 
availability of the NOAA Class server and the characteristics of the computer 
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equipment. On the other hand, it was not possible to evaluate the solar power in the 
2017 empirical Angström-Prescott model due to the lack of solar brightness data at the 
Univalle station. 

Considering the correlation values in the regression models, the temperature 
variable, followed by the reflectance variable, had a greater correspondence with solar 
radiation; similarly, the artificial neural network called the multilayer perceptron, had 
the best performance in solar radiation predictions compared with the other regression 
algorithms based on R2 and RMSE. Furthermore, the model that integrated the 
meteorological variables and the variables obtained from the satellite images produced 
the best results in solar radiation estimations in comparison with the empirical model 
and the other learning models. 

The M2 model had a lower performance than the M1 and M3 prediction models, 
however, it provided better results than the empirical model. It also allows the 
prediction of solar power at any geographic location on the planet using only data 
obtained from the processing of the images recovered from the GOES-13 satellite. 
Considering the results achieved in this work, we propose acquiring satellite images 
and recent solar radiation data for at least three consecutive years to use time series to 
make solar radiation predictions in the future. 

5 Future Work 

Researches on solar radiation predictions occurs in many cases due to an insufficient 
number of monitoring stations; additionally, because some of them do not provide 
instruments to measure it, some methods that estimate solar power from satellite images 
require radiation and solar brightness data observed on the ground and depend on 
different geographic and climatic parameters and some atmospheric properties, as 
observed in the work by [Poveda Matallana, 20]. 

This work contributes to the solution of the global problem of electricity production 
associated with the emission of greenhouse gasses generated by the burning of fossil 
fuels, according to the study by [Bakay and Ağbulut, 21]. Its importance lies in 
supporting decision makers in the installation of solar farms in remote places. It 
provides data on the behavior of solar radiation using artificial intelligence techniques 
based on characteristics obtained from satellite images. This work uses the empirical 
Angström-Prescott method to extract features from satellite images and integrate them 
with meteorological data to evaluate solar resources at a given location. 

The data acquired from satellite images allow the calculation of variables that 
directly affect the solar power that reaches the Earth's surface; among others, the 
cloudiness index is a parameter that depends on the minimum and maximum reflectance 
of each hour of the day. Reflectance values can be above 1, which is why, according to 
the research by [Laguarda et al, 18], only 80% of the maximum reflectance should be 
used without compromising the performance of the model. Even so, the values of this 
index must be between 0 and 1. Thus, they must be adjusted in the case of exceeding 
the limits of the domain. 

The low performance of the 2012 empirical Angström-Prescott method, in part, 
was due to the lack of images provided by the satellite. Only 41.8% of the total images 
were obtained (1991 out of 4758 possible). In addition, between 6 am and 6 pm, only 
7.9% of the days of the year had 13 images; in contrast, 66.4% of the days of the year 
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had 4 images or less, and finally, the parameters observed by the DAGMA air quality 
stations (ERA and Compartir) did not include the solar brightness variable. Therefore, 
data from a nearby IDEAM station, the Univalle station was used, which provided only 
89.9% of the daily solar brightness data. 

The optimized Angström-Prescott model OPM3, built in the work of [Nwokolo et 
al., 22] outperforms with an R2 of 0.998 the best result of our Angström-Prescott model 
which achieved an R2 of 0.795 as shown in Table 5. However, our model performs 
better than 20 of the basic models (M1-M20) and 3 of the improved models (OPM14, 
OPM17 and OPM19) developed in the study. Consequently, the neural networks with 
the 2017 data, improve the performance of our Angström-Prescott method with an R2 
of 0.917 being surpassed only by the result of the optimized models OPM3 and OPM20 
from the study in comparison. 

In this research, the neural networks performed best in the scenario that integrates 
the variables extracted from the images and the meteorological variables. An R2 of 
0.880 was obtained with the 2012 data, while an R2 of 0.917 was obtained with the 
2017 data. This is because for 2017 there were 7.23% more images than in 2012. It is 
important to highlight that missing image at one hour of the day leads to the exclusion 
of meteorological records for that same hour. 

Although the best models from the research of [Geetha et al., 22] with an R2 of 
0.9340 and [O. M. Oyewola et al, 22] with an R2 of 0.988, outperform our best-case 
scenario M3, which achieved an R2 of 0.917. It is critical to recognize that the error 
difference of approximately 7% does not represent significant costs in terms of what 
might occur if an estimate made by our model is wrong. If this error is translated to the 
context of a microgrid, the worst that could happen is that a backup battery or diesel 
generator could be used to support the average consumption load. 

This research generated the work of [Ordoñez Palacios et al., 22] as an extension 
of the M2 model to evaluate the solar resource. The study tested seven models that 
include data from different altitudes above sea level. The results showed a slight trend 
in the evaluation of the solar resource where the altitude and the performance of the 
models is inversely proportional. Unlike the present study, the Random Forest 
algorithm stood out for achieving the best results with a value of 0.82 in R2, compared 
to a value of 0.81 obtained with the same technique in the M2 model of this work. 
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