Corresponding author: Anna Burduk ( anna.burduk@pwr.edu.pl ) © Dagmara Łapczyńska, Konrad Łapczyński, Anna Burduk, Jose Machado. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY-ND 4.0). This license allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use. Citation:
Burduk A (2022) Solving the problem of scheduling the production process based on heuristic algorithms. JUCS - Journal of Universal Computer Science 28(3): 292-310. https://doi.org/10.3897/jucs.80750 |
The paper deals with a production scheduling process, which is a problematic and it requires considering a lot of various factors while making the decision. Due to the specificity of the production system analysed in the practical example, the production scheduling problem was classified as a Job-shop Scheduling Problem (JSP). The production scheduling process, especially in the case of JSP, involves the analysis of a variety of data simultaneously and is well known as NP-hard problem. The research was performed in partnership with a company from the automotive industry. The production scheduling process is a task that is usually performed by process engineers. Thus, it can often be affected by mistakes of human nature e.g. habits, differences in experience and knowledge of engineers (their know-how), etc. The usage of heuristic algorithms was proposed as the solution. The chosen methods are genetic and greedy algorithms, as both of them are suitable to resolve a problem that requires analysing a lot of data. The paper presents both approaches: practical and theoretical aspects of the usefulness and effectiveness of genetic and greedy algorithms in a production scheduling process.