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Abstract: Given the rapid evolution that has taken place in recent years in the software industry, 
and along with it the emergence of quantum software, there is a need to design an environment 
for measuring quality metrics for hybrid, classic-quantum software. 
In order to measure and evaluate the quality of classic software, there are models and standards, 
among which ISO/IEC 25000 stands out, which proposes a set of quality characteristics such as 
maintainability. However, there is currently no consensus for the measurement and evaluation of 
quantum software quality. 
In this paper we propose a series of adaptations to “classic” metrics, as well as a set of new 
measurements for hybrid maintainability. Finally, a first prototype of a measurement tool 
developed as a SonarQube plugin, capable of measuring these metrics in quantum developments, 
is also presented. 
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1 Introduction 
During the last few years there has been a great evolution in Information and 
Communication Technologies, with the emergence of the Internet, smartphones, 
wearables, IoT, Big Data, Smart cities, etc. But there is still a long way to go; since, 
after several years of research, quantum computing is starting to come to light. 

As Chris Bernhardt says, “quantum computing is the beautiful fusion that comes 
from bringing together quantum physics and computer science” [Bernhardt, 20]. Since 
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this is a totally novel subject, it is necessary to make as many valid contributions as 
possible, but without neglecting quality. 

Since the beginning of the technological era, the importance of quality has been 
appreciated, and organizations are taking it into account when developing information 
systems. IT consumers are becoming more and more demanding, so they are no longer 
looking for a simple product or service, but for the one that offers the highest quality. 
But how is the quality of the systems evaluated? In order to evaluate the quality of a 
system, it is necessary to make measurements, establish thresholds and use tools that 
assist in the whole process. For this purpose, there are international standards, such as 
the ISO/IEC 25000 family [ISO, 14], which establish the basis for carrying out these 
quality evaluations. 

On the other hand, if quantum computing is to be used in the coming years in 
sectors such as logistics, energy, agriculture, economics, health or chemistry, and if we 
have learned from the mistakes made throughout history in software engineering, then 
we must insist, from the beginning of the development of quantum systems, on the 
presence of quality. In the Talavera Manifesto for Quantum Software Engineering and 
Programming [Piattini, 20], we reaffirm the importance of ensuring the quality of 
quantum software. 

It should be considered that researchers are currently trying to obtain the best 
possible results from quantum computing by making it hybrid, by combining it with 
traditional computing. The idea is to match the reliability of a classical computer with 
the strength of a quantum system, thus opening the doors to great discoveries. This 
pairing happens by accessing the high performance of quantum computers through 
classical computers, a fact that is expected to continue to be the case in the future 
[Pettersen, 21]. 

In the existing classical world, an infinity of tools are available that facilitate the 
results of measurements and evaluations on the quality of traditional software 
[Rodríguez, 19]; however, there are still no such tools for hybrid, classical and quantum 
software. 

Considering the importance of quality and the situation of quantum software in full 
birth, this paper presents a completely novel contribution, consisting in evaluating the 
quality of hybrid code, specifically maintainability as the capability of evolution is one 
of the most important characteristics in this not so matured quantum software industry. 
Yes, even though quantum algorithms are well-defined and currently used as they are, 
quantum technology is constantly evolving and in its early stages, so it is expected to 
continue evolving rapidly in the coming years. This means that quantum software will 
also continue to evolve, seeking to take advantage of the latest innovations and 
improvements in quantum technology. Furthermore, the current quantum market is 
highly competitive and the ability to develop reliable and effective quantum software 
can make the difference between success and failure. Therefore, the aim of this paper 
is to present the first maintainability metrics for quantum code and an environment for 
measuring them on hybrid software, also demonstrating their application by analyzing 
a well-known quantum algorithm, such as Shor's algorithm [Shor, 97]. 

The rest of the paper is structured as follows: Section 2 presents the current state 
of quantum computing. Section 3 summarizes the classical metrics used to evaluate the 
maintainability of classical software. Subsequently, section 4 describes the new metrics 
applicable to hybrid software, which are the basis of the automated measurement 
environment. Section 5 shows the measurement environment created and one of the 
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analyses performed using this environment. Finally, section 6 presents the conclusions 
obtained with this work and the future lines of research. 

2 Quantum computing 
Quantum computing sounds like the future, but in reality, it is already with us. Today, 
quantum computers are already available through the cloud, thanks to large companies 
and research groups such as Microsoft1, IBM [IBM, 23], Amazon2, Google [Google, 
23], Cambridge Quantum Computing3 and D-Wave4. 

Despite the great advances that have been taking place during the last few years in 
the field of quantum computing, and the fact that quantum systems are already available 
to be programmed, the future of computing will continue to be hybrid combining 
quantum and classical software [TS2, 23]. In this so-called hybrid computing model, 
the services offered by a quantum computer are accessed from a classical computer 
(Figure 1). 

 

Figure 1: Architecture of a hybrid application 
 

2.1 Python language for hybrid software 

The most widely used language for working on quantum computing, at the time of the 
development of this article, is Python [Rossum, 09]. Table 1 shows the different 
advantages of this language [Rivas, 21], which allow it to be selected for the 
development of hybrid software. 
 

Advantage Description 

High-level 
language 

Python is a high-level language, which makes it easy to read, 
write and learn. In addition, it is an interpreted language, so it 
is executed directly without the need to compile it beforehand. 

Multipurpose 
and 

multiparadigm 

Thanks to its wide possibilities it is used in many fields (big 
data, AI, machine learning, etc.) and for different purposes. 

 
1 https://azure.microsoft.com/en-us/solutions/quantum-computing/ 
2 https://aws.amazon.com/es/quantum-solutions-lab/ 
3 https://cambridgequantum.com/ 
4 https://www.dwavesys.com/ 
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Useful libraries 
and frameworks 

One of the most decisive Python skills for your choice in this 
area is the creation of open-source libraries. The different 

quantum languages correspond to different Python libraries. 

High-quality 
syntax 

Python's style rules make it much easier to read; for example, 
line indentations make it easier to identify the different blocks 

of code. 

Object-oriented 

Python, being an object-oriented language, allows modeling in 
terms of classes and objects, offering polymorphism, 

abstraction, cohesion, etc. It is used to reduce the size and 
complexity of the code, facilitating possible subsequent 

modifications. 

Portability and 
cross-platform 

Python is available on any operating system, be it Windows, 
macOS, Linux, etc. Since it is an interpreted language, it can be 

executed on any type of system that contains its interpreter. 

Open source It is a totally free language, so all users can use it to develop 
programs and distribute it freely. 

Fast learning It is a very easy language to learn and understand, since it 
allows you to write programs in very few lines of code. 

Community Python is supported by a large and strong community, which 
can contribute to its progress. 

Table 1: Benefits of Python 

2.2 Python extensions for hybrid software 

Quantum algorithms must be implemented using programming languages. Python 
contains all the necessary libraries for their proper development, thanks to its ability to 
create open-source libraries. And although not all of them are at the same level, there 
are quite a few Python extensions for hybrid system programming. The most important 
ones are listed below: 
 

§ Qiskit [Qiskit, 23]. It is the Python library created by IBM for the 
development of quantum computing. Currently, it is the most consolidated and 
the one with the largest community, which is why this article, and the 
measurement environment are focused on it. 

§ Q#5. The 'qsharp' Python package, created by Microsoft, includes the Q# 
kernel and all the necessary functions to compile and simulate its operations 
from a normal Python program. 

§ Cirq6. is a Python software library created by Google to write, manipulate and 
optimize quantum circuits and then run them on quantum computers and 
simulators. 

§ PennyLane7. It is a cross-platform Python library, created by Xanadu, for 
differentiable programming of quantum computers. It is designed to be 

 
5 https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk 
6 https://quantumai.google/cirq/ 
7 https://pennylane.ai/ 
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hardware independent, allowing quantum functions to be sent to quantum 
devices such as Qiskit or Braket. 

§ Boto38. It is the package created by Amazon Web Service (AWS) that 
implements all the tools and modules needed to develop hybrid code using 
Python. 

§ ProjectQ [Steiger, 18]. It is an open-source software framework for quantum 
computing initiated by ETH Zurich. It allows users to implement their 
quantum programs in Python using a powerful and intuitive syntax. 

§ Pytket [Hedfords, 12]. A Python module that allows researchers, algorithm 
designers and software developers to build and run quantum circuits that 
produce the best results on the most advanced quantum devices available 
through the TKET toolkit. 

 
On Table 2, a comparison of the most general characteristics of each library is 
presented. 

 
Features Qiskit Q# Cirq PennyLane Boto3 ProjectQ 

Programming 
language Python C# Python Python Python Python 

Compatible 
hardware Yes Yes Yes Yes No Yes 

Hardware 
simulation Yes Yes Yes Yes No Yes 

Circuit 
optimization Yes No Yes Yes No Yes 

Circuit 
compilation Yes Yes Yes Yes No Yes 

QPU 
compatibility Yes Yes Yes No No Yes 

GPU 
compatibility Yes No Yes Yes No Yes 

TPU 
compatibility Yes No No No No No 

Number of 
qubits 30 60 53 No limit N/A 32 

Community Big Small Small Big Big Small 

Table 2: Comparison of the most general characteristics of each library 

2.3 Qiskit 

Of the previous extensions, it can be said that Qiskit is the one with the largest 
community today, which has managed to make it the most widely used extension for 
writing quantum algorithms. For this very reason, the measurement environment 
developed in this work focuses on the Qiskit library. 

 
8 https://aws.amazon.com/es/sdk-for-python/ 
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In March 2017, IBM, the American multinational technology and consulting 
company, creates Qiskit, a free software that allows collaborative work, although its 
first stable version is not released until December 2019. Python, together with Qiskit, 
aims to create and manipulate quantum programs and run them on simulators, such as 
the well-known IBM Quantum Experience9. 

3 Software quality assessment 
In order to carry out software quality assessments, it is necessary to have an 
environment consisting of a quality model, an assessment process and a set of support 
tools. The ISO/IEC 25010 [ISO, 11] standard defines a software product quality model 
composed of eight quality characteristics as shown in Figure 2. 

 
Figure 2: Software product quality model according to ISO/IEC 25010 

 
Of the quality characteristics presented above, this study focuses on the 

characteristic of maintainability, considering that it is one of the most important aspects 
to take into account for a technology that is in its infancy [Rodríguez, 15]. In this way 
it will be possible to ensure that the hybrid software that is started to be developed now, 
can be evolved efficiently in the future, since as we know the maintenance phase is one 
of the most expensive in the software life cycle, if not the most, reaching in some cases 
60% of the total effort [Glass, 02]. 

The main metrics used for the evaluation of quality according to its maintainability 
in classic software are the following [Rodríguez, 14]: 

M1: Non-compliance with encoding standards rules. 
M2: Code documentation. 
M3: Complexity. 
M4: Structuring of classes, packages and files. 
M5: Size of methods. 
M6: File size. 
M7: Duplicate code. 

 
9 https://quantum-computing.ibm.com/ 
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M8: Dependency cycles. 
 
The above metrics are, in principle, independent of the programming language. In 

this article, the analysis of these metrics for the Python language and their application 
and adaptation for use with hybrid software is performed. 

This work aims to extend the SonarQube environment focused on classical 
software, so that it can also be used for the evaluation of hybrid software. 

3.1 Tools for assessing 'classic' quality metrics 

In this section, we analyze the main tools that perform measurements on some of the 
metrics mentioned above. It should be noted that these tools are those compatible with 
Python, due to the benefits of this language and the fact that the extensions for quantum 
computing from manufacturers such as IBM or Google are based on it. 

 
Some tools dedicated to measuring and evaluating metrics of code maintainability 

are the following. 
§ SonarQube10. It is an automatic code review tool to detect bugs, 

vulnerabilities and code smells in your code. 
§ Pycodestyle [Rocholl, 23]. It is an automatic analyzer of a system's Python 

scripts, which points out specific areas where the code can be improved. 
§ Flake8 [Ziade, 23]. This is a great set of tools for checking your source code 

against PEP8, programming errors, and for checking cyclomatic complexity. 
§ Pylint [Python, 23]. This is a Python static code analysis tool that looks for 

programming errors, helps enforce a coding standard, detects code smells, and 
offers simple refactoring suggestions. 

§ Prospector [Crowder, 23]. Is a static analysis tool for analyzing Python code 
and displaying information about bugs, potential problems, convention 
violations and complexity. 

§ Radon [Lacchia, 23]. It is a Python tool that calculates several code metrics, 
such as cyclomatic complexity, comment lines or maintainability index. 

§ Pygenie [Gift, 10]. This is a tool for evaluating the cyclomatic complexity of 
a Python script. 

 
Table 3 shows the results of the study of the existing tools for each of the metrics: 

Metric Tools 

Non-compliance with rules SonarQube, Pycodestyle, Flake8, Pylint and 
Prospector 

Code documentation SonarQube y Radon 
Complexity SonarQube, Pylint, Prospector, Radon and Pygenie 

Class structuring SonarQube 
Package structuring SonarQube 

File structuring SonarQube 
 

10 https://www.sonarsource.com/products/sonarqube/ 
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Size of methods - 
File size SonarQube 

Duplicate code SonarQube y Pylint 
Dependency cycles - 

Table 3: Tools that evaluate maintainability metrics on Python 
 
As can be seen in Table 3, the tool that performs the largest number of code 

maintainability metrics measurements is SonarQube. Sonar Source is a company 
dedicated to software development for quality and security, which is composed of three 
analyzers: SonarLint11, SonarCloud12 and SonarQube, the latter being the leading tool 
in the market for continuous analysis of code quality. 

3.2 SonarQube for evaluating classical quality metrics 

SonarQube is a free software platform used to automatically manage the quality of 
source code, performing a static analysis of it through the hundreds of rules it integrates, 
in order to warn about possible improvements in quality and security [Guaman, 17]. 
Thanks to tools such as Sonar, cleaner and safer code is developed. 

Static code analysis consists of evaluating the software without having the need to 
execute it, which provides some advantages over dynamic analysis. One of these 
advantages is that static analysis operates on all possible execution branches of a 
program; while dynamic analysis only has access to the code paths that are executing 
at the time of evaluation [Thomson, 21]. 

SonarQube supports the analysis of more than twenty programming languages, 
although this article focuses on the use of this tool to analyze metrics on projects 
developed in Python, as previously mentioned. In addition, Sonar imports several static 
code analyzers that help it to measure specific metrics, such as Flake8 to evaluate the 
rules linked to the style guide or to measure cyclomatic complexity. 

 
In the following, each of the quality metrics mentioned above are analyzed to check 

their evaluation using the selected tool, SonarQube. 
 
 M1: Non-compliance with encoding standards rules 
 

All languages have a programming standard, being PEP8 the most used style guide 
and the one recommended by IBM in the case of Python [Rossum, 01]. SonarQube 
generates Issues when the rules set by the Standard Library are violated. 
  

M2: Code documentation 
 

This metric refers to the existing comments in the code of a program, which are 
used to explain the different functionalities of the program. SonarQube calculates the 

 
11 https://www.sonarsource.com/products/sonarlint/ 
12 https://www.sonarsource.com/products/sonarcloud/ 
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number of comment lines in each file and directory of an analyzed Project, as well as 
the density of these comments as a percentage. 
 
 M3: Complexity 
 

SonarQube raises issues of both cognitive complexity and cyclomatic complexity 
in code that is structured in a way that is complicated to understand. The high 
probability of errors appearing in complex code has been demonstrated, and confusing 
code could lead maintainers to add even more. The advantage of Sonar is that it 
calculates such values at the file level as well as at the method and function level, thus 
avoiding possible masking. 
 
 M4.1: Class structuring 
 

This metric indicates how well the classes of a project are organized. To do so, it 
is necessary to measure the number of methods found in each of the classes. In fact, 
SonarQube does not indicate the number of methods or functions for each of the classes 
of the evaluated project, but it does indicate the number of functions found in each file. 
For object-oriented languages, the number of methods per file and the number of 
methods per class are exactly the same; therefore, SonarQube obtains the measurement 
of this metric for Python, since it is an object-oriented language. 
 
 M4.2: Package structuring 
 

This property indicates the level of organization of the packages by evaluating the 
distribution of classes among the system packages. Sonar shows the number of classes 
located on each package evaluated within the Project to be analyzed. 

 
 M4.3: File structuring 
 

File structuring indicates how well the files are organized in the system. For this 
purpose, the distribution of the functions or methods among the different files that make 
up the application is checked. SonarQube displays the results once the calculation has 
been performed. 
 
 M5: Size of methods 
 

This metric is responsible for measuring the number of significant lines of code in 
each of the methods or functions of a program, i.e., without taking into account the 
comment lines or blank lines. Sonar, unfortunately, does not perform the calculation of 
this property. 
 
 M6: File size 
 

In this case, the size evaluation is performed at the file level, based on the number 
of lines of code that are significant in each file of the Project to be analyzed. Sonar 
provides the result for this metric without any problem. 
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 M7: Duplicate code 
 

This property refers to code fragments that are duplicated. The duplicated code 
complicates the maintainability too much, since if you want to make improvements in 
this code, you must modify all the parts of the system where the repeated code appears. 
Sonar provides this data at the class level or at the general system level. In addition, 
Sonar calculates from the exact duplicated lines and blocks to the overall density of the 
duplicated code. 
 
 M8: Dependency cycles 
 

It refers to the existence of dependency cycles between the system's packages. 
When you want to maintain the code, the cycles will affect negatively making it 
difficult to make improvements or modifications, since a change in a package will affect 
all the packages in the cycle of dependencies. SonarQube also does not measure this 
metric on the projects analyzed in Python language. 

4 Metrics for hybrid software 
This section presents, on the one hand, the adaptations and considerations to be able to 
use the previous classical metrics in hybrid software. On the other hand, a new set of 
metrics applicable only to this new quantum software is presented. 

4.1 Classic metrics applicable to hybrid software 

The metrics studied are those explained in the previous chapter, those applicable to 
classical code, trying to conclude this chapter with the most appropriate metrics to 
measure the quality of hybrid code. To study the applicability of each of them, the 
Python and Qiskit languages are taken into account, the latter being the most developed 
quantum language so far. 

It is necessary to spend time investigating the metrics applicable to quantum code, 
since they are the ones that serve as the basis for the measurement environment of the 
developed hybrid software that we will discuss later. They are studied individually 
below: 
 

M1: Non-compliance with encoding standards rules 

One of the fundamental pillars of Python is its Standard Library, which contains 
the rules that must be followed to develop code using this language. Just as this standard 
is applied when writing classical code, it should also be applied to the development of 
quantum code to improve its productivity. 

Tools such as Pylint and Pycodestyle are used in order to enforce a consistent code 
style in the project. Both tools are used to enforce the style rules corresponding to the 
PEP8 standard [Rossum, 2001], the most widely used standard for Python code 
development. 

One of the fundamental rules of the Python standard, of which its analysis is 
necessary, gives rise to the following property: 
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§ Imports 
 

This property consists of analyzing the imports performed, checking that all of 
them are in the first cell of the Notebook, since the development of quantum algorithms 
is usually performed on Jupyter Notebook, where the scripts are divided into cells. If 
so, the percentage of imports found in the first cell would be 100%. This eases the 
complexity of code structuring, related to code maintainability. 

The base metrics to be calculated are shown in Table 4:  
 

Metric Description 
N_IFC Number of imports made in the first cell 
N_TI Number of total imports made throughout the code 

Table 4: Base metrics for ‘Imports’ 
 

The metric derived from the division of the two previous metrics is shown in Table 
5: 
 

Metric Description 

% IFC Percentage of imports made in the first cell 
% IFC = (N_IFC / N_TI) · 100 

Table 5: Derived metric for ‘Imports’ 
 
 M2: Code documentation 
 

This property refers to the number of comments defined throughout the code, which 
are necessary to explain the functionality of the code. 

This property is measured based on the four base metrics shown in Table 6: 

Metric Description 
N_Com Number of comment lines 

N_TL Total number of lines, taking into account both comment lines 
and source code lines 

Table 6: Base metrics for ‘Documentation’ 
 

Starting from the base metrics, the derived metrics shown in Table 7 can be 
calculated: 
 

Metric Description 

% Com Percentage of comments 
% Com = (N_Com / N_TL) · 100 

Table 7: Derived metrics for ‘Documentation’ 
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M3: Complexity 
 

This property is related to the code's ability to be modified, its testability and its 
analyzability. Although it can be measured in many ways, the cyclomatic complexity 
metric is the most widespread. 

Analyzing Python and Qiskit, three different ways of adding forks throughout the 
code are located, thus generating changes in the result and cyclomatic complexity. 
 

§ If instructions 
 

Qiskit has a conditional if instruction, which allows to apply operations on qubits 
depending on the state in which a classical bit is at a given time. 

To facilitate the understanding of its use in the source code, the example of 
Algorithm 1 is shown. 
 

1 qc = QuantumCircuit(q,c) 
2 qc.x(q[0].c_if(c,0)) 
3 qc.measure(q,c) 

Algorithm 1: If instruction in Qiskit code 
 

In these lines of code, the X operation will be applied on the 0 qubit, depending on 
the value taken by the classical bit c. If the value of the classical register, interpreted as 
a binary number, corresponds to 0, then the state of the 0 qubit will be inverted. 
 

§ Controlled operations 
 

Qiskit has controlled operations to apply a gate to a qubit depending on the state of 
another qubit [Kumar, 23]. For example, one may want to change the state of a second 
qubit when the state of the first qubit, called the control qubit, is at |0⟩. 
 

§ Conditional if statement of the Python language 
 

Given the use of Python in hybrid code, the conditional statements of this language 
can be used. They can also be used in nested form. 

Having seen the different ways to increase the cyclomatic complexity of the Qiskit 
code, the new applicable base metrics are shown in Table 8: 
 

Metric Description 
N_ifI Number of if instructions 
N_CO Number of controlled operations 
N_ifS Number of conditional if statements 

Table 8: Base metrics for ‘Cyclomatic complexity’ 
 

Starting from three of the base metrics, the derived metrics shown in Table 9 can 
be calculated: 
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Metric Description 

N_CCO Number of operations that increase cyclomatic complexity 
N_CCO = N_Oif + N_CO + N_ifS 

Table 9: Derived metric for ‘Cyclomatic complexity’ 
 

 M4.1: Class structuring 
 

This property is in charge of measuring the number of functions defined in each of 
the classes, which is equivalent to the number of functions defined in each file. 

Therefore, the metric shown in Table 10 is defined: 

Metric Description 
N_FC Number of functions defined in a class or file 

Table 10: Metrics for ‘Class Structuring’ 
 

 M4.2: Package structuring 
 

This quality property is in charge of analyzing the number of classes in each of the 
packages, but in Qiskit it is not necessary to calculate it because the algorithms are 
developed within the same package. 
 
 
 M4.3: File structuring 
 

Since Qiskit continues to be developed together with the object-oriented Python 
language, the metric defined in the quality property called 'class structuring' (FC No.) 
is also used to analyze the structuring of the different files. 
 
 M5: Method size 
 

This property measures the number of lines that are not comments in the methods, 
so it is applicable to Qiskit facilitating the analysis of the number of lines of code 
located in the methods. 

The metric that this property analyzes is shown in Table 11: 

Metric Description 
N_ML Number of lines of code contained in one method 

Table 11: Metric for ‘Method size’ 
 

M6: File size 
 

This property performs size evaluation at the file level, based on the measurement 
of the number of lines of code that are not comments. It is applicable to hybrid code 
developed using Qiskit in the same way as it is applicable to classical code. 
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The metric that this property analyzes is shown in Table 12: 
 

Metric Description 
N_LF Number of lines of code contained in a file 

Table 12: Metric for ‘File size’ 
 
 M7: Duplicate code 
 

Duplicate code fragments make it difficult to maintain the Qiskit library code as in 
Python. The code with duplicated fragments ends up being much longer, without the 
appropriate abstraction levels and with a higher number of errors, so it is important to 
measure it also in the hybrid code. 

The base metrics that help to calculate this quality property are shown in Table 13: 

Metric Description 
N_DL Number of duplicated lines of code 

N_TL Total number of lines, taking into account both comment lines 
and source code lines 

Table 13: Base metrics for ‘Duplicate code’ 
 

Starting from the base metrics, the derived metrics located in Table 14 can be 
calculated: 

Metric Description 

% DC Percentage of duplicated lines of code 
% DC = (N_DL / N_TL) · 100 

Table 14: Derived metric for ‘Duplicate code’ 
 

 M8: Dependency cycles 
 

Hybrid code using Qiskit is always developed within the same package, so no 
dependency cycles can arise. This metric does not apply to hybrid code developed using 
the Qiskit library. 

4.2 New metrics applicable to hybrid software 

Once the classical maintainability metrics and their support in hybrid code using Python 
and Qiskit have been analyzed, it is necessary to define new metrics to produce software 
with adequate quality and productivity. The code must be sufficiently flexible and 
understandable, making it easy to make modifications to reflect changes. It is clear that 
the easier the code is to understand, the easier it will be to maintain. In addition, it is 
necessary for quantum designers and programmers to properly understand the quantum 
foundations to design high quality code. 

For the analysis of these metrics at the code level, the metrics already defined for 
circuits, and represented in [Cruz-Lemus, 21], are taken into account. 
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 M1: Circuit size 
 

The larger the code, the more complex it will be to understand and maintain; 
therefore, for the study of this quality property it is necessary to analyze the metrics 
shown in Table 15. 

Metric Description 
Width Total number of qubits created 
Depth Maximum number of doors applied on a qubit 

Table 15. Metrics for ‘Code size’ 
 

 M2: Complexity of gates operations 
 

The greater the number of gates applied to the qubits, the more complex the code 
will end up being to understand. 

For the study of this quality property, it is convenient to measure the base metrics 
shown in Table 16. 

Metric Description 
N_NOT Number of gates X 

N_Y Number of gates Y 
N_Z Number of gates Z 
N_I Number of gates Identity 
N_U Number of gates U 
N_P Number of gates P 
N_H Number of gates Hadamard 
N_S Number of gates S 
N_IS Number of gate inverses S 
N_T Number of gates T 
N_IT Number of gate inverses T 
N_RX Number of gates RX 
N_RY Number of gates RY 
N_RZ Number of gates RZ 

N_CNOT Number of gates CX 
N_CY Number of gates CY 
N_CZ Number of gates CZ 
N_CU Number of gates CU 
N_CH Number of gates CH 

N_CRZ Number of gates CRZ 
N_CP Number of gates CP 
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N_CU3 Number of gates CU3 
N_SWAP Number of gates SWAP 
N_Toff Number of gates Toffoli 
N_Fred Number of gates Fredkin 

Table 16: Base metrics for ‘Complexity of gate operations’ 
 

Once the base metrics have been analyzed, the following derived metrics can be 
calculated, as shown in Table 17. 

Metric Description 

N_TG 

Total number of gates 
N_TG = N_NOT + N_Y + N_Z + N_I + N_U + N_P + N_H + 

N_S + N_IS + N_T + N_IT + N_RX + N_RY + N_RZ + N_CNOT 
+ N_CY + N_CZ + N_CU + N_CH + N_CRZ + N_CP + N_CU3 + 

N_SWAP + N_Toff + N_Fred 

N_GP Number of gates Pauli 
N_GP = N_NOT + N_Y + N_Z 

N_GCliff Number of gates Clifford 
N_GCliff	= N_H + N_S + N_IS 

N_GC3 Number of gates C3 
N_GC3 = N_T + N_IT 

N_SRG Number of standard rotating gates 
N_SRG = N_RX + N_RY + N_RZ 

N_GSQ 
Number of gates of a single qubit 

N_GSQ = N_GP + N_GCliff + N_GC3 + N_SRG + N_U + N_P + 
N_I  

% GSQ Percentage of gates with a single qubit 
%SGQ = (N_GSQ / N_TG) · 100 

N_CPG Number of controlled Pauli gates 
N_CPG = N_CNOT + N_CY + N_CZ 

N_G2Q 
Number of gates of two qubits 

N_G2Q = N_CPG + N_CU + N_CH + N_CRZ + N_CP + N_CU3 
+ N_SWAP 

N_G3Q Number of gates of three qubits 
N_G3Q = N_Toff + N_Fred 

N_MQG Number of multi qubit gates 
N_MQG = N_G2Q + N_G3Q 

% MQG Percentage of multi qubit gates 
% MQG = (N_MQG / N_TG) · 100 

Table 17: Derived metrics for ‘Complexity of gate operations’ 
 
  

 



   41 
 

Díaz Muñoz A., Rodríguez Monje M., Piattini Velthuis M.G.: Towards a set of ... 

M3: Number of measurement operations 

The greater the number of measurements performed along the quantum code, the 
easier it will be to understand it, as well as to detect errors. Table 18 shows the quality 
metrics required for the calculation of this property. 

Metric Description 
N_QM Number of qubits with any Measure operation 

% QM Percentage of qubits measured 
% QM = (N_QM / Width) · 100 

Table 18: Metrics for ‘Number of measurements’ 
 

 M4: Number of initialization and restart operations 
 

This property analyzes the number of initialization operations, which initialize a 
flexible number of qubits to an arbitrary state, and the number of reset operations, which 
are responsible for sending the qubits to the |0⟩ state in the middle of a given 
computation. Both operations are not gates, since they are not unit operations and, 
therefore, are not reversible. 

The metrics defined for the calculation of this property are shown in Table 19: 

Metric Description 
N_QReset Number of qubits with any Reset operation 
N_QInit Number of qubits with any Initialize operation 

% QReset Percentage of qubits with any Reset operation 
% QReset = (N_QReset / Width) · 100 

% QInit Percentage of qubits with any Initialize operation 
% QInit = (N_QInit / Width) · 100 

Table 19: Metrics for ‘Number of initialization and restart operations’ 
 

 M5: Number of auxiliary qubits 
 

There are auxiliary bits, called Ancilla, which are used to achieve some specific 
goals in computation, especially in cases of reversibility. The declaration of an 
excessive number of such bits may end up resulting in a more complex code. 

The metric defined for this quality property is shown in Table 20: 

Metric Description 
N_Anc Number of auxiliary qubits 

% Anc Percentage of auxiliary qubits 
% Anc = (N_Anc / Width) · 100 

Table 20: Metrics for ‘Number of auxiliary qubits’ 
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5 Measurement environment for hybrid software 
As seen before, SonarQube already offers different measurements for classic software 
about quality metrics focused on code maintainability. Another advantage of this tool 
is the possibility of implementing a plugin to adapt the measurements and customize 
the results. For this reason, the environment that has been developed to perform the 
classical-quantum code analysis is a plugin for SonarQube, which is compatible with 
Python and Qiskit. 

The developed plugin becomes part of the Sonar environment itself, thus taking 
advantage of its scanner when performing project evaluations. Therefore, the input files 
to the tool are Python scripts, while the output of the evaluation by the tool will be the 
measurement results for both classical and quantum metrics (Figure 3). 

 

Figure 3: Hybrid code metrics analysis process 

To demonstrate the usefulness of the measurement plugin of the developed hybrid 
software, one of the analyses performed using the new measurement environment is 
shown below. In this case, the analysis of Shor's algorithm [Shor, 97] is performed, 
which is famous for refactoring integers in polynomial time, allowing the factorization 
of sufficiently large integers. 

Its representation in a quantum circuit is shown in Figure 4: 
 

 
Figure 4: Shor's Algorithm Circuit 

 
 

 



   43 
 

Díaz Muñoz A., Rodríguez Monje M., Piattini Velthuis M.G.: Towards a set of ... 

And the equivalent code to the previous circuit is shown in Algorithm 2: 

1 def qft(): 
2  
3 """ Quantum Fourier transform """ 
4  
5 qreg_q = QuantumRegister(4, 'q') 
6 circuit = QuantumCircuit(qreg_q) 
7  
8 circuit.h(qreg_q[3]) 
9 circuit.cp(pi/8, qreg_q[0], qreg_q[3]) 
10 circuit.cp(pi/4, qreg_q[1], qreg_q[3]) 
11 circuit.cp(pi/2, qreg_q[2], qreg_q[3]) 
12 circuit.h(qreg_q[2]) 
13 circuit.cp(pi/4, qreg_q[0], qreg_q[2]) 
14 circuit.cp(pi/2, qreg_q[1], qreg_q[2]) 
15 circuit.h(qreg_q[1]) 
16 circuit.cp(pi/2, qreg_q[0], qreg_q[1]) 
17 circuit.h(qreg_q[0]) 
18 circuit.swap(qreg_q[1], qreg_q[2]) 
19 circuit.swap(qreg_q[0], qreg_q[3])  
20  
21 gate = circuit.to_gate() 
22 gate.QFT = "QFT gate" 
23 return gate 
24  
25 def _7mod15() 
26  
27 """ Take x and return (7^x)mod15 """ 
28  
29 qreg_q = QuantumRegister(8, 'q') 
30 circuit = QuantumCircuit(qreg_q) 
31  
32 circuit.x(qreg_q[0]) 
33 circuit.x(qreg_q[1]) 
34 circuit.x(qreg_q[2]) 
35 circuit.x(qreg_q[3]) 
36 circuit.cx(qreg_q[0], qreg_q[5]) 
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37 circuit.cx(qreg_q[0], qreg_q[6]) 
38 circuit.cx(qreg_q[1], qreg_q[4]) 
39 circuit.cx(qreg_q[1], qreg_q[6]) 
40 circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[4]) 
41 circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[5]) 
42 circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[6]) 
43 circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[7]) 
44  
45 gate = circuit.to_gate() 
46 gate.QFT = "7 mod 15" 

 
47 return gate 
48  
49 qreg_q = QuantumRegister(8, 'q') 
50 creg_c = ClassicalRegister(4, 'c') 
51 circuit = QuantumCircuit(qreg_q, creg_c) 
52  
53 circuit.h (qreg_q[0]) 
54 circuit.h(qreg_q[1]) 
55 circuit.h(qreg_q[2]) 
56 circuit.h(qreg_q[3]) 
57 circuit.append(_7mod15(), range(8)) 
58 circuit.barrier(range(8)) 
59 circuit.append(qft(), range(4)) 
60 circuit.measure(range(4), range(4)) 
61 circuit.draw() 

Algorithm 2: Shor's algorithm 

Once the analysis of the algorithm has been performed, the tool offers the following 
results shown in Table 21, extracted from the SonarQube interface extended with the 
developed plugin. By analyzing them, the veracity of the measurements performed can 
be checked; as, for example, in the case of the qubits that have been initialized, which 
are eight, and among which a maximum of seven quantum gates have been applied. 
Another check that can be made is the number of controlled gates applied, which turn 
out to be 50% of the total. 
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Base gates   

  N_NOT 4 
  N_H 8 

Code size 
N_CNOT 4 

N_CP 6 
Width 8 N_SWAP 2 
Depth 7 N_Toff 4 

Conditionals operations Derived gates 

N_CO 16 N_TG 28 
N_CCO 16 N_GP 4 

Measurements 
N_GCliff 8 
N_GSQ 12 

N_QM 4 % GSQ 42,9 
% QM 50 N_CPG 4 

  N_G2Q 12 
  N_G3Q 4 
  N_MQG 16 
  % MQG 57,1 

Table 21: Results obtained for the metrics after the measurement carried out on 
Shor's algorithm 

 
It can also be commented that, of the 28 gates applied in total, 57.1% of them are 

multi-qubit; that is, they modify the state of more than one qubit through their 
application. Meanwhile, the other 42.9% are gates applied to a single qubit. 

Finally, the number of gates of each type can be checked, such as the four X-
controlled gates, the eight controlled gates or the other four Toffoli gates; as well as the 
number and percentage of qubits that have a measurement operation.  

6 Conclusions 
Quantum software engineering is necessary to deal with challenges related to producing 
quantum software in a systematic manner and with sufficient quality levels [Piattini, 
21]. One of these challenges is how to produce hybrid software that could be easily 
maintained and so that could evolve as the quantum software technology improves and 
consolidates. 

In this paper we propose a novel environment to assess the complexity of hybrid 
software through the defined metrics. However, the presented environment is only a 
first effort in the line of measurement and evaluation of the quality of hybrid software 
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and currently several lines of work are open to allow not only to measure, but also to 
give an evaluation of the quality. Among these lines we can highlight: 

§ Define quality thresholds for quantum metrics. Certain values for the 
thresholds of quantum metrics must be defined, but -due to the youth of 
quantum computing- there are not yet sufficient theories to easily obtain these 
values. 

§ Diagnose the quality of the hybrid code through the environment. The 
plug-in developed for SonarQube performs measurements of quantum metrics 
on the code, but a diagnosis of its quality once an analysis has been performed 
is still pending. 

§ Extend the work to other quantum languages. The currently implemented 
environment is compatible with the Qiskit language developed by IBM, but 
the development of an environment compatible with more quantum languages, 
such as Q# or Cirq, is pending for the future. 
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