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Abstract: The manual transformation of a user interface design into code is a costly and time-
consuming process. A solution can be the automation of the generation of code based on sketches 

or GUI design images. Recently, Machine Learning approaches have shown promising results in 

detecting GUI elements for such automation. Thus, to provide an overview of existing 

approaches, we performed a systematic mapping study. As a result, we identified and compared 
20 approaches, that demonstrate good performance results being considered useful. These results 

can be used by researchers and practitioners in order to improve the efficiency of the GUI design 

process as well as continue to evolve and improve approaches for its support. 
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1 Introduction  

Modern software systems rely on attractive graphical user interfaces (GUIs) that 

facilitate the effective and efficient completion of tasks and engage users, especially in 

the competitive mobile application market [Moran et al. 2018]. Consequently, GUI 

design has gained increasing importance in the software process. Typically, the 

development of GUI involves iterative prototyping, starting with the creative process 

of making sketches, that are simple hand-drawn representations. They are an effective 

visual medium to transmit and discuss ideas and compare different alternatives in a 

simple, quick, and inexpensive way [Huang et al. 2019]. From sketches, wireframes 

that define the visual hierarchy are created, representing the interface layout and 

structure without visual design details such as colors, images, etc. [Robinson 2018]. 

Once the wireframe is created and revised, it is enhanced by the visual design, until it 
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becomes a high-fidelity prototype [Robinson 2018]. When the design is finalized, it is 

implemented, resulting in the product (Figure 1). 

 
Figure 1: Artefacts in the GUI design process (based on [Garrett 2010] [ Hartson 

and Pyla 2019] [ Memmel and Reiterer 2008] [Silva da Silva et al. 2011]) 

As an iterative prototyping process, these steps can be repeated several times during 

the design of an interface, requiring rework whenever changes are made. In this context, 

specifically, the process of the generation of code from GUI prototypes has a high 

potential for automation, as it is an uninspired, time-consuming, and error-prone task 

[Moran et al. 2018] [Silva da Silva et al. 2011] [Suleri et al. 2019].  

While designers typically used graphic editors including Photoshop or Illustrator 

to design GUIs, a large variety of design tools (such as Sketch, Figma, Marvel or Adobe 

XD) have evolved to become all-in-one tools from designing, prototyping to testing, 

yet, still requiring the coding of the GUI design. On the other hand, modern IDEs such 

as Eclipse, Visual Studio, or Android Studio, have powerful interactive drag-and-drop 

based builders for GUI code. But, even with the currently available tools, the transition 

from sketches or wireframes to code still consists of manually recreating user interfaces 

[Beltramelli 2019]. 

Therefore, solutions are being created for the automatic generation of code for the 

GUIs of websites and mobile applications [Robinson 2018] [Beltramelli 2017]. These 

tools automatically convert hand-drawn sketches or wireframes into front-end code or 

code representations. This automation facilitates the GUI development process saving 

effort and time as well as helping to prevent accidental mistakes [Ozkaya 2019].  

More recently, Machine Learning approaches are being applied for such an 

automatic generation of GUI code. In this context, first solutions for the automatic 

detection of user interface elements in sketches and or images of GUI prototypes have 

emerged as an initial step for automating the creation of GUI skeletons and, 

consequently, front-end code.  Yet, although object detection is a vast field of Computer 

Vision (CV) research, so far research on the detection of GUI elements is still scarce. 

And, although first approaches have emerged, there still does not exist an overview of 

existing approaches. Therefore, in this article, we present a systematic mapping 

concerning the research question on how the generation of GUI design code can be 
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automated based on GUI images using Machine Learning. This article summarizes the 

main findings from our review that might be of interest to practitioners and researchers. 

2 Background 

2.1 GUI Design 

Typically, the development of GUI involves iterative prototyping, and the nature of 

GUI design prototypes can vary significantly with respect to fidelity, depending on the 

design situation, especially the stage of development [Hartson and Pyla, 2019]. And, 

although terminology with respect to GUI design prototypes differs and is sometimes 

used interchangeably, a common understanding associates hand-drawn sketches to low-

fidelity prototypes and wireframes to medium-fidelity prototypes, representing the 

skeleton of the GUI by indicating visual elements and layout [Robinson 2018]. 

Enhancing the wireframe by visual design it becomes a high-fidelity prototype, often 

also called mockup [Moran et al. 2018], which is generally represented by an image of 

the GUI and/or a screenshot of the prototype [Robinson 2018].  

The user experience results from decisions made during the GUI design process on 

different planes of details [Garrett 2010]. This includes the representation of hierarchy 

including GUI elements and structure as part of low fidelity prototypes, such as 

sketches and wireframes. While on a higher surface plane, visual design details such as 

color, imagery, and typography are added [Schlatter and Levinson 2013].  

The specific GUI elements vary depending on the type of GUI (web or mobile), but 

typically include elements such as Text, Button, and TextBox among others (Table 1). 

 
GUI element type Sketch 

Button 

 
Checkbox 

 
Dropdown list 

 
Text field 

 
Switch 

 
Sliders 

 
Icons 

 
Notifications 

 
Text 

 
Image 

 

Table 1: Examples of types of GUI elements (based on [Garrett 2010]) and their 

representation in sketches 

A GUI design image depicts the desired GUI elements and their spatial layout. To 

implement a GUI design image this depiction of the interface is typically translated into 

a GUI skeleton, which defines what and how the components of a GUI builder should 
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be composed in the GUI implementation for reproducing the GUI elements and their 

spatial layout in the GUI design image. This GUI skeleton then enables the subsequent 

GUI implementation depending on the specific platform and/or programming 

environment during front-end development.  

Websites are composed structurally with HTML element tags and styled with 

Cascading Style Sheets (CSS). The structure of a website consists of the types of 

elements e.g. division, table, paragraph, button, and how they are positioned, while the 

style defines the colors, fonts, and borders. HTML is constructed as a tree of objects 

(Document Object Model (DOM)), with branches of this tree representing containers, 

such as <div>, <footer>, <header>, and leaves of the tree are elements which contain 

content, e.g., <img>, <p>, <button>. 

The way mobile GUIs are defined varies depending on the technology used, which 

can be layered on top of the basic Domain-Specific Language (DSL) definition 

infrastructure. However, in general, regardless of the overlapping technologies, all 

elements of the user interface in an Android application, for instance, will ultimately 

be implemented in the form of tree-like structures, with each node representing View 

objects, which draws something on the screen and allows user interaction, and 

ViewGroup, which groups those elements. GUI elements are defined in a markup-like 

format (XML) using several View subclasses, or "widgets", which can be used for input 

control (such as buttons: <Button> and text fields: <TextView>) or even ViewGroup, 

or "layouts", such as a linear layout <LinearLayout>, for example. Other aspects such 

as color, font size, and background can be defined as styles and themes, also in a 

markup-like (XML) format. Styles can then be applied to specific attributes of View 

objects, such as TextView, using attributes like "style". 

2.2 Machine Learning Approaches for Object Detection 

Object detection a fundamental and challenging problem in computer vision has 

received great attention in recent years is due to its wide range of real-world 

applications, including the detection of elements in graphical user interfaces [Zou et al. 

2019]. Especially Machine Learning approaches have achieved remarkable advances 

using pattern recognition techniques as well as deep learning [Jiao et al. 2019].  
 

Figure 2: Example of GUI element detection in sketches 
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Object detection deals with detecting instances of semantic objects of a certain 

class (such as humans, buildings, or cars) in digital images and videos. In the context, 

of GUI design, it aims at the detection of GUI elements such as buttons, text, and images 

(Figure 2), referring to a multi-class detection, where each detected object in the GUI 

is classified into one of the non-overlapping GUI element classes.  

2.2.1 Object detection process 

Following [Hechun and Xiaohong 2019], a basic process for object detection can 

roughly be divided into the following phases: region proposal, feature representation, 

and region classification. The first possible object locations in the image are suggested, 

indicating also some possible candidate area of the containing object. Then features are 

extracted by selecting the appropriate features as characteristics vector, and classifying 

this feature vector, and, thus, determining its type. After executing post-processing 

operations, such as the maxima inhibition, border position return, the final object frame 

is returned. Some more recent deep learning approaches condense some of these steps.  

 

 

Figure 3: Overview of Machine Learning approaches applied for GUI element 

detection 

2.2.2 Machine Learning approaches for object detection 

Different types of learning can be applied [Russell and Norvig 2010] including 

supervised and unsupervised approaches. Supervised learning focuses on inferring a 

function that maps an input to an output based on labeled training data. Unsupervised 

learning, on the other hand, aims at finding previously undetected patterns in a data set 

with no pre-existing labels and with a minimum of human supervision.  

Adopted Machine Learning approaches include k-Nearest Neighbors (kNN) 

[Zhang 2016], a is a non-parametric method used for classification and regression in 

pattern recognition. Using supervised learning methods, the kNN algorithm stores all 

available cases and classifies new cases based on a similarity measure (e.g., distance 

functions). The Learning Vector Quantization algorithm (LVQ) [Kohonen 1988] for 

pattern classification combines competitive learning with supervision enabling to 

choose how many training instances to hang onto and learns exactly what those 

instances should look like. Random Forests [Ho 1995] is a supervised learning method 

for classification, regression, and other tasks that builds an ensemble of decision trees. 
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Other examples include Density-Based Clustering, which refers to unsupervised 

learning methods that identify distinctive groups in the data, assuming that a cluster is 

a contiguous region of high point density, separated from other groups by contiguous 

regions of low point density. 

2.2.3 Deep Learning approaches for object detection 

Recently, Deep Learning approaches have also been used (Figure 3). Deep Learning 

originated from the study of Artificial Neural Networks (ANNs), which are 

computation models inspired by biological neural networks representing a group of 

multiple perceptrons/neurons at each layer processing inputs. A Deep Learning Neural 

Network (DNN) is an ANN with two additional features: a very deep structure with 

many layers between the input and output layer and convolutional layers. In a 

convolutional layer, input connections of each artificial neuron can be spatially 

organized, e.g., reflecting a field of pixels in an image, and the input signal is always 

subject to a convolution operation, i.e., a matrix operation that is applied to the input, 

instead of the weighted sum of inputs of a traditional ANN. Convolution operations can 

be understood as filters on the input signal. Examples of classic convolution operations 

are Gaussian filters, Perona-Malik diffusion filters, and gradient operators. A DNN that 

employs convolutional layers is also called a Convolutional Neural Network (CNN). 

CNNs do not employ ready-made filters, but rather learn customized, new filters during 

the training process. CNNs were first proposed by [LeCun et al. 1998], but have been 

applied more widely only after [Krizhevsky et al. 2012] demonstrated their power and 

the possibilities offered by training them on general-purpose graphic processing units 

(GP-GPU).  

CNN are used heavily for object detection [Zhao et al. 2019]. Currently, CNN-

based object detection approaches can be primarily divided into two types: structured, 

two-stage detectors, such as Region-based CNN (R-CNN) and its variants (such as 

Faster R-CNN) and one-stage, purely neural detectors, such as SSD, RetinaNet and 

YOLO and their variants [Wu et al. 2020]. Two-stage detectors first generate regions 

of interest, sometimes employing classical methods, and then extract features from each 

proposal, followed by region classifiers that predict the specific category of the 

proposed region. These models reach the highest accuracy rates but are much slower. 

One-stage detectors, on the other hand, directly make a categorical prediction of objects 

on each location of the feature maps without the region classification step. They treat 

object detection as a simple regression problem by taking an input image and learning 

the class probabilities together with the bounding box coordinates. Such models reach 

lower accuracy rates, but are much faster and can be used in real-time applications 

[Huang et al. 2017].  

Classic Recurrent Neural Networks (RNN) are a variant of ANNs that redirect part 

of the output of some layers back into the input of earlier layers, providing a means of 

learning contextual information, such as temporal and sequential data and also features 

in their spatial contexts [Williams and Zipser 1989]. They perform the same task for 

every element of a sequence, with the output being dependent on the previous 

computations. Modern, Deep Learning-based RNNs [Sherstinsky 2020] are a variant 

of CNNs used mainly in signal analysis and Natural Language Processing (NLP). 

RNNs have shown to be hugely successful in NLP, especially with a variant called 

long-short-term memory (LSTM), which is able to look back longer than RNNs. LSTM 
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is a special kind of structured RNN, with different recurrent modules capable of 

learning long-term dependencies. Another alternative are Bi-directional RNNs, 

stacking two LSTM RNNs, which allows the output layer to integrate information from 

both, past and future states.  

Nowadays, there exist a large number of Deep Learning frameworks, which offer 

basic and advanced Deep Learning features and can be easily extended and used as 

building blocks for the development of new CNN models and applications. The most 

widely used are TensorFlow, PyTorch, Keras, and Fastai, which employ the Python 

programming language, and Darknet and OpenCV-DNN, which employ the C++ 

programming language.  

A backbone network is a CNN model employed in a wider CNN-based 

architecture, where it acts as the basic feature extractor for object detection, semantic 

segmentation, or automated image captioning tasks. The backbone network is generally 

an image classification CNN without its last classification layers, which takes images 

as input and outputs feature vectors of that image [Jiao et al. 2019]. Recent research on 

CNNs has focused on wider, structured modular architectures for more complex tasks 

and employed well-known and proved CNNs as their backbone networks. Depending 

on requirements on accuracy vs. efficiency, either deeper backbone networks, like 

ResNet or lightweight backbone networks like MobileNet or Xception can be chosen. 

2.2.4 Datasets  

For object detection there exist several well-known datasets and benchmarks, including 

the datasets of PASCAL VOC Challenges, ImageNet Large Scale Visual Recognition 

Challenge, or the MS-COCO Detection Challenge [Zou et al. 2019]. In addition to 

general image datasets, specific datasets have been created for applications in certain 

areas, including GUI image datasets such as RICO [Deka et al. 2017] that contains GUI 

design data from more than 9.3k Android apps spanning 27 categories. For each app, 

Rico exposes Google Play Store metadata, a set of user interaction traces, and a list of 

more than 66k unique GUI screens discovered. Each GUI comprises a screenshot, an 

augmented Android view hierarchy exposing for all GUI elements visual, textual, 

structural, and interactive design properties, as well as a set of explored user 

interactions, a set of animations capturing transition effects in response to user 

interaction, and a learned vector representation of the GUI’s layout. Another example 

is Syn [Pandian et al. 2020a], a dataset containing 125,000 synthetically generate GUI 

sketches, which has been generated using the UISketch dataset containing 5,917 

sketches including 19 GUI elements drawn by 350 participants.  

The evaluation of object detection models is not trivial, as it requires to measure 

two distinct factors: (i) determining whether an object exists in the image 

(classification) and (ii) determining the location of the object (localization). 

Furthermore, in the context of multi-class object detection, there are many classes, 

which may not be uniformly distributed. Consequently, an accuracy-based metric may 

introduce biases.  

2.2.5 Performance evaluation in object detection  

The performance of object detection models is typically based on the Intersection Over 

Union (IOU), a measure based on the Jaccard Index that evaluates the overlap between 
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two bounding boxes, the ground truth bounding box and the predicted bounding box 

[Zou et al. 2019]. Generally, a 0.5 IOU ratio for each prediction at the training stage is 

aimed for, which means that if the model predicts an object with a bounding box that 

overlaps with the ground truth box by at least 50%, it is considered as a true prediction. 

By applying the IOU, results can be classified into: 

• True Positive (TP): correct detection with IOU ≥ threshold 

• False Positive (FP): erroneous detection with IOU < threshold 

• False Negative (FN): ground truth not detected 

Depending on the kind of model, popular metrics for the evaluation of object detection 

models are summarized in Table 2 [Sokolova and Lapalme 2009][Lie et al. 2020]. 

However, in recent years, the most frequently used metric for object detection is 

Average Precision (AP) [Liu et al.  2020]. AP is defined as the average detection 

precision under different recalls and is usually evaluated in an object class-specific 

manner. To compare performance overall object classes, the mean AP (mAP) averaged 

over all object classes is commonly used as the final metric of performance.  
 

Category Metric Definition 

Classification 

metrics 

Accuracy Number of correct predictions divided by the total number 

of predictions, multiplied by 100 

Precision Precision= TP/ (TP+ FP) 

Recall Recall= TP/ (TP+ FN) 

F1 score F1 score= 2*Precision*Recall/(Precision+Recall) 

Regression 

metrics 

Mean squared error 

(MSE) 

Average squared error between the predicted and actual values 

Mean absolute error 

(MAE) 

Average absolute distance between the predicted and target 

values 

Table 2: Examples of metrics for the evaluation of object detection models 

Among metrics to measure the similarity of images, the simplest and most widely 

used is the mean squared error (MSE), averaging the squared intensity differences of 

distorted and reference image pixels, along with the related quantity of peak signal-to-

noise ratio (PSNR). Yet, it may not be very well matched to perceived visual quality 

[Wang et al. 2004]. Another metric is the Structural Similarity Index (SSIM) that 

measures the perceptual difference between two similar images. It attempts to separate 

the task of similarity measurement into luminance, contrast, and structure [Wang et al. 

2004]. Also, metrics originating from the evaluation of machine 

translation/summarization are used. These are typically also used for the evaluation of 

image captioning models that mainly measure the word overlap between generated and 

reference captions, including Bilingual Evaluation Understudy (BLEU), Recall 

Oriented Understudy for Gisting Evaluation (ROUGE), Metric for Evaluation of 

Translation with Explicit Ordering (METEOR), among others [Aafaq et al. 2019][Ciu 

et al. 2018]. BLEU is a precision-based metric based on the precise matching of n-

grams in the generated and ground truth artifacts. METEOR creates an alignment 

between the two artifacts by comparing elements. ROUGE, uses different n-grams 

based versions to BLEU and computes recall. Another similarity measure used is the 

Levenshtein distance measure [Yujian and Bo 2007], computing the number of 

operations needed to transform one string into another string, usually limiting the 

possible operations to insertion, deletion, and substitution.  
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3 Research Method 

In order to provide an overview of the state of the art on the automatic generation of 

code from sketches or graphical user interface (GUI) images, we performed a 

systematic mapping of the literature following the procedure defined by [Petersen et al. 

2015]. 

3.1 Definition of the Review Protocol 

The objective of this systematic mapping is to answer the research question: What 

approaches exist for the automatic generation of code from GUI images using Machine 

Learning (ML)? 

This research is refined in the following analysis questions in order to answer the 

research question and to characterize and compare the existing approaches: 

AQ1. What approaches for generating code from GUI images exist? 

AQ2. For which kind of platform and input/output data are the approaches? 

AQ3. Which data sets are used and what are their characteristics? 

AQ4. What are the characteristics of the ML models? 

AQ5. How was the quality of the result evaluated and which results were obtained? 

Inclusion and exclusion criteria. We consider only English-language publications that 

present a model for generating code or GUI design representations based on sketches 

or images of GUIs created during the GUI design process. We only consider approaches 

adopting Machine Learning, not including models based on other techniques. We only 

consider studies related to images of user interfaces of software systems (web and 

mobile) that have been published since 2010.  We consider only articles that present 

substantial information allowing the extraction of relevant information regarding the 

analysis questions. Therefore, abstract-only or one-page articles are excluded. 

Sources. We searched the main digital databases and libraries in the field of computing, 

including ACM Digital Library, IEEE Xplore Digital Library, arXiv.org e-print 

archive, and Scopus with access via the Capes Portal1. Based on the research question, 

several informal searches were performed to calibrate the search string, identifying 

relevant search terms and their synonyms (Table 3). Synonyms were used to minimize 

the risk of omitting relevant works. 

 
Keyword Synonym(s) 

sketch sketch, mockup, screenshot 

wireframe wireframe 

user interface user interface, ui, gui 

software system app, mobile, android, ios, website 

machine learning deep learning, neural network, cnn, computer vision 

Table 3: Search terms and respective synonyms 

                                                         
1 A web portal for access to scientific knowledge worldwide, managed by the Brazilian Ministry on Education 

for authorized institutions, including universities, government agencies and private companies 

(www.periodicos.capes.gov.br). 
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As a result of the calibration, a specific search string was defined in accordance with 

the specific syntax of each of the data sources (Table 4). 
 

Repository Search string 

ACM Digital Library (sketch* OR wireframe* OR screenshot* OR mockup*) AND (ui OR "user 

interface*" OR GUI) AND (app* OR website* OR ios OR mobile OR 

android) AND ("machine learning" OR "deep learning" OR "neural 

network*" OR cnn OR "computer vision") 

IEEE Xplore Digital 

Library 

(sketch* OR wireframe* OR screenshot* OR mockup*) AND (ui OR "user 

interface" OR "user interfaces" OR GUI) AND (app* OR website OR 

websites OR ios OR mobile OR android) AND ("machine learning" OR "deep 

learning" OR "neural network" OR "neural networks" OR cnn OR "computer 

vision") 

Scopus TITLE-ABS-KEY ((sketch* OR wireframe* OR screenshot* OR mockup*) 

AND [ui OR "user interface*" OR GUI) AND (app* OR website* OR ios OR 

mobile OR android) AND ("machine learning" OR "deep learning" OR 

"neural network*" OR cnn OR "computer vision")) AND PUBYEAR > 2010 

arXiv.org e-print 

archive 

order: -announced_date_first; size: 50; date_range: from 2010-01-01 ; 

include_cross_list: True; terms: AND all=sketch* OR wireframe* OR 

screenshot* OR mockup*; AND all=ui OR "user interface*" OR GUI; AND 

all=app* OR website* OR ios OR mobile OR android; AND all="machine 

learning" OR "deep learning" OR "neural network*" OR cnn OR "computer 

vision" 

Table 4: Search strings used in the different repositories 

3.2 Execution of the Search 

The search was executed in April 2020 by the authors. The initial search resulted in a 

total of 2,576 search results (Table 5). 

 
Repository Quantity of search 

results 
Quantity of 

potentially relevant 

articles  

(based on title and 

abstract) 

Quantity of relevant 

articles  

(based on full-text 

analysis) 

ACM Digital Library 2,516 34 8 
IEEE Xplore Digital 

Library 
18 17 3 

Scopus 39 35 8 
arXiv.org e-print 

archive 
3 3 3 

Total 2,576 89 16 (without duplicates) 

Table 5: Overview of the search results and selection process 

During the first stage, the search results were quickly analyzed based on their 

title and abstract. Irrelevant and duplicate papers returned my multiple searches were 

removed. This stage left us with 89 potentially relevant articles. During the second stage 

of selection, we analyzed the full text of the articles applying the inclusion and 

exclusion criteria to identify relevant articles.  

Research using different inputs than sketches or images of GUIs, such as 

natural language requirements [Kolthoff 2019][Sethi et al. 2019] were not considered. 

We also included only articles dealing with sketches of user interfaces, excluding any 
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sketch of another kind of object [Huang and Canny 2019]. Articles presenting only data 

sets have been excluded [Pandian et al. 2020a][Deka et al. 2017]. We also excluded 

articles that focus exclusively on the detection of specific GUI elements, such as icons 

[Xiao et al. 2019]. We excluded research directed rather on the retrieval of GUIs [Chen 

et al. 2019b] [Huang et al. 2019], generation of GUI design patterns [Nguyen et al. 

2018], or semantic annotations [Liu et al. 2018a] rather than code. On the other hand, 

we have included the article [Ge 2019] focusing primarily on the search for visually 

similar apps based on sketches, as it, as part of the retrieval process, also generates 

intermediate GUI prototypes representing visual elements and layout.  In accordance 

with our focus, we excluded articles that do not use any kind of Machine Learning 

technique [Nguyen and Csallner 2015]. And, although there exist already commercial 

tools such as Airbnb’s sketching interfaces tool (https://airbnb.design/sketching-

interfaces), Microsoft AI.Lab’s Sketch2Code (https://www.microsoft.com/en-us/ai/ai-

lab-sketch2code), TeleportHQ (https://teleporthq.io) and Zecoda (https://zecoda.com), 

which support the conversion of sketches into code using Machine Learning, we did 

not include them as no detailed information on these tool has been encountered.  

Based on the primary studies, we also identified and added relevant secondary 

literature, including [Beltramelli 2019][Halbe and Joshi 2015][Pandian and Suleri 

2020] [Kumar 2018][Wallner 2018]. As a result, a total of 21 relevant articles has been 

identified representing 20 approaches (Table 6).  

According to the analysis questions relevant data has been extracted from the 

articles. Data extraction was done independently by two of the authors and then revised 

by all authors until consensus was obtained. Varying terminology referring to the same 

concept has been unified and aggregated. 

4 Results 

The results of the data analysis are presented for each of the analysis questions.  

4.1 What Approaches for Generating Code from GUI Images Exist? 

Reference Description 

[Aşıroğlu et 

al. 2019] 
B.Aşıroğlu et al. Automatic HTML Code Generation 

from Mock-up Images Using Machine Learning 

Techniques. Proc. of the Scientific Meeting on 

Electrical-Electronics and Biomedical Engineering and 

Computer Science, Istanbul, Turkey, 2019. 

Approach for the automation of the code generation 

process from hand-drawn mock-ups using CV 

techniques and deep learning methods. 

[Bajammal et 

al. 2018] 
M. Bajammal et al. Generating reusable web 

components from mockups. Proc. of the 33rd 

ACM/IEEE Int.Conference on Automated Software 

Engineering, Montpellier, France, 2018. 

A tool to automate the generation of reusable web 

components from a mock-up employing visual 

analysis and unsupervised learning of visual cues to 

create reusable web components. 
[Beltramelli 

2019] 
T. Beltramelli. Hack your design sprint: wireframes to 

prototype in under 5 minutes. Medium, 2019. 

https://uizard.io/ 

Uses CV and ML to automatically transform 

wireframe images to high-fidelity mock-ups that can 

be exported to front-end code such as HTML/CSS. 

[Beltramelli 

2018] 

T. Beltramelli. pix2code: Generating Code from a 

Graphical User Interface Screenshot. Proc. of the ACM 

SIGCHI Symposium on Engineering Interactive 

Computing Systems, Paris, France, 2018. 

An approach based on CNN and RNN allowing the 

generation of computer tokens from a single GUI 

screenshot as input. 

 

[Chen et al. 

2018] 
C. Chen et al. From UI Design Image to GUI Skeleton: 

A Neural Machine Translator to Bootstrap Mobile GUI 

Implementation. Proc. of the Int. Conference on 

Software Engineering, Gothenburg, Sweden, 2018. 

A deep learning architecture combining CNN and 

RNN models that distills the crowd-scale 

knowledge of GUI designs and implementations 

from existing apps to develop a generative tool to 

automatically generate a GUI skeleton given a GUI 
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image.  

[Chen et al. 

2019a] 
S. Chen et al. Automated cross-platform GUI code 

generation for mobile apps. In Proc. of the 1st Int. 

Workshop on Artificial Intelligence for Mobile, 

Hangzhou, China, 2019. 

An automated cross-platform GUI code generation 

framework using image processing and deep learning 

classification techniques to transfer the GUI code 

implementation between two mobile platforms. 
[Ge 2019] X. Ge. Android GUI search using hand-drawn sketches. 

Proc. of the 41st Int. Conference on Software 

Engineering, Piscataway, USA, 2019. 

An approach that searches for visually similar apps 

using sketches using Deep Learning to translate 

sketches into GUI structures. Then, similar GUIs are 

identified by computing a similarity score between 

structural GUI data with the ones in the app 

repositories.  

[Halbe and 

Joshi 2015] 

A. Halbe and. R.Joshi. Novel Approach to HTML Page 

Creation Using Neural Network. Procedia Computer 

Science, 45, 2015. 

An approach to create an HTML page automatically 

from a hand-drawn paper sketch. The system 

segments the various HTML controls, which are 

then identified using ML. Identified HTML controls 

are stored in an XML database that contains the 

name and position of the component on the GUI 

design. Then, this XML file is parsed to generate an 

HTML page. 

[Han et 

al. 2018] 

Y. Han et al. CSSSketch2Code: An Automatic Method 

to Generate Web Pages with CSS Style. Proc. of the 2nd 

Int. Conference on Advances in Artificial Intelligence, 

Barcelona, Spain, 2018 

A method based on object detection and attention 

mechanism to automatically generate a web page 

with CSS style information. 

[Huang et al. 

2018] 

R. Huang et al. Automatically Generating Web Page 

from A Mockup. Proc. of the 28th Int. Conference on 

Software Engineering and Knowledge Engineering, 

Redwood City, CA, USA, 2016.  

A method to automate the transformation of a 

mockup into a web page by extracting the elements 

based on the color features of the edges. A bottom-

up tag generating method based on Random Forest 

is proposed to select the tags for elements. The web 

page is generated by the definition of HTML/CSS 

code. 

[Jain  et al. 

2019] 

V. Jain et al. Sketch2Code: Transformation of Sketches 

to UI in Real-time Using Deep Neural Network. 

arXiv:1910.08930 [cs.CV], 2019. 

An approach that employs a DNN to detect GUI 

elements in sketches. The output is a platform-

independent UI representation object used by a GUI 

parser which creates code for different platforms.  

[Kim et al. 

2018]  

B. Kim et al. Deep-Learning based Web UI Automatic 

Programming. Proc. of Int.  Conference on Research in 

Adaptive and Convergent Systems, Honolulu, USA, 

2018. 

Recognizing web layout based on hand-drawn 

sketches using computer vision algorithms and web 

widgets using Faster R-NN, the approach generates 

HTML code automatically.  

[Kumar 2018] A. Kumar. Automated front-end development using 

deep learning. Medium “Insight”, 2018. 

An approach based [Beltramelli 2018] and [Wallner 

2018] to generate HTML code based on hand-drawn 

website sketches. 

[Liu et al. 

2018b] 

Y. Liu et al. Improving pix2code based Bi-directional 

LSTM. Proc. of the IEEE Int. Conference on 

Automation, Electronics and Electrical Engineering, 

Shenyang, China, 2018. 

A framework based on deep learning using CNN 

and LSTM to transform a GUI screenshot into code. 

The model is optimized by a Bidirectional LSTM.  

[Moran et al. 

2018] 

K. Moran et al. Machine Learning-Based Prototyping 

of Graphical User Interfaces for Mobile Apps. IEEE 

Transactions on Software Engineering, 46[2], 2018. 

An approach that first detects logical components of 

a GUI from a mock-up artifact using CV or mock-

up metadata. Then, by software repository mining, 

automated dynamic analysis, CNNs are used to 

classify GUI-components into domain-specific 

types. A data-driven, K-nearest-neighbors algorithm 

generates a suitable hierarchical GUI structure from 

which a prototype application can be automatically 

assembled. 

[Pandian et al. 

2020b] 

V. P. S. Pandian et al. Blu: What GUIs are made of. 

Proc. of the 25th Int. Conference on Intelligent User 

Interfaces, 2020. 

https://blu.blackbox-toolkit.com/ 

An approach that uses deep learning and gestalt 

laws-based algorithms to convert GUI screens to 

editable blueprints by identifying the constituent 

GUI element categories, their location, dimension, 

text content, and layout hierarchy.  

[Robinson 

2019] 

A. Robinson. Sketch2code: Generating a website from 

a paper mockup, Dissertation, University of Bristol, 

UK, 2019. 

Using an ANN to translate a wireframe into a 

normalized image.  

[Suleri et al. 

2019] 

[Pandian and 

S. Suleri et al. Eve: A Sketch-based Software 

Prototyping Workbench. Proc. of the Conference on 

Human Factors in Computing Systems Extended 

Abstracts, Glasgow, UK, 2019. 

A prototyping workbench that automatically 

generates code based on sketches. It generates MeFi 

and HiFi prototypes using GUI element detection 

(MetaMorph) created with a DNN model that 
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Suleri 2020] V. P. S. Pandian and S. Suleri. BlackBox Toolkit: 

Intelligent Assistance to UI Design. Proc. of the 

Workshop on Artificial Intelligence for HCI: A Modern 

Approach, Honolulu, USA, 2020.  

https://metamorph.designwitheve.com/ 

detects constituent GUI element categories and their 

position and code generation. With this information, 

the respective GUI elements are created as a 

medium-fidelity prototype. Lastly, the Code 

Generator transforms the MeFi to HiFi by 

generating executable code. 

[Wallner 

2018] 

E. Wallner. Turning Design Mockups into Code with 

Deep Learning, Floydhub, 2018. 

Approach using ML to code a basic HTML and 

CSS website based on a picture of a design mockup. 

[Yun et al. 

2018] 

Y. Yun. Detection of GUI elements on sketch images 

using object detector based on deep neural networks. 

Proc. of the 6th Int. Conference on Green and Human 

Information Technology, Chiang Mai, Thailand, 2018. 

Approach adopting object detection based on 

DNN that finds GUI elements by the integration of 

localization and classification. 

Table 6: Relevant research 

Most of the relevant articles have been published during the last 3 years 

(Figure 4), indicating the recent increased interest in this topic. 

 

 

Figure 4: Quantity of articles per year 

4.2 For Which Kind of Platform and Input/ Output Data are the Approaches? 

The approaches target web and mobile platforms (Figure 5). Most approaches aim at 

the design of web GUIs, followed by Android GUIs. A smaller number of approaches 

targets iOS applications. Several researches present a multi-platform approach, with 

two approaches covering both prominent mobile application platforms and four 

approaches including web and mobile platforms.  

Most approaches are based on hand-drawn sketches of GUI as input rather than 

high-fidelity GUI design images or screenshots (Figure 6).  

 

Figure 5: Distribution of approaches per platform 
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Figure 6: Distribution of approaches per input and output type 

For many approaches, no detailed information on which types of GUI elements are 

detected has been encountered. Yet, to simplify the detection some approaches limit the 

elements to be detected to only a small set. For example, [Aşıroğlu et al. 2019] only 

considers four different types of elements such as TextBox, Dropdown, Button, and 

CheckBox.  Similarly, [Robinson 2019] also considers only four types of GUI elements 

and [Ge, 2019] only seven.  [Jain et al. 2019] concentrates on the ten most frequent 

GUI elements, whereas [Moran et al. 2018] extends this to the 15 most used GUI 

elements. [Suleri et al. 2019] consider 19 of Material Design’s GUI elements.  The 

largest number (25) of considered GUI elements is reported by [Pandian et al. 2020b]. 

 

Figure 7: Frequencies of consideration of GUI element types for detection 

The analysis of the frequencies per GUI element also indicates this focus typically 

on the most used GUI elements, such as Textbox, Button, etc., and less on elements 

used with less frequency such as Spinner or NumberPicker. We also observed that most 
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approaches consider texts in general, without a more detailed detection per type of text. 

An exception is the model presented by [Jain et al.2019] that separately detects 

Paragraph, Label, and Heading as well as [Robinson 2019] separating Title and 

Paragraph.  

And, although, four models aim at detecting images, no further details on imagery 

in general and icons specifically are presented, although this seems to be an important 

issue concerning GUI design also approached by other research, such as [Liu et al. 

2018b] [Xiao et al. 2019].  
 

Reference Platform Type of input Type of output Detected GUI elements 

[Aşıroğlu et al. 

2019] 

Web Sketch HTML Four different types of 

components such as textBox, 

dropdown, button, and checkBox 

[Bajammal et al. 

2018] 

Web GUI design 

image (hi-fi) 

HTML NI 

[Beltramelli 2019] 

 

Android, iOS 

and Web 

Sketch HTML/CSS 

High-fidelity prototype 

(HTML/CSS) 

NI 

[Beltramelli 2018] Android, iOS, 

and Web 

GUI screenshot Markup-like DSL 

Code in markup-like DSL 

NI 

[Chen et al. 2018] Android GUI design 

image (hi-fi) 

Markup-like DSL GUI 

framework language whose 

vocabulary consists of the 

component names, such as 

Android’s RelativeLayout, 

TextView, etc. 

NI 

[Chen et al. 2019a] Android, iOS GUI screenshot Markup-like DSL 

Android or iOS code 

NI 

[Ge 2019] Android Sketch GUI hierarchical skeleton: tree-

like structure with each node 

representing a widget or a 

layout (JSON/APK) 

TextView, EditText, ImageView, 

Button, RadioButton, Switch, and 

CheckBox 

[Halbe and Joshi 

2015] 

Web Sketch HTML NI 

[Han et al. 2018] Web Sketch HTML NI 

[Huang et al. 2018] Web GUI screenshot HTML/CSS DIV, P, LI, UL, H, FORM, IMG, 

INPUT 

[Jain  et al. 2019] Android, iOS, 

and Web 

Sketch HTML 10 most used classes of GUI 

elements: Link, Image, Paragraph, 

CheckBox, TextBox, SelectBox, 

Label, Heading, RadioButton, 

Button 

[Kim et al. 2018]  Web Sketch HTML/CSS Button, RadioButton, CheckBox, 

Textbox, Text, etc. 

[Kumar 2018] Web Sketch HTML/CSS 16 GUI elements, such as buttons, 

text boxes, and divs 

[Liu et al. 2018b] Android, iOS, 

and Web 

GUI screenshot  Markup-like DSL NI 

[Moran et al. 2018] Mobile Mock-up artifact 

hi-fi (with or 

without meta-

data) 

GUI hierarchical skeleton 15 most popular elements: 

TextView, ImageView, Button, 

ImageButton, EditText, 

CheckedTextView, CheckBox, 

RadioButton, ProgressBar, 

SeekBar, NumberPicker, Switch, 

ToggleButton, RatingBar e 

Spinner 

[Pandian et al. 

2020b] 

Android GUI screenshot GUI hierarchical skeleton 25 categories of GUI elements 

[Robinson 2019] Web Sketch GUI hierarchical skeleton 

JSON tree-like structure used to 

represent the structure of a 

Title, Image, Button, Input e 

Paragraph 
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wireframe that can directly be 

translated into HTML 

[Suleri et al. 

2019][Pandian and 

Suleri 2020] 

Android Sketch Markup-like DSL 

XML code 

19 Google’s Material Design 

based GUI elements, such as 

buttons, text fields, menus, etc. 

[Wallner 2018] Web GUI screenshot HTML/CSS 17 simplified tokens that are 

translated into HTML and CSS 

[Yun et al. 2018] NI Sketch Markup-like DSL 

XML code 

NI 

Table 7: Characteristics of platform and input/output 

Most of the approaches focus solely on detecting the type of GUI element and 

position, not aiming at the understanding of handwritten text in order to automatically 

set the text values of these GUI elements in the generated code. Approaches that extract 

handwritten content from text GUI elements, such as labels and buttons, typically use 

Optical Character Recognition (OCR). For example [Moran et al. 2018] and [Pandian 

et al. 2020b] use the open-source Tesseract OCR library. [Halbe and Joshi 2015] take 

a different approach, using a separate Learning Vector Queue Neural Network 

dedicated to the recognition of handwritten uppercase letters. [Han et al. 2018] 

recognize textual values, using textual data in order to define CSS styles for the output 

code, such as font and color, yet without providing further details on how the text 

understanding is performed. [Robinson 2019] performs text detection using Stroke 

Width Transform, but only to detect the position and size of text, and not its content, 

using default values instead when generating the GUI code. All other approaches use 

default/random values for generating the text in labels and buttons, requiring still a 

manual substitution during the GUI design process. 

4.3 Which Datasets Have Been Used for Building the Machine Learning Model? 

Only two researches used a pre-existing dataset RICO [Ge 2019] [Pandian et al. 2020b]. 

On the other hand, several researches systematically created and made their datasets 

available as part of the research: 

• Pix2Code  (https://github.com/tonybeltramelli/pix2code/tree/master/datasets) 

• Android UI (http://tagreorder.appspot.com/ui2code.html) 

• REDRAW  (https://zenodo.org/record/2530277) 

• UISketch (https://www.kaggle.com/vinothpandian/uisketch) 

• Syn-dataset  (https://www.kaggle.com/vinothpandian/syn-dataset) 

Most of the research works crawled online stores or sites to collect web sites or 

mobile applications and then used dynamic testing tools to automatically capture the 

screenshots. In some cases, GUI images have been synthetically generated, for example 

by the automated exploration of the GUI hierarchies of app screens [Moran et al. 2018] 

or by generating an editable blueprint vector graphic and a GUI layout tree based on 

GUI screens and annotations from the RICO dataset [Pandian et al. 2020b]. Others 

automatically generate sketches based on GUI screenshots, e.g., by using web 

script/CSS-generated synthetic data [Han et al. 2018] [Kumar, 2018], screenshots 

[Robinson 2019] or synthetic data generated from hand-drawn sketches [Suleri et al. 

2019] [Pandian and Suleri 2020]. In these cases, sketches may vary with respect to their 

authenticity, representing in some cases rather artificial examples of GUIs and/or GUI 

elements that may not be representative for real-world interfaces. Yet, this issue and its 
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potential impact on performance and validity are not further discussed in most cases. 

An exception is Robinson (2019), who reports a reduction of the performance of the 

deep learning approach when applied to real sketches, emphasizing, thus, the 

importance of a great variety in sketches to allow the deep learning approach to better 

generalize to unseen sketching styles. 

Other datasets use either sketches that have hand-drawn specifically for this 

purpose. Some research also used data-augmentation techniques to balance the 

frequencies of GUI element types in the dataset [Moran et al. 2018]. For supervised 

learning approaches, the images are commonly annotated manually. 

The datasets vary considerably in size (Figure 8). Yet, only two studies use very 

small datasets, including only 50 [Yun et al. 2018] or 149 sketches [Jain et al. 2019]. 

The majority uses datasets ranging from 1,500 GUIs [Han et al. 2018] to about 5,250 

GUIs [Beltramelli 2018]. Several studies also use large datasets, including the one used 

by [Chen et al. 2018] representing 1,842,580 unique Android screenshots.  

 

 

Figure 8: Distribution per category of dataset size 

Reference Name Description Size Link 

[Aşıroğlu et 

al. 2019] 

NI Used some of the images 

provided from Microsoft AI 

Lab for their Sketch2Code 

application. 

NI NI 

[Bajammal 

et al. 2018] 

NI NI NI NI 

[Beltramelli 

2019]  

NI NI NI NI 

[Beltramelli 

2018] 

Pix2code 

dataset 

Synthesized set of GUI 

screenshots and GUI code. 

5,250 instances (1,750 

Android, 1,750 iOS, 1,750 

Web) 

https://github.com/tonybeltramelli/ 

pix2code/tree/master/datasets 

[Chen et al. 

2018] 

Android UI 

dataset 

Images from more than 5000 

Android Apps crawled from 

Google Play taking the 

screenshots as the GUI design 

image and also collecting the 

corresponding code 

automatically using the testing 

tool Stoat. 

185,277 pairs of GUI 

images and GUI skeletons 

with 291 unique Android 

GUI components 

http://tagreorder.appspot.com/ 

ui2code.html 

[Chen et al. 

2019a] 

 
Crawled Android and iOS apps 

from online stores and used 

dynamic testing tools for 

1,842,580 unique Android 

screenshots 

NI  
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taking screenshots during 

runtime. 

[Ge 2019] Rico [Deka 

et al. 2017] 

The dataset was created by 

crowdsourcing and automation 

to mine design and interaction 

data from Android apps at 

runtime providing information 

on visual, textual, structural, 

and interactive properties. 

Data from more than 9,3k 

Android apps 

NI 

[Halbe and 

Joshi 2015] 

NI NI NI NI 

[Han et 

al. 2018] 

NI The dataset involves the 

original web script, the CSS 

pixel matrix, and its 

corresponding DSL label 

sequences. Photoshop and 

graphics tablets are used to 

draw the web scripts and 

labelImg is used for 

annotation. 

Data on 1,500 web scripts  NI 

[Huang et 

al. 2018] 

NI NI NI NI 

[Jain  et al. 

2019] 

NI Sketches of GUI elements 

drawn by individuals. 

149 sketches, containing 

2,001 samples of GUI 

elements 

NI 

[Kim et al. 

2018]  

NI NI NI NI 

[Kumar 

2018] 

Pix2code 

dataset 

(web only) 

Synthesized set of GUI 

screenshots changing the CSS 

stylesheets to make them look 

like hand-drawn sketches and 

GUI code. 

1,750 website screenshots  https://github.com/tonybeltramelli/ 

pix2code/tree/master/datasets 

[Liu et al. 

2018b] 

pix2code 

(web only) 

Used part of the pix2code 

dataset. 

1,750 web GUI  https://github.com/tonybeltramelli/ 

pix2code/tree/master/datasets 

[Moran et 

al. 2018] 

REDRAW Dataset of mobile application 

GUI data containing 

screenshots and GUI related 

metadata. 

14,382 GUI screenshots 

and 191,300 labeled GUI 

elements 

https://zenodo.org/record/2530277 

[Pandian et 

al. 2020b] 

Rico [Deka 

et al. 2017] 

Annotated Android GUI 

screens. 

57,775 annotated Android 

GUI screens containing 25 

categories of GUI 

elements 

NI 

[Robinson 

2019] 

NI The dataset contains sketches 

and their associated normalized 

version of the website. 

Sketches were created based 

on the normalized and reduced 

screenshots by extracting 

elements and automatically 

replacing them with hand-

drawn elements. 

Screenshots from 1,750 

URLs 

NI 

[Suleri et 

al. 2019] 

[Pandian 

and Suleri 

2020] 

UISketch 

dataset 

GUI element sketches were 

collected from 350 participants 

using paper and digital 

questionnaires. 

5,906 GUI element 

sketches of 19 Google 

material design GUI 

elements 

https://www.kaggle.com/ 

vinothpandian/uisketch 

Syn-dataset 

[Pandian et 

al. 2020a] 

125,000 synthetically 

generated sketches by 

randomly choosing GUI 

elements from the labeled 

UISketch dataset and stitching 

them in random locations with 

random scaling. 

125,000 lo-fi sketches https://www.kaggle.com/ 

vinothpandian/syn-dataset 

https://zenodo.org/record/2530277
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[Wallner 

2018] 

Pix2code 

dataset 

(web only) 

Synthesized set of GUI 

screenshots and GUI code. 

1,750 website screenshots https://github.com/tonybeltramelli/ 

pix2code/tree/master/datasets 

[Yun et al. 

2018] 

NI Sketches that have been 

annotated manually with 

LabelImg. 

50 mimicked sketch 

images including ~ 600 

GUI elements from the 

screenshot images 

gathered on the Internet 

NI 

Table 8: Characteristics of datasets 

4.4 Which Kind of ML Technique/Neural Network is Used?  

The approaches are quite different in terms of detail and reproducibility based on the 

presented description of the approaches. Some present a very superficial description, 

which makes it difficult to identify the applied techniques and parameters employed 

[Aşıroğlu et al. 2019][Bajammal et al. 2018][Beltramelli 2019][Ge  2019][Halbe and 

Joshi 2015][Yun et al. 2018]. Although we considered the degree of detail of the 

description on the ML techniques insufficient for their work to be reproducible, we 

decided to maintain them for the sake of completeness concerning the mapping.  

The task to generate code from a GUI image is divided into several sub-problems 

in most works, mainly image preprocessing, the detection and classification of GUI 

elements, and the generation of code representing the GUI. The majority indicates the 

usage of supervised learning algorithms using as input an image of a GUI as well as 

typically a representation of the GUI elements, their locations, and dimensions 

represented as a set of tokens. [Beltramelli 2018] on the other hand uses an 

unsupervised learning approach presenting the GUI image and context information.  

For the detection of GUI elements, most approaches use CNNs, including two-

stage detectors, such as Region-based CNN (R-CNN) and its variants (such as Faster 

R-CNN [Kim et al 2018]) as well as one-stage detectors, such as SSD, RetinaNet [Jain 

et al. 2019][Pandian and Suleri 2020], YOLO [Yun et al. 2018] and their variants. 

Several of the approaches that divide the processing into several stages use CNN for 

mapping the raw input image to a learned representation and then RNN for performing 

language modeling on the textual description associated with the input picture. A few 

approaches also unify diverse models into one framework. For example, [Chen et al. 

2018] integrate CNN for visual understanding and RNN to encode spatial layout 

information of CNN features as well as an RNN decoder to generate the target tokens 

of the GUI framework language. 

As a result of the object detection, typically an output representation is given on what 

is recognized. The GUI representation structure is an object containing the types of the 

identified components of GUI and their properties. 
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Figure 9: Distribution of ML techniques adopted 

Concerning the code generation, most of these methods rely on Domain-Specific 

Languages (DSLs) that are markup, programming or modeling languages, which are 

designed for a specialized Domain focusing, e.g., only on relevant information such as 

the GUI elements and their position, yet, ignoring textual values of labels or visual 

design details such as color. This representation is then used by a GUI parser to create 

the code which can be executed on the target platform. With respect to the tools 

employed, we can observe a clear tendency on the usage of free software tools, with 

only one approach [Moran et al. 2018] employing the proprietary MATLAB 

environment. The most used framework was Keras [Chollet 2015], followed by 

Google’s TensorFlow and its extensions. Both frameworks are based upon the Python 

open-source programming language [van Rossum 1995], making it the preferred tool. 

Two approaches employ C++ based tools: one uses Nvidia’s GPU-based CUDnn API 

[Chetlur et. al. 2014] and one other work claims to use one of Darknet’ YOLO object 

detection versions.  One approach [Chen et al. 2018] employs the LUA script language-

based Torch version. 

4.5 How Have the Approaches Been Evaluated? 

Concerning the evaluation, the researches vary largely in terms of scientific rigor. 

While some stand out due to their systematic and wide evaluation (including, e.g., 

[Robinson 2019][Moran et al. 2018] [Chen et al. 2018]), other either present a very 

superficial evaluation just citing some results without presenting the research design 

(i.e., [Jain et al. 2019][Kim et al. 2018] [Liu et al. 2018b] [Halbe and Joshi 2015] [Ge 

2019]) or do not present any information on the evaluation of the presented approach.  

The reported evaluations also vary largely in relation to the analyzed questions 

and metrics (Figure 10). The majority adopts metrics focusing on the performance of 

object detection, including mainly accuracy, followed by precision, recall, and F1 

value. This stands in contrast to the general indication of mAP as the most adequate 

performance metric for multi-class object detection [Lie et al. 2020], which is used only 

in one study [Suleri et al. 2019]. The majority of the studies report accuracy. However, 

in the context of not uniformly distributed objects (as in the case of GUIs in which, e.g., 

buttons are much more common than other elements such as toggles), this may 

introduce biases.  
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Figure 10: Distribution of usage of metrics 

In general, acceptable to good results are presented with, e.g., accuracy varying 

from 60 to 96%. However, in some cases analyzing, for example, precision per type of 

GUI element significant differences can be observed ranging, e.g., from 0.562 for 

paragraphs to 0.896 for images [Robinson 2019].  

Several approaches also evaluate the similarity of the generated GUI with respect 

to the original one, including the visual similarity on pixel level and/or structural 

similarity by comparing the hierarchical tree similarity ([Chen et al. 2019a][Chen et al. 

2018] [Robinson 2019][Han et al. 2018][Moran et al. 2018]). In a few cases similarity 

has also been evaluated manually either by the researchers [Chen et al. 2018] or GUI 

designers/developers [Robinson 2019][Chen et al. 2018][Bajammal et al. 2018].  

Some studies also compared the Machine Learning approach to classical Computer 

Vision approaches (such as [Chen et al. 2019a][Moran et al. 2018][Robinson 2019]). 

As a result, they observed that the Deep Learning approach mostly outperforms other 

approaches concerning performance. Only in terms of the ability to generalize to 

previously unseen examples, users rated the classical Computer Vision approach higher 

[Robinson 2019].     

A few studies also analyzed the speed increase caused by the automation varying 

from 2.5 times [Chen et al. 2018] to 24 times [Beltramelli 2019]. Studies aiming at the 

analysis of the suitability of the approaches also demonstrated, in general, a good 

acceptance rate by the participants [Chen et al. 2018][Moran et al. 2018] as well as its 

usability [Suleri et al. 2019].  

 
Reference Testing/evaluation question/measures Sample size Findings 

[Aşıroğlu et 

al. 2019] 
• Method accuracy and validation 

accuracy 

NI The model achieves 96% method accuracy and 73% 

validation accuracy. 

[Bajammal 

et al. 2018] 
• Correctness of the refactorings of the 

component generation (precision, 

recall) 

5 expert web 

developers 

VizMod achieves on average 94% precision and 

75% recall in terms of agreement with the 

developers’ assessment.  
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• Effectiveness in identifying GUI 

components compared to manual 

examination by web developers 

• Amount of code reusability to be 

achieved through refactoring. 

The refactorings yielded 22% code reusability on 

average. 

 

[Beltramelli 

2019] 

 

Speed increase in comparison to the 

manual design process 

20 UI/UX 

designers and 

front-end 

developers 

24 times speed increase on average in interface 

design taking the tool only 170 sec to create high-

fidelity prototype and front-end code. 

[Beltramelli 

2018] 

Accuracy 250 GUI 

images 

Pix2code can automatically generate code from a 

single input image with over 77% accuracy for three 

different platforms. Minimum classification error is 

ranging from 11.01% (web) to 22.34% (Android) 

and 22.73% (iOS). 

[Chen et al. 

2018] 
• Accuracy [percentage of testing pairs 

whose GUI skeleton exactly match 

generated GUI skeleton 

• BLEU: similarity of machine-

generated translations and human-

created reference translations 

• Manual study the differences between 

the generated GUI skeletons and their 

ground truth 

• Generalization evaluation 

• Usefulness evaluation through a user 

study (time, similarity, and 

satisfaction) 

10,804 GUI 

images 

 

8 Ph.D. 

students/ 

research staff 

Accuracy: 60.28% of the generated GUI skeletons 

exactly match the ground truth GUI skeletons. 

Accuracy degrades when the GUI skeletons are too 

simple (≤ 10 GUI components, ≤ 3 containers, 

and/or ≤ 3 depth). 

The average BLEU score is 79.09, when the beam 

width is 1 (i.e., greedy search). 

The approach can reliably distinguish different 

types of visual elements and generate the right GUI 

components. Accuracy and BLEU score are only 

slightly different when applying on GUI images not 

included in the dataset demonstrating the generality 

of the approach. 

The experiment group implements the skeleton 

GUIs faster than the control group implementing the 

design from scratch (with an average of 6.14 min vs. 

15.19 min). On average, satisfactory ratings for the 

experiment and control group are 4.9 versus 3.8, and 

the similarity ratings for the experiment and control 

group are 4.2 versus 3.65 are obtained. 

[Chen et al. 

2019a] 
• Accuracy (in comparison with other 

ML techniques) 

• Similarity of the generated web pages 

by mean absolute error (MAE) and 

mean squared error (MSE). (in 

comparison with other techniques) 

NI The CNN classification outperforms all baselines 

(Logistic Regression, SVM, K-nearest Neighbors), 

achieving more than 85% accuracy, while the 

baselines achieve 20%-70% accuracy. 

The GUI similarity of the generated pages with 

existing techniques, such as PIX2CODE and 

UI2CODE is between 60%-70%. 

[Ge 2019] The potential of the approach to find 

visually similar apps 

6 sketches The DL framework is able to generate GUI 

skeletons for sketches not included in the dataset.  

Further evaluation is presented only concerning the 

retrieval of similar apps. 

[Halbe and 

Joshi 2015] 
• Accuracy  

 

30 sketches Preliminary empirical evaluation of the accuracy of 

results obtained of at least 70%. 

[Han et 

al. 2018] 

Comparing different versions of the 

approach wrt.: 

• BLEU to compute the co-occurrence 

frequency of N-grams in candidates 

and references 

• ROUGE-L uses the method of LCS 

(Longest Common Subsequence) 

• METEOR considers the metric of 

recall and uses the weighted harmonic 

mean based on single-precision 

SUM is the average of BLEU, 

ROUGE-L, and METEOR 

450 sketches The most complete version of the approach 

achieves: BLEU 0.679, METEOR 0.513, ROUGE-

L 0.783, and SUM 0.658 achieving the same values 

as reduced versions and/or outperforming them.  

[Huang et 

al. 2018] 
• Precision, recall, F1 (per tag e total 

average) 

• Accuracy (per tag e total average) 

50 web pages Precision varies from 0.419 (FORM) to 0.911 

(SPAN leaves), Recall varies from 0.499 (P) to 

0.952 (SPAN leaves), F1 value varies from 0.128 

(SPAN inner nodes]) to 0.931 [SPAN leaves]. 

Accuracy varies from 0.651 (DIV) to 0.964 (SPAN 

inner nodes).  
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[Jain  et al. 

2019] 
• Inference time for element detection 

 

50 sketches The inference time ranges from 0.2 sec to 1.7 sec 

increasing with the number of elements on a page. 

Also, images taken at low-light conditions where 

pixels are darker, increase the inference time.  

[Kim et al. 

2018]  
• Accuracy 

• Recall 

 

NI The accuracy is 91% and recall rate 86% of GUI 

object detection, and it was possible to convert them 

into HTML code.  

[Kumar 

2018] 
• Similarity of the machine-generated to 

human-generated GUI using BLEU  

NI BLEU score of 0.76 on the evaluation set 

[Liu et al. 

2018b] 

Accuracy  NI 85% of accuracy about test set.  

[Moran et 

al. 2018] 
• Accuracy [Precision] also in 

comparison to a CV approach 

• Similarity of the generated GUI 

hierarchy to original ground truth 

hierarchies using the Levenshtein edit 

distance 

• Visual similarity of generated apps 

compared to mock-ups calculating the 

mean squared error (MSE) and mean 

average error (MAE) across all pixels 

in screenshots from generated apps for 

different approaches compared to the 

original screenshots 

• Suitability in industrial context based 

on expert opinion 

14,382 GUI 

images 

 

83 GUI 

images 

 

3 GUI experts 

Precision for the CNN approach is 91.1% 

outperforming alternative approaches.  

ReDraw-MockUp produces hierarchies that are 

closer to the target hierarchies than other 

approaches (REMAUI and pix2code).  

REDRAW-CV outperformed both REMAUI and 

pix2code in MAE, whereas all approaches exhibited 

very low MSE, with REMAUI very slightly 

outperforming both ReDraw variants. The results 

indicate that the apps generated by ReDraw exhibit 

high visual similarity compared to target 

screenshots.  

REDRAW has shown potential for industrial design 

and development workflows, yet requires to be 

adjusted to specific processes.  

[Pandian et 

al. 2020b] 

NI NI NI 

[Robinson 

2019] 
• Precision, Recall, F1 (in comparison 

with CV) per GUI element 

• Similarity of the generated website 

concerning the original website:  

o Visual similarity: structural 

similarity (SSIM) and mean squared 

error (MSE) as metrics to evaluate 

the pixel level visual similarity 

o Structural similarity: Levenshtein 

edit distance measure comparing the 

hierarchical tree similarity 

o User evaluation by choosing the best 

website for a given sketch out of 3 

alternatives 

Generalization of unseen examples 

through a qualitative user study 

250 sketches  

 

22 website 

experts 

 

The DL approach outperforms the CV approach in 

element classification by a significantly higher F1 

score on the classification of all elements except 

paragraphs. Precision varies from 0.562 [paragraph] 

to 0.896 (image), Recall varies from 0.461 

(paragraph) to 0.741 (image), F1 score varies from 

0.548 (paragraph) to 0.811 (image). Button and 

input cause confusion for small elements. 

The DL approach presents a lower MSE and a 

higher SSIM indicating better performance than the 

CV approach. The DL approach also demonstrated 

a lower median concerning edit operation indicating 

a better performance for structural similarity.  

Users top rated the DL approach with 22/22 votes 

regarding similarity, but provided better ratings for 

the CV approach (15/22) concerning generalization.  

[Suleri et 

al. 2019] 

[Pandian 

and Suleri 

2020] 

• Mean Average Precision 

• Average Recall 

• Usability of tool (SUS) 

 

592 sketches 

 

15 UI/UX 

designers 

MetaMorph detects GUI elements from lo-fi 

sketches with 84.9% mAP with 72.7% AR [Pandian 

et al. 2020b].  

87% of the participants said that they would like to 

use Eve frequently to create prototypes. 80% of the 

users found Eve easy to use. None thought that they 

would require any technical support to use the 

system or that the system is unnecessarily complex. 

The tool scored an average of 78.5 points out of 100, 

which implies overall good usability. 

[Wallner 

2018] 

Similarity of the machine-generated GUI 

to human-generated GUI using BLEU  

NI BLEU score of 0.97  

[Yun et al. 

2018] 

NI NI NI 

Table 10: Characteristics of evaluations 
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5 Discussion 

Considering the importance of the aesthetics and usability of graphical user interfaces 

and, thus, the importance of the interface design as well as the potential effort reduction 

by the automatic generation of GUI code, we encountered only a small number of 

research efforts. While on the other hand, the relevance of the topic itself is also pointed 

out by the availability of commercial solutions, such as Microsoft AI.Lab’s 

Sketch2Code, among others. With the exception of only one, all articles have been 

published in the last three years, demonstrating also the recent trend to the adoption of 

Machine Learning approaches for this task.  

We encountered solutions for web GUIs as well as mobile applications, focusing 

more on Android than iOS. Most approaches are based on sketches as input, 

recognizing the importance of the creative process of sketching as a first step in 

prototyping the GUI in contrast to approaches that may aim at complete automation of 

the GUI design process.  

However, we observed large differences between the approaches concerning the 

types of GUI elements to be detected. Several approaches focus on a rather explorative 

way only on a very small number of GUI elements. For example, [Aşıroğlu et al. 2019] 

and [Robinson 2019] only consider four different types of elements, and [Ge 2019] only 

seven. This limits the applicability of the proposed models in practice, as to be effective, 

the approaches need to detect all kinds of GUI elements of the respective type of 

interface. Other researches, such as [Moran et al. 2018], [Suleri et al. 2019], and 

[Pandian et al. 2020b] already extend the number of GUI elements to 15, 19, and, 

respectively 25 types of GUI elements. Yet, although several studies justify their 

selection based on the frequency of usage of GUI elements, some elements such as 

dropdown, which are still reasonably frequently used, are rarely covered ([Aşıroğlu et 

al. 2019] [Jain et al. 2019]). We also observed that only [Jain et al. 2019] and [Robinson 

2019] differentiated between types of text (including, for example, Heading, Label, and 

Paragraph). 

Research in this area concerning images of GUIs is further complicated due to the 

unavailability of large datasets such as e.g., ImageNet for images in general. Thus, a 

considerable effort needs to be spent on the creation of specific datasets as only two 

researches use pre-existing dataset RICO [Ge 2019] [Pandian et al. 2020b].  And, 

although, being one of the largest datasets in this field with information on over 9.3k 

Android apps RICO focuses on the representation of visual, textual, structural, and 

interactive properties based on screenshots as well as metadata, not providing, for 

example, sketches. However, as several studies in this field developed their datasets 

and made them available, especially the pix2code dataset has also been used (partially) 

by other researches [Kumar 2018][Liu et al. 2018b][Wallner 2018].  

Adopting diverse approaches, other studies captured GUI screenshots by typically 

crawling websites and/or online app stores. In some cases, GUI images or sketches have 

been synthetically generated. Comparing these to real GUI images and/or sketches, it 

becomes obvious that there are significant differences concerning the image quality as 

well as authenticity. However, this issue and its potential impact on performance and 

validity is not further discussed in most cases. An exception is [Robinson 2019], who 

reports a reduction of the performance of the deep learning approach when applied to 
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real sketches, emphasizing, thus, the importance of a great variety in sketches to allow 

the deep learning approach to better generalize to unseen sketching styles. 

Most researches were conducted with relatively small datasets ranging from 1,500 

GUIs [Han et al. 2018] to about 5,250 GUIs [Beltramelli 2018] with acceptable results, 

which indicates that ML models for this specific task can be developed with reasonably 

small datasets, keeping the data preparation effort reasonable. 

In terms of ML techniques, we encountered a large variety ranging from classic 

ML approaches to recent CNNs and diverse combinations. Yet, the majority of the 

researches adopted CNN.  

In order to be able to detect context-related information, such as nested GUI 

widgets, some approaches employed recurrent convolutional neural network-based 

techniques from the field of signal and natural language processing, including Gated 

Recurrent Units, LSTM and Bi-LSTM [Aşıroğlu et al. 2019][Beltramelli 2018][Chen 

et al. 2018][Han et al. 2018][Wallner 2018].  

In terms of evaluation, the large variety of measures indicates a lack of a clear 

standard for the evaluation of this kind of research. Furthermore, as the large majority 

focused (in some cases exclusively) on the analysis of accuracy, the evaluation is not 

necessarily aligned with commonly proposed measures for object detection (such as 

mAP that has been used only in one research [Suleri et al. 2019]). This lack of a standard 

for evaluation also hinders the comparison of the approaches as well as future work.  

Considering the data presented, in general, acceptable to good results are presented, 

however, in some cases analyzing, for example, precision per type of GUI element 

significant differences can be observed. Therefore, the detailed performance results 

need to be considered carefully, as consequently diverse GUI elements may not be 

detected with an acceptable degree. As a result of the evaluations some weaknesses 

have been identified as part of the presented approaches [Robinson 2019] [Moran et al. 

2018][Chen et al. 2018][Chen et al. 2019a]: 

• Incorrect merging of elements that are close together or when several neighborhood 

texts in one line use similar fonts and styles 

• Incorrect classification of small elements (e.g., misclassifying small button elements 

as input elements).   

• Incorrect implementation of alternative GUI elements, such as e.g., a ToggleButton 

vs. a Switch for the control.  

• Misclassification of ProgressBars and ToggleButtons due to multiple existing styles 

of the components. 

• Degrading accuracy with very simple GUI skeletons (≤ 10 GUI components, ≤ 3 

containers, and/or ≤ 3 depth). 

• GUI elements that are only partially visible (e.g., covered by a suspension menu), may 

not be recognized. 

On the other hand, a strength observed by [Chen et al. 2018] is the reliable detection 

of text elements in GUI images even when the texts are written in different languages, 

making the approach language independent. 

In addition, some researches also evaluate the similarity of the code generated 

adopting typically measures from text analysis, further indicating a lack of specific 

measures for this kind of research with respect to GUI images. Very few also analyze 

the applicability of the proposed approaches through user studies [Beltrami 2019][Chen 

et al. 2018][Robinson 2019][Suleri et al. 2019]. Yet, so far no empirical study on the 

application of these approaches in practice has been encountered.  
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Regarding the comparison of the effectiveness of the different approaches, even if 

Robinson [2019] compared a CNN approach to Computer Vision techniques and 

demonstrated that the deep learning approach outperforms the CV approach in element 

classification, but not in container classification, it is impossible to compare the 

performances reported by the approaches we identified. Regardless of the ML 

technique used, the approaches are very heterogeneous both regarding the kind of data 

they employ and also with respect to the techniques they apply for validation studies. 

Therefore, an objective comparison is not possible as this would require that all 

approaches employed a common or similar dataset and adopted related evaluation 

models.  

5.1 Threats to validity 

As in any systematic mapping, there exist threats to validity of the results presented. 

Therefore, we identified potential threats and applied mitigation strategies in order to 

minimize their impact on our research. 

Publication bias. Systematic reviews suffer from the common bias that positive 

outcomes are more likely to be published than negative ones. Nevertheless, we do not 

consider this an essential threat to our research as rather than focusing on articles that 

present findings on the impact of these approaches, we aim at eliciting the 

characteristics of the approaches themselves independent of the evaluation results. 

Identification of studies. Another risk is the omission of relevant studies. In order to 

mitigate this risk, we carefully constructed the search string to be as inclusive as 

possible considering not only core concepts but also synonyms. The risk of excluding 

relevant studies is further mitigated by the use of multiple databases, which cover the 

majority of scientific publications in the field.  

Study selection and data extraction. Threats to study selection and data extraction 

have been mitigated with a detailed definition of the inclusion/exclusion criteria. We 

defined a rigid protocol for the study selection and all authors conducted the selection 

together always discussing the selection until consensus was achieved.   

6 Conclusion 

The approaches we encountered in this mapping study show how Machine Learning 

can help to facilitate and speed up the design of user interfaces while at the same time 

maintain initial steps such as sketching as a creative process performed by humans. Yet 

the small number of researches and the gap to emerging commercial tools indicate the 

need for further research in this area. Furthermore, the large variety of ML techniques 

that seems to be employed in a rather explorative fashion as well as the lack of a clear 

standard for the evaluation of these models, point out important issues to be studied to 

create conditions for more systematic and comparable research in this field. And, 

although a few present first user studies with respect to the applicability of the 

approaches, no scientific evidence on the employment of these approaches in practice 

has been encountered. Moreover, no indications on how the proposed solutions can be 

integrated into a more comprehensive prototyping or case tool in order to support the 

entire process have been found. Thus, as the results show the increased relevance of 
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such support, they also point out the need for further research including the creation of 

datasets, ML model development as well as their evaluation.  
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