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Abstract: The present work deals with the recommendation of values in interactive
configuration, with no prior knowledge about the user, but given a list of products
previously configured and bought by other users (“sales histories”). The basic idea is to
recommend, for a given variable at a given step of the configuration process, a value
that has been chosen by other users in a similar context, where the context is defined
by the variables that have already been decided, and the values that the current user
has chosen for these variables. From this point, two directions have been explored. The
first one is to select a set of similar configurations in the sales history (typically, the
k closest ones, using a distance measure) and to compute the best recommendation
from this set – this is the line proposed by [Coster et al., 2002]. The second one, that
we propose here, is to learn a model from the entire sample as representation of the
users’ preferences, and to use it to recommend a pertinent value; three families of
models are experimented: the Bayesian networks, the naive Bayesian networks and the
lexicographic preferences trees.
Key Words: product configuration, recommendation, machine learning, knowledge-
based configuration
Category: Topic D.2.1 – Requirements/Specifications

1 Introduction

In on-line sale contexts, one of the main limiting factors is the difficulty for

the user to find products that satisfy her preferences, and in an orthogonal

way, the difficulty for the supplier to guide potential customers. This difficulty

increases with the size of the e-catalog, which is typically large when the consid-

ered products are configurable. Such products are indeed defined by a finite set

of components, options, or more generally by a set of variables (or “features”),

whose values have to be chosen by the user. The search space is thus highly

combinatorial. It is generally explored following a step-by-step interactive con-

figuration session: at each step, the user freely selects a variable that has not

    Journal of Universal Computer Science, vol. 26, no. 3 (2020), 318-342
  submitted: 15/1/19, accepted: 15/3/20, appeared: 28/3/20 CC BY-ND 4.0



been assigned yet, and chooses a value. Our issue is to provide such problems

with a recommendation facility, by recommending, among the allowed values for

the current variable, one which is most likely to suit the user.

The problem of providing the user with an item that fulfills her preferences

has been widely studied, leading to the content-based and the collaborative filter-

ing approaches, and every variation in between [Adomavicius and Tuzhilin, 2005,

Ricci et al., 2011, Jannach et al., 2010]. However, these solutions cannot deal

with configurable products, e.g. cars, computers, kitchens, etc. The first reason

is that the number of possible products is huge – exponential in the number of

configuration variables. For instance, in the car configuration problem described

in [Astesana et al., 2010] the definition of “Traffic” delivery vans involves about

150 variables, and an e-catalog of 1021 feasible versions. The second reason is

that the recommendation task considered in interactive configuration problem is

quite different from the one addressed in classical product recommendation: the

system is not asked to recommend a product (a car) but a value for the variable

selected by the user. Note that we are not concerned here with the choice of the

variable – this choice is under the control of the user, not under the one of the

recommender system. It is worthwhile noticing that the fact that the variables

are considered and assigned in a free order forbids the use of techniques based

on decision trees. Finally, the third reason is that we cannot assume any prior

knowledge about the user, nor about its buying habits – complex configurable

products, like cars or kitchen, are not bought so often by one individual. So we

have little information about similarity between users (upon which collaborative

filtering approaches are based) or on the preferences of the current user (upon

which content-based filtering approaches are based).

The present work1 deals with the recommendation of values in interactive

configuration, with no prior knowledge about the user, but given a list of prod-

ucts previously configured and bought by other users (“sales histories”). The

basic idea is to recommend, for a given variable at a given step of the configu-

ration process, a value that has been chosen by other users in a similar context,

where the context is defined by the variables that have already been decided,

and the values that the current user has chosen for these variables.

The recommendation of values, when any, is often limited to the proposition

of a default value, generally the one advised by the seller in a static way or

through a set of rules [Falkner et al., 2011]. Other approaches are based on simi-

larity measures and propose to determine the k-nearest neighbouring configura-

tions that are similar to the current set of user requirements [Coster et al., 2002].

The reader shall consult [Falkner et al., 2011] for a survey about recommenda-

1 This article is an extended version of the preliminary work presented at
[Fargier et al., 2016]; the experimental study has been completed by the evaluation
of new models (k-LP-trees) and the investigation of more questions – clustering and
influence of the constraints, for instance.
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tion technologies for configurable product.

Several preferences models could be used for this task, e.g. ordinal mod-

els such as CP-nets (Conditional Preference nets [Boutilier et al., 2004]) and

its variations, such as TCP-net [Brafman and Domshlak, 2002] and UCP-net

[Boutilier et al., 2001], or numerical models like VCSP [Schiex et al., 1995] or

GAI nets [Gonzales and Perny, 2004, Braziunas and Boutilier, 2005]. However,

there are no learning algorithms to learn such models from a list of chosen

items. One exception is the lexicographic preferences trees [Booth et al., 2010,

Bräuning and Hüllermeyer, 2012], which can be learnt from a list of chosen items

[Fargier et al., 2018].

The purpose of this article is to explore experimentally two directions and to

point out the advantages and drawbacks of each solution. The first direction is to

select a set of similar configurations in the sales history (typically, the k closest

ones, using a distance measure) and to compute the best recommendation from

this set – this is the line proposed by [Coster et al., 2002]. The second one is to

learn, from the entire sample, a model of the users’ preferences, e.g. a Bayesian

net, a naive Bayesian network or a lexicographic preference tree, and to use it

to propose a pertinent value.

The paper is structured as follows: the basic notations are presented in Sec-

tion 2. The next three sections present the three families of approaches that we

explore: Bayesian nets and naive Bayesian networks in Section 3, lexicographic

preferences tree in Section 4 and k-closest neighbors in Section 5. They are ex-

perimentally compared and discussed in Section 6.

2 Background and notations

A configuration problem is defined by a set X of n discrete variables, each

variable X taking its value in a finite domain X. A complete configuration is

thus a tuple o ∈
∏

X∈X X; we denote by X the set of all of them.

If W is a tuple of variables, W denotes the set of partial configurations
∏

X∈W X; we will often denote such a partial configuration by the corresponding

lower case letter w. Also, if W and V are two sets of variables, and if w ∈W,

then w[V] is the projection of w onto V ∩W. Furthermore, if w ∈ W, w is

said to be compatible with v if w[V ∩W] = v[V ∩W]; in this case we write

w ∼ v. Finally, in the case where w and v are compatible, we denote by w.v

the tuple that extends w with values of v for variables in V \W (equivalently,

w.v extends v with values of w for variables in W \V).

Not all combinations represent feasible products, because of some possible

feasibility or marketing constraints; for example, a sunroof cannot be installed

on a cabriolet. In practice, the set of the feasible products is still a huge set.

In interactive configuration problems, the user builds the product she is inter-

ested in through a variable by variable interaction. At each step, let Assigned
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be the set of variables for which she has already chosen values and u be the

tuple of values assigned to these variables; then the user freely selects the next

variable to be assigned. We denote Next this variable. The system then has to:

– Compute the set of admissible values for Next: it is the set of values v ∈ Next

such that there is at least one feasible product (i.e. satisfying the constraints)

o compatible with this combination of values, that is o[Next] = v and

o[Assigned] = u.

– Propose a recommended value for Next, chosen among the admissible values.

The first problem is not the focus of this article: we assume that we are

able to compute, for each variable, the values in its domain that are coher-

ent with the current configuration of the user. Various techniques such as con-

straints propagation, global inverse consistency [Bessiere et al., 2013] or compi-

lation [Pargamin, 2002, Amilhastre et al., 2002, Hadzic et al., 2007] can be used.

We focus here on the second problem, which is that of producing good recom-

mendations and to propose the most suited value for Next that is coherent with

the current configuration.

In the context considered in this paper, sales histories are available, on which

the system can rely to base its recommendation. Formally, a sales history is a

multiset H ⊆ X of complete configurations that correspond to products that

have been bought by past users. In the sequel, for a partial configuration u,

#(u) will denote the number of configurations in H compatible with u.

Remark that we do not rely on any prior about the user’s preferences, but

such priors could be added in our framework by adding a preliminary phase just

before the user chooses the first variable to assign. During this phase, the on-line

configurator would automatically assign some variables such as the country of

the user (obtained from her IP address) or some demographics data (obtained

from specialized tools such as Google Analytics). However, these variables would

be useful only if they appear in the constraints or the sales history.

3 Recommendation with Bayesian networks

Users have different preferences, depending on their tastes and their environ-

ments, which make them prefer different products – hence a large variety of

products in the histories. We do not have any information about their taste

nor about their environment. Instead, it can be assumed that there is a ground

probability distribution p over the set of complete configurations (i.e. the space

of all feasible products), indicating how likely it is that each item is the one that

the current user prefers. This probability may depend on her personality and

on her current environment, but it can be assumed that the sales history gives
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a good approximation of that probability distribution: the configured products

eventually bought by the past users are the one they prefer.

Therefore, if Next is the next variable to be assigned a value, and if u is

the vector of values that have been chosen for the variables already decided, we

propose to estimate, for each possible value v for Next, the marginal conditional

probability p(Next = v | Assigned = u): it is the marginal probability that

Next has value v in the most preferred product of the current user, given the

choices that she made so far; hence we can recommend the most probable value:

argmax
v∈Next

p(Next = v | Assigned = u).

The idea here is that the sales history is a sample of X according to the

unknown distribution p, that can be used to estimate probabilities. A first, naive

method to compute p(v | u) would be to count the proportion of v within the sold

products that verify u. Even if this idea works for small u’s, after a few steps the

number of products that verify u would be too low and the computations would

not be reliable enough (and even impossible when no product in the history

verifies u). Hence the idea of learning, off-line, a Bayesian network from the

dataset and to use it, on-line, during the step-by-step configuration session: the

user defines a partial configuration u by assigning some variables and chooses

a variable Next; the recommendation task consists in computing the marginal

p(Next | Assigned = u) and recommending the user with the value of Next

that maximizes this probability.

3.1 Bayesian networks

A Bayesian network, introduced by [Pearl, 1989], over a set of variables X is a

pair (G, Θ) where:

– G is a directed acyclic graph (DAG) over a set of variables X . In the following

we will denote by PaN (X) the parents of X in G.

– Θ a set of conditional probability distributions. For each variable X ∈ X is

the conditional probability distribution of X given a set of values of its par-

ents, i.e. for any x ∈ X, u ∈ PaN (X), Θ(x,u) is the conditional probability

of x given u.

A Bayesian network N uniquely defines a probability distribution pN over

X : the probability of a complete configuration o ∈ X is

pN (o) =
∏

X∈X

Θ(o[X] | o[PaN (X)])

In the sequel, we will often omit the subscript N when there is no ambiguity.
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Figure 1: A Bayesian network

For example, consider the Bayesian network depicted in Figure 1 The prob-

ability of a configuration abcdef can be computed as:

pN (abcdef) = Θ(a)Θ(c | a)Θ(e | c)Θ(f)Θ(d | cf)Θ(b | ad)

3.2 Learning a Bayesian network

The learning of Bayesian networks from data proceeds in two steps: finding

the structure of the network, i.e. of the DAG underlying the Bayesian network

and then its parameters, i.e. the conditional probabilities tables. Both aim at

maximizing likelihood estimates, i.e. the probability of observing the given set.

Learning the most probable a posteriori Bayesian network from data is an

NP-hard problem [Chickering, 1995]. There are two main families of approaches

in structure learning: the score-based ones and the constraint-based ones. The

former search for a network that maximizes a score pointing out to what ex-

tend the network fits the data [Cooper and Herskovits, 1992]. The second fam-

ily of approaches looks for conditional independencies, through independence

tests, assuming the faithfulness of the network to learn. An example is the al-

gorithm PC [Spirtes et al., 2000]. Finally, hybrid method exist, such as MMHC

[Tsamardinos et al., 2006], that learns the undirected structure of the network

with a constraint-based approach (named MMPC) and then orients the edge of

the DAG with a score-based method.

3.3 Computing marginals

The computation of the posterior marginal probability p(Next | Assigned) is a

classical task of Bayesian inference. In general, it is broken down into computa-

tions of two separate prior marginals, since, by definition p(Next | Assigned) =

p(Next ∧Assigned)/p(Assigned).

Recall that, for a given configuration o, p(o) is the product of local, condi-

tional probabilities of the network that correspond to o. Then, given a variable

X ⊆ X and a partial configuration x ∈ X, the marginal probability p(x) is the

sum of the probabilities of the complete configurations that extend x:

p(x) =
∑

w ∈ X
w[X] = x

∏

Y ∈ X

Θ(w[Y ] | w[PaN (Y )]).
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Computing such prior marginals is known to be an NP-hard problem when

p is represented by a Bayesian network [Dagum and Luby, 1993]. Indeed, the

size of the formula can grow exponentially fast with the number of variables.

There are exact inference algorithms, such as the jointree algorithm proposed

by [Lauritzen and Spiegelhalter, 1988], that work by breaking down this sum-

product formula, into sub-sums and sub-products. These algorithms have a

worst-case time complexity exponential with respect to the tree width of the

network. Even if they target a NP-hard task, they are efficient enough on real

world datasets to allow an on-line use. There also exists approximate inference

algorithms, based on belief propagation (for example [Kim and Pearl, 1983]) or

stochastic sampling (such as [Lemmer and Kanal, 2014]).

3.4 Recommendation using Naive Bayesian Networks

The naive Bayesian networks are a subset of the Bayesian network, where one

central variable (the one on which inference is to be made) is targeted and the

others are assumed independent from each other conditionally to this variable

of interest. A naive Bayesian network is therefore a Bayesian network whose

structure is a tree, and where the variable of interest (in our case, Next) is the

parent of every other variables (in our case, the variables in Assigned). For any

value v of Next and any assignment u of Assigned, we know that P (v | u) is

proportional to P (vu). We can recommend the value v that maximizes P (vu):

argmax
v∈Next

P (v | u) = argmax
v∈Next

P (vu) = argmax
v∈Next

(

P (v)×
∏

X∈Assigned

P (u[X] | v)
)

Since the variable we are recommending a value for, Next depends on the

configuration process, we would need a naive Bayesian network for every variable:

to recommend a value for Next, we use the naive Bayesian network for which

Next is the variable of interest. The computation of the networks is preprocessed:

all the prior distributions P (X) and all the conditional tables P (Y | X) (i.e.,

potentially all the naive Bayesian networks) are computed off line, before the

configuration process, from the sample, using Laplace smoothing:

{

P (X = x) = #(x)
|H| for each X ∈ X

P (Y = y | X = x) = #(x.y)+1
#(x)+|Y | for each pair X,Y ∈ X

The (pre)computation of n prior tables and n2 conditional probability tables

are thus sufficient to make a prediction for any variable at any moment.

The strong assumptions of the multiple naive Bayesian networks are mutually

contradictory: when we want to recommend a value for Next, we assume that all

the variables in Assigned are conditionally independent given Next. In spite of
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A
a > ā

B

a
b > b̄

C

ā

c̄ > c

C
b : c > c̄

b̄ : c̄ > c Bb̄ > b

abc ≻ abc̄ ≻ ab̄c̄ ≻ ab̄c
≻ āb̄c̄ ≻ ābc̄ ≻ āb̄c ≻ ābc

(a) A LP-tree.

A a > ā

BC bc > b̄c̄ > b̄c > bc̄

abc ≻ ab̄c̄ ≻ ab̄c ≻ abc̄
≻ ābc ≻ āb̄c̄ ≻ āb̄c ≻ ābc̄

(b) A 2-LP-tree

Figure 2: Different LP-trees and the preference relations they induce

this naive and strong assumption, they are precise enough for some applications.

Among their qualities, they are easy to learn and easily scalable, requiring a

number of parameters quadratic in the number of variables.

4 LP-trees and k-LP-trees

Lexicographic preference trees [Booth et al., 2010], or LP-trees for short, are

ordinal models based on the lexicographic preferences that rely of variables im-

portance: when comparing two items o and o′ of X , the most important variable

is considered; if o and o′ have different values for that variable, then the one

with the preferred value is deemed preferable to the other; otherwise one looks

at the next most important variable, and so on.

A LP-tree is composed of two parts: a rooted tree indicating the relative

importance of the variables, and tables indicating how to compare items that

agree on some variables. Each node of the importance tree is labelled with a

variable X ∈ X , and is either a leaf of the tree, or has one single, unlabelled

outgoing edge, or has |X| outgoing edges, each one being labelled with one of

these values. No variable can appear twice in a branch. Moreover, one conditional

preference table is associated to each node N of the tree. This table contains

total orders over the domain of the variable labelling N and may depend on the

values of variables that are at a node above N with a labelled outgoing edge.

An example of a LP-tree is depicted in Figure 2a.

[Bräuning and Hüllermeyer, 2012, Bräuning et al., 2017] extend the expres-

siveness of LP-trees by allowing a node to be labelled with a set of variables,

considered as a single high-dimensional variable: the rules in the conditional pref-

erence table of the node define orders on the Cartesian product of the domains

of its variables. Generally, we restrict this expressivity by fixing the maximum

325Fargier H., Gimenez P.-F., Mengin J.: Experimental Evaluation ...



Algorithm 1: Recommendation of a value using a k-LP-trees

Input: An k-LP-tree L, u a partial configuration, Next a variable

Output: Recommend a value for Next given u

Algorithm RecommendFromBestExtension(L, u)

1 o← u

2 N ← the root of L

3 while o[Next] is not assigned do

4 X← the label of N

5 o[X]← the most preferred value of X compatible with u

according to the conditional preference table of N

6 N ← the child of N compatible with o[X]

7 return o[Next]

number of variables labelling a node. The trees whose nodes are labelled by

at most k variables are denoted k-LP-tree. Figure 2b shows a 2-LP-tree whose

preference relation cannot be expressed with a regular LP-tree.

[Fargier et al., 2018] proposes an algorithm to learn a k-LP-tree from a sales

history. The learning algorithm has a temporal complexity in O(nk+1k2|H|2);

for this reason, we will limit the value of the parameter k to 2 or 3.

So, in order to recommend a value for Next given u, we propose to rec-

ommend the value of Next of the most preferred item o that extends u. This

recommendation can be done with a top-down traversal of the k-LP-tree as de-

scribed in Algorithm 1. The research of the most preferred extension o of u is

done by choosing, at each depth of the k-LP-tree, the best values according to

the conditional preference table; since we are only interested in the value o[Next]

(the recommended value), we stop the search as soon as this value is obtained.

5 Methods based on k-nearest neighbors

A third family of recommending algorithms is proposed in [Coster et al., 2002],

based on the selection of a neighborhood. Rather than computing the preference

from the entire sample, the system focuses on sold configurations that are similar

to the present one – i.e. the k nearest neighbors. All the methods proposed

in [Coster et al., 2002] are based on the Hamming distance; namely, given an

assignment u of Assigned, and a complete configuration w, dAssigned(u,w)

counts the number of assigned variables on which the two configurations disagree:

dAssigned(u,w) = | {X ∈ Assigned | u[X] 6= w[X]} | (1)
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At each step, these methods select the set N(k,u) of the k-nearest neighbors

of the current u, and compute the recommendation on this basis.

5.1 Weighted Majority Voter

The simplest algorithm is the Weighted Majority Voter, which predicts the value

of Next on the basis of a weighted majority vote of the k nearest neighbors. The

weight of a configuration w in N(k,u) is set equal to the degree of similarity

between this configuration and the current one, u, i.e. the number of variables

that are given the same value by both:

weight(u,w) = | {X ∈ Assigned | u[X] = w[X]} |

The recommended value for Next is chosen among the ones that are autho-

rized by the constraints by maximizing:

vote(v) =
∑

w∈N(k,u)|w[Next]=v

weight(u,w)

5.2 Most Popular Choice

Most Popular Choice predicts the most popular (actually, the most probable) ex-

tension of the current configuration, u, from the knowledge of the neighbors and

recommends the value supported by this configuration. It holds that, for any full

configuration uw that extends u, P (uw) = P (u | w) ·P (w). [Coster et al., 2002]

makes the assumption that the variables that have not been assigned are mutu-

ally independent, and that the ones that are assigned are independent from one

another given w. Hence we have:

P (uw) =
∏

X∈Assigned

P (u[X] | w) ·
∏

X∈X\Assigned

P (w[X])

The probabilities are estimated from the k nearest neighbors of u:

– for X ∈ X \Assigned and x ∈ X:

P (x) =
1

k
|{w′ ∈ N(k,u),w′[X] = x}|

– for X ∈ Assigned and x ∈ X, let N(k,u,w) be the set of neighbors of u

that agree with w on Assigned:

N(k,u,w) = {w′ ∈ N(k,u),w′[Assigned] = w[Assigned]}

Then P (x | w) is the fraction of N(k,u,w) that has value x, with Laplace

smoothing since N(k,u,w) may be empty:

P (x | w) =
|{w′ ∈ N(k,u,w)|w′[X] = x}|+ 1

|N(k,u,w)|+ |X|
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The value recommended for Next is the one prescribed by the w ∈ N(k,u)

that maximizes P (uw[X rAssigned]). The drawback is that this method does

not guarantee that the value computed is compatible with u according to the

constraint.

5.3 Naive Bayes Voter

The Naive Bayes Voter is similar to the Naive Bayes method proposed in Section

3.4, with the difference that it uses the k nearest neighbors of u to build a naive

Bayes network. Since these neighbors depend on u, it is not possible to preprocess

the computation of the probability table – this approach is much slower than

the classical naive Bayes as the experiments point out.

The recommended value for Next is chosen among the ones that are autho-

rized by the constraints by maximizing P (v | u) ∝ p(v)
∏

X∈Assigned p(u[X] | v),

where:

– p(v) = 1
k
|{w ∈ N(k,u)|w[Next] = v}|

– for every X ∈ Assigned and every v ∈ Next, let N(k,u, v) be the set of

neighbors of u that have value v for Next, then2:

p(u[X] | v) =
|{w ∈ N(k,u, v)|w[X] = u[X]}|+ 1

|N(k,u, v)|+ |X|

6 Experimental evaluation

The approaches proposed in this paper have been tested on a case study of

three sales histories provided by Renault, a French automobile manufacturer3.

These datasets, named Renault-44, Renault-48 and Renault-87, are genuine sales

histories – each of them corresponds to a configurable car, and each example in

the set corresponds to a configuration of this car which has been sold.

Most of the variables are binary, but not all of them. To each dataset is

associated a Constraint Satisfaction Problem (CSP) containing the technical,

legal and business constraints. However, since these constraints change over time

(a new ecological law can forbid some configurations; an option can be included as

standard), a non-negligible part of these dataset does not satisfy the constraints

provided. More precisely:

– dataset Renault-44 has 44 variables and 14786 examples including 8252 ex-

amples consistent with the constraints.

2 We slightly modified the formula of [Coster et al., 2002], replacing the term k at
the denominator by the term |X|; otherwise, the conditional probabilities are not
correctly normalized and do not sum to 1.

3 available at http://www.irit.fr/~Helene.Fargier/BR4CP/benches.html
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– dataset Renault-48 has 48 variables and 27088 examples including 710 ex-

amples consistent with the constraints.

– dataset Renault-87 has 87 variables and 17715 examples including 8335 ex-

amples consistent with the constraints.

As explained in section 2, we use an external tool to process the constraints

and compute, at each step, the admissible values for each variable. Thus, the

recommenders don’t need to be modified to incorporate the constraints: they

just need to be able to recommend a value among a set of admissible values.

6.1 Experimental protocol

We use a classical ten-fold cross-validation: each dataset is cut by ten, an algo-

rithm learns with nine tenth (which constitute the sales history) and is tested

with the last tenth (which can be viewed as a set of on-line configuration ses-

sions). The protocol is described in Algorithm 2. Each test is a simulation of a

configuration session, i.e. a sequence of variable-value assignments. In real life, a

genuine variable ordering was used by the user for her configuration session and

the different sessions generally obey different variable orderings. Unfortunately,

the histories provided by Renault describe sales histories only, i.e. sold prod-

ucts, and not the ordered sequence of variable-value assignment in each session.

That is why we generate a session session for each product o in the test set by

randomly ordering the variables of X .

At the beginning of a simulation, the partial ongoing configuration u is empty.

Then, the next variable Next in session is considered and the set of admissible

values (i.e. the set of values that can lead to a feasible complete configuration)

of Next is computed. If there is only one admissible value, the recommendation

is trivial and will not be taken into account for the success rate. Otherwise, the

recommender is asked for a recommendation for Next, say r: r may be equal to

o[Next] or may be different if the recommender considers the value r more suited

than o[Next]. We consider a recommendation as correct if the recommended

value is the same as the value really chosen in the product. Any other value

is considered as incorrect. Finally u[Next], the partial configuration, is set to

o[Next] and the process is continued for the next variable Next.

The recommendation algorithms are evaluated by (i) the time needed for

computing the recommendations and (ii) their success rate, obtained by counting

the number of correct and incorrect recommendations, discarding the trivial

recommendations.

6.1.1 Oracle

In order to easily interpret the results, we propose to compute an upper limit

on the success rate. If there were an algorithm that already knows the testing
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Algorithm 2: Protocol for evaluating value recommendation in inter-

active configuration

Input: A recommendation algorithm A and the test set Htest

Output: The success rate

main:

1 success ← 0

2 error ← 0

3 for each o ∈ Htest do

4 session ← a randomly drawn sequence of the variables X

5 u← empty tuple

6 for each Next ∈ session do

7 admissible← the set of admissible values of Next given u

8 if |admissible| 6= 1 then

9 r ← recommended value by A for Next given u among

admissible

10 if r = o[Next] then increment success by 1

11 else increment error by 1

12 u[Next]← o[Next]

13 return success/(success + error)

set, it could use the probability distribution estimated from this testing set.

This hypothetical algorithm could attain a success rate that is not reachable by

algorithms that have only access to the training set. In particular, this algorithm

could recommend for the variable Next, given the assigned values u, the most

probable value of Next in the subset of products, in the test set, that respect u.

More precisely, for any x in the domain of Next, it would estimate p(x | u) as

#(ux)/#(u). Notice that #(u) is never equal to zero, since the test set contains

at least one product consistent with u: the one corresponding to the current

session. It can be interpreted as an algorithm overfitted to the test set.

We call this algorithm “Oracle”. This algorithm maximizes the probability of

success measured in our protocol. This follows from a classical result of statistics:

with a 0-1 loss function (“success” or “failure” of the recommendation in our case),

the estimator that minimizes the loss is the maximum a posteriori estimator,

that recommends the most probable value given the partial configuration. This

is exactly what the Oracle does.

6.1.2 Experiments

The R package bnlearn was used to learn the Bayesian networks – more pre-

cisely, we used Hill Climbing (HC) to learn the two datasets of about 50 variables
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(Renault-44 and Renault-48 ) and MMHC to learn the bigger dataset Renault-

87. The average number of parents of a node in the obtained Bayesian network

is about 1.17, 1.02 and 0.98 – for Renault-44, Renault-48 and Renault-87, re-

spectively. As to Bayesian inference, we used the jointree algorithm provided by

the library Jayes. We implemented the Naive Bayes approach, the k-LP-trees

approach and the algorithms based on the k-nearest neighbors. We used the

CSP compiler and solver SALADD [Schmidt, 2015] to compute the feasible con-

figurations. The experiments have been made on a computer with a quad-core

processor i5-3570 at 3.4Ghz, using a single core. Recommendation algorithms

are implemented in Java4. We were interested in the following questions:

– Which method is the most efficient in terms of error rate and recommenda-

tion time?

– How does the size of the learning dataset influence the success rate?

– What is the influence of the feasibility constraints on the success rate?

Before entering these questions, we need to study two preliminary parame-

ters, that may influence the efficiency of the methods:

– Concerning the methods based on k-nearest neighbors, which values of k

minimize the error rate?

– Does the clustering of the learning set enhance the success rate?

6.2 Results

6.2.1 Neighborhood size

The algorithms based on the selection of k nearest neighbors [Coster et al., 2002]

depends on the parameter k. The issue of choosing a good value for k is not

tackled in the original paper but can have a direct consequence to the recom-

menders’ performance. Indeed, the recommendation time of a neighbor-based

recommender is the sum of the time used to find the k nearest neighbors and

the time of the vote itself (Weighted Majority Voter, Most Popular Choice or

Naive Bayes Voter). The algorithm implemented for this study finds the k near-

est neighbors in a set H in O(k|H|). Remark that we cannot use traditional way

of preprocessing the neighbors search since the neighborhood depends on the

distance dAssigned, which depends on the set of assigned variables Assigned

that contains 2n possibilities.

Our empirical analysis (see Figure 3) reports the average error rate and time

of the Naive Bayes Voter recommender on Renault-44 and Renault-48 w.r.t. k,

4 The source code is available at https://github.com/PFGimenez/PhD
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Figure 3: Average error rate (left) and recommendation time (right) of Naive

Bayes Voter on Renault-44 and Renault-48 w.r.t. k, the number of neighbors

the number of neighbors. The results are similar for Weighted Majority Voter

and Most Popular Choice, and on the other datasets.

We can clearly see a bell curve for the error rate: too few neighbors and

the Naive Bayes does not have enough data to perform an accurate prediction.

Too much neighbors and the neighborhood starts containing examples that may

be too different from current configuration. The lowest error rate is achieved

between k = 20 and k = 50. For the rest of the experiments, we set k = 20, since

it is suited to the different datasets.

6.2.2 Is it worth clustering the sales history?

A well-known technique for increasing accuracy in machine learning is clustering:

segregate data into homogeneous groups, called clusters, and learn the preference

for each cluster. Clustering has been previously used successfully in collabora-

tive filtering recommendations [Ungar and Foster, 1998]. That’s why we chose to

empirically verify whether, in the context of interactive configuration, clustering

may enhance recommendations or not.

We based our clustering on the famous k-means method. Once the c clusters

have been learned, one recommender is set up for each cluster. This means that

there will be c recommenders, each one being learned with configurations in the

training set belonging to its cluster. When the configurator must provide a rec-

ommendation for a partial configuration u, the most appropriate recommender

is used. During a configuration session, recommenders from different clusters

can thus be used at different steps of the configuration. For neighborhood-based

algorithms and the LP-tree algorithm, the most appropriate recommender is the

recommender whose cluster center is the closest to u (according to the Hamming

distance). For the Bayesian networks, since model represents a probability distri-

bution, the most appropriate recommender is the recommender that maximizes

the probability of u.
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We experimented various number of clusters, from one to three. The recom-

mendation error rate on Renault-44 w.r.t. the number of clusters is shown in

Table 1. The tendencies are the same for Renault-48 and Renault-87.

Cluster number 1 cluster 2 clusters 3 clusters

Naive Bayes Voter 6.52% 8.71% 9.74%

Bayesian Network 6.60% 8.55% 9.59%

Naive Bayes Network 8.59% 11.05% 12.65%

3-LP-tree 16.15% 16.19% 15.08%

Table 1: The error rate of three recommenders w.r.t. the number of clusters on

Renault-44

We can see that clustering is not worthwhile for the neighborhood-based

methods, the Bayesian networks and the naive Bayes network, but decreases the

error rate for the 3-LP-tree.

This success rate loss of the neighborhood-based algorithms due to the clus-

tering can be explained as follows. These algorithms already perform an on-line

clustering in the form of a selection of the relevant sold items. It is important

to remember that these recommenders look for the closest neighbors of the cur-

rent, partial configuration: the distance dAssigned relies solely on the variables

assigned in the partial configuration, and ignores the values of the other variables

(see definition (1)). However, the clustering distance, that we could denote dX ,

takes all the variables into account: the set of similar configurations for a partial

configuration u are generally different from the set of similar configurations for

an extension uv. Since the problem comes from the clustering itself, the same

reasoning can be applied to Bayesian networks. That’s why, as we can see on the

experimental result, the greater the number of assigned variables, the smaller

the success rate loss for both algorithm: the loss is close to zero for the last

recommendation on nearly complete configuration.

The success rate increase of the 3-LP-tree results certainly from the limited

expressivity of the k-LP-tree. Using several k-LP-trees allows to represent more

closely the true user preferences. Remark however that the success rate attains

a maximum for a certain number of clusters; with more clusters, there won’t be

enough data in each clusters to learn reliably a k-LP-tree.

Clustering has nonetheless an advantage for neighborhood-based methods

and Bayesian networks: Figure 4 shows that, for both the Naive Bayer voter and

the Bayesian network, the usage of clusters reduces the recommendation time.

Concerning Bayesian network, we believe that the reduced training set decreased

the models complexity and, therefore, the inference time.
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Figure 4: Average recommendation time on Renault-44 for Bayesian Network

and Naive Bayes voter with one or three clusters

In the next experiments, we won’t use any clustering for Naive Bayer voter

and Bayesian network and three clusters for k-LP-trees.

6.2.3 Success rate and temporal efficiency

Figure 5 shows the success rate of the pure Bayesian Network-based approaches

(Bayesian network and Naive Bayes), the methods based on k closest neighbors

and the k-LP-tree (with three clusters). The oracle is given as an ideal line.

It appears that the Naive Bayesian network, which makes very strong in-

dependence assumptions, has a low success rate (this error rate is bad also on

classical Bayesian networks benchmarks). This is not surprising, since the vari-

ables are not independent from one another, at least because of the constraints.

The independence assumptions at work in the methods based on the k clos-

est neighbors are in a sense less drastic, since the distance used to select the

neighborhood implicitly captures some dependencies.

The k-LP-trees also have a low success rate, especially on Renault-44, prob-

ably because of their limited expressivity. Furthermore, since they are ordinal

models, they cannot evaluate the most probable value a posteriori but must first

compute the preferred product and then recommend the value of the variable of

interest in this preferred product.

Three methods have very good results: Classical Bayes Net, Naive Bayes

Voter and Most Popular Choice. Their success rate is very good (only a few

points from the Oracle). The gap with the Oracle gets larger when the number
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Figure 5: Average error rate on datasets Renault-44 (top) Renault-48 (middle)

and Renault-87 (bottom)
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of assigned variables increases: the Oracle’s performance becomes less and less

attainable. This phenomena is especially visible with the dataset Renault-87,

because it has more variables that Renault-44 or Renault-48.

As presented in the introduction, a simple recommendation method uses a

default value for each variable. We can estimate its maximum success rate from

the Oracle results. Indeed, since default values don’t depend on the values of the

configured variables, its success rate is bounded by the success rate of the Oracle

with no configured variables (for example, this error rate is 24% on Renault-44 ).

We conclude that the success rate of this method is far below the success rate of

the other methods but this method could usefully be used in conjunction with

k-LP-trees when few variables are configured.

The CPU time (see Figure 6) clearly breaks the set of algorithms in three

groups: the ones that learn the dependencies off-line from the entire dataset and

have a linear recommendation time (k-LP-tree and Naive Bayesian Network),

the one that learn the dependencies off-line from the entire dataset and has a

non-polynomial recommendation time (the Bayesian network) and the ones that

compute a new neighborhood at each step.

The first group is clearly the fastest, being up to four orders of magni-

tude quicker than the neighborhood-based methods, for example. The naive

Bayes network and the k-LP-trees recommendation time is between 0.001ms

and 0.050ms. Furthermore, the k-LP-tree recommendation time seems less sen-

sitive to the number of configured variables than the naive Bayes network. The

second group, represented by the Bayesian network, needs less than 0.1 ms for

the Renault-44 and Renault-48 datasets. It stays under 40 ms for the Renault-

87 dataset. However, since its inference algorithm is not polynomial in n, one

can expect its recommendation time to explode with larger n. Finally, the third

group is the slowest on Renault-44 and Renault-48, which is explained by the

time needed to extract the k best neighbors before computing the recommen-

dation. However, this time is not too sensitive to the size of the problem – it

remains low on the Renault-87 instance.

One can check that on these datasets, which correspond to a real world

application, the CPU times of all the method tested are compatible with an

on-line use, with less than 40 ms in any case.

6.2.4 Influence of the sample’s size

The drawback of the methods based on a neighborhood is that their perfor-

mances seem to depend on the size of the original sample: the larger the sample

size, the better the prediction but the higher the time needed to make it. To

confirm this, we performed another experiment, varying the size of the sample,

from the full sample to a sample containing only 1/100th of the original one.
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Figure 6: Average recommendation time on datasets Renault-44 (top) Renault-48

(middle) and Renault-87 (bottom)
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Figure 7: Average error rate of Bayesian network (top) Naive Bayes Voter (bot-

tom) on dataset Renault-44 w.r.t. the size of the learning sample

Results are shown in Figure 7. Both Bayesian network and Naive Bayes voter

suffer an accuracy degradation when the sample size is reduced. However, we can

remark that the accuracy degradation of the Bayesian network is moderate (error

rate from 17.20% to 18.47%) while it is much worse for Naive Bayes voter (error

rate from 16.76% to 19.76%). The Bayesian network success rate depends much

less on the sample size that the neighborhood-based methods success rate.
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Error rate on Renault-44 All examples Consistent examples only

Naive Bayes Voter 19.90% 18.13%

Weighted Maj. Voter 20.14% 19.24%

Most Pop. Choice 20.39% 19.12%

Bayesian network 19.14% 18.28%

Naive B. network 23.71% 22.52%

3-LP-tree (3 cl.) 21.60% 21.91%

Error rate on Renault-87 All examples Consistent examples only

Naive Bayes Voter 7.97% 9.11%

Weighted Maj. Voter 7.99% 9.03%

Most Pop. Choice 8.40% 9.52%

Bayesian network 12.51% 13.17%

Naive B. network 12.89% 13.52%

2-LP-tree (3 cl.) 11.73% 10.08%

Table 2: The error rate on Renault-44 (top) and Renault-87 (bottom) when

using the entire training set or only the examples consistent with the constraints

6.2.5 Influence of the inconsistent examples

Even though we know that all future sold products will satisfy the constraints,

the learning set may contain examples that do not (because constraints change

over time). The question of whether discarding these examples may (or not)

enhance the success rate is not trivial. On one hand, these examples, although

they don’t comply with the constraints, contain information about the user pref-

erences. On the other hand, they may harm the success rate because they are

not representative of examples in the test set. Hence the need of an experimental

verification of whether it is worth, or not, to learn these inconsistent examples.

We ran both experiments on the datasets; results are presented in Table 2.

While the error rate is decreased by discarding the inconsistent examples for

the dataset Renault-44 (results are similar for Renault-48 ), it is increased for

Renault-87 for all recommenders except k-LP-trees. It seems that the change of

success rate (that either increases or decreases) primary depends on the dataset

and not on the algorithm. Since the error rate difference is significant, we cannot

conclude in the general case.

Remark that Bayesian networks tend to have a lower success rate in pres-

ence of constraints. This comes certainly from their probabilistic nature and the

fact that some properties are lost when the probability distribution learnt has

impossible (i.e. null probability) values, which is the case with constraints.
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6.2.6 Influence of the constraints

In order to study the influence of the constraints on the recommendation success

rate, we created two lightened version of the CSP of Renault-48 : a CSP with

about 30% of the constraint and a CSP with about 60%. We focus the study

on the two recommenders with the best success rate: Naive Bayes Voter with

k = 35 and the Bayesian network.

The success rate w.r.t. the ratio of constraints is summarized in Table 3. We

can see a clear degradation of the success rate as constraints are added for both

recommenders. The success rate difference is barely noticeable between the two

recommenders – they are similarly affected by the constraints.

Ratio of constraints Naive Bayes Voter Bayesian Network

0% 6.49% 6.60%

30% 8.40% 8.14%

60% 12.30% 11.97%

100% 19.55% 19.14%

Table 3: The error rate of two recommenders w.r.t. the ratio of constraints on

Renault-48

7 Conclusion

This paper has presented and experimented two families of approaches for the

task of recommendation in interactive product configuration – the line proposed

in [Coster et al., 2002], relying on the on-line selection a k-neighborhood, and

an original line, in two step: a model of the entire sample is learned off-line, as

representation of the users’ preferences, and used on-line to recommend a perti-

nent value; three families of models are experimented here: Bayesian networks,

naive Bayesian networks and lexicographic preferences trees.

Our experiments on real world datasets show that these methods are com-

patible with an on-line context. Bayesian Nets have a success rate close to the

best possible one. The naive Bayes approximation leads to a very quick rec-

ommendation, but of lower quality. We showed that k-LP-trees have relatively

low success rate because they have a limited expressivity and cannot perform

a maximum a posteriori value recommendation. While we cannot change this

second limitation, we can mitigate the first one by using clustering to enhance

k-LP-trees expressivity and achieve a better success rate. They are the fastest

recommenders we experimented with. The other approaches proposed in the lit-

erature (Naive Bayes Voter, Weighted Majority Voter and Most Popular Voter)
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have a success rate similar to the one of Classical Bayesian Nets, and a CPU

time that is barely sensitive to the size of the instance – but strongly depends

on the size of the sample.

We shall thus conclude in favor of the approach based on Bayesian net learn-

ing for problems with either a reduced sample or a very large sample, with little

constraints and a reasonable number of variable. Otherwise, when the sample

size is large enough and can still be explicitly memorized, the methods based

on k-neighborhood constitute a simple yet accurate solution. Finally, one should

keep in mind that naive Bayes and k-LP-trees shall be alternatives on situations

involving very big instances, very limited memory resource or an extremely quick

recommendation requirement.
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