
 Journal of Universal Computer Science, vol. 26, no. 9 (2020), 1095-1127

submitted: 5/6/2020, accepted: 27/9/2020, appeared: 28/9/2020 CC BY-ND 4.0

Recent Progress in Automated Code Generation from

GUI Images Using Machine Learning Techniques

Daniel de Souza Baulé
(Federal University of Santa Catarina, Florianópolis, Brazil

daniel.baule@grad.ufsc.br)

Christiane Gresse von Wangenheim
(Federal University of Santa Catarina, Florianópolis, Brazil

 https://orcid.org/0000-0002-6566-1606, c.wangenheim@ufsc.br)

Aldo von Wangenheim
(Federal University of Santa Catarina, Florianópolis, Brazil

 https://orcid.org/0000-0003-4532-1417, aldo.vw@ufsc.br)

Jean C. R. Hauck
(Federal University of Santa Catarina, Florianópolis, Brazil

 https://orcid.org/0000-0001-6550-9092, jean.hauck@ufsc.br)

Abstract: The manual transformation of a user interface design into code is a costly and time-
consuming process. A solution can be the automation of the generation of code based on sketches

or GUI design images. Recently, Machine Learning approaches have shown promising results in

detecting GUI elements for such automation. Thus, to provide an overview of existing

approaches, we performed a systematic mapping study. As a result, we identified and compared
20 approaches, that demonstrate good performance results being considered useful. These results

can be used by researchers and practitioners in order to improve the efficiency of the GUI design

process as well as continue to evolve and improve approaches for its support.

Keywords: user interface design, machine learning, systematic mapping

Categories: H.5.2, I.2.6, I.2.10

1 Introduction

Modern software systems rely on attractive graphical user interfaces (GUIs) that

facilitate the effective and efficient completion of tasks and engage users, especially in

the competitive mobile application market [Moran et al. 2018]. Consequently, GUI

design has gained increasing importance in the software process. Typically, the

development of GUI involves iterative prototyping, starting with the creative process

of making sketches, that are simple hand-drawn representations. They are an effective

visual medium to transmit and discuss ideas and compare different alternatives in a

simple, quick, and inexpensive way [Huang et al. 2019]. From sketches, wireframes

that define the visual hierarchy are created, representing the interface layout and

structure without visual design details such as colors, images, etc. [Robinson 2018].

Once the wireframe is created and revised, it is enhanced by the visual design, until it

https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000

1096

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

becomes a high-fidelity prototype [Robinson 2018]. When the design is finalized, it is

implemented, resulting in the product (Figure 1).

Figure 1: Artefacts in the GUI design process (based on [Garrett 2010] [Hartson

and Pyla 2019] [Memmel and Reiterer 2008] [Silva da Silva et al. 2011])

As an iterative prototyping process, these steps can be repeated several times during

the design of an interface, requiring rework whenever changes are made. In this context,

specifically, the process of the generation of code from GUI prototypes has a high

potential for automation, as it is an uninspired, time-consuming, and error-prone task

[Moran et al. 2018] [Silva da Silva et al. 2011] [Suleri et al. 2019].

While designers typically used graphic editors including Photoshop or Illustrator

to design GUIs, a large variety of design tools (such as Sketch, Figma, Marvel or Adobe

XD) have evolved to become all-in-one tools from designing, prototyping to testing,

yet, still requiring the coding of the GUI design. On the other hand, modern IDEs such

as Eclipse, Visual Studio, or Android Studio, have powerful interactive drag-and-drop

based builders for GUI code. But, even with the currently available tools, the transition

from sketches or wireframes to code still consists of manually recreating user interfaces

[Beltramelli 2019].

Therefore, solutions are being created for the automatic generation of code for the

GUIs of websites and mobile applications [Robinson 2018] [Beltramelli 2017]. These

tools automatically convert hand-drawn sketches or wireframes into front-end code or

code representations. This automation facilitates the GUI development process saving

effort and time as well as helping to prevent accidental mistakes [Ozkaya 2019].

More recently, Machine Learning approaches are being applied for such an

automatic generation of GUI code. In this context, first solutions for the automatic

detection of user interface elements in sketches and or images of GUI prototypes have

emerged as an initial step for automating the creation of GUI skeletons and,

consequently, front-end code. Yet, although object detection is a vast field of Computer

Vision (CV) research, so far research on the detection of GUI elements is still scarce.

And, although first approaches have emerged, there still does not exist an overview of

existing approaches. Therefore, in this article, we present a systematic mapping

concerning the research question on how the generation of GUI design code can be

 1097

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

automated based on GUI images using Machine Learning. This article summarizes the

main findings from our review that might be of interest to practitioners and researchers.

2 Background

2.1 GUI Design

Typically, the development of GUI involves iterative prototyping, and the nature of

GUI design prototypes can vary significantly with respect to fidelity, depending on the

design situation, especially the stage of development [Hartson and Pyla, 2019]. And,

although terminology with respect to GUI design prototypes differs and is sometimes

used interchangeably, a common understanding associates hand-drawn sketches to low-

fidelity prototypes and wireframes to medium-fidelity prototypes, representing the

skeleton of the GUI by indicating visual elements and layout [Robinson 2018].

Enhancing the wireframe by visual design it becomes a high-fidelity prototype, often

also called mockup [Moran et al. 2018], which is generally represented by an image of

the GUI and/or a screenshot of the prototype [Robinson 2018].

The user experience results from decisions made during the GUI design process on

different planes of details [Garrett 2010]. This includes the representation of hierarchy

including GUI elements and structure as part of low fidelity prototypes, such as

sketches and wireframes. While on a higher surface plane, visual design details such as

color, imagery, and typography are added [Schlatter and Levinson 2013].

The specific GUI elements vary depending on the type of GUI (web or mobile), but

typically include elements such as Text, Button, and TextBox among others (Table 1).

GUI element type Sketch

Button

Checkbox

Dropdown list

Text field

Switch

Sliders

Icons

Notifications

Text

Image

Table 1: Examples of types of GUI elements (based on [Garrett 2010]) and their

representation in sketches

A GUI design image depicts the desired GUI elements and their spatial layout. To

implement a GUI design image this depiction of the interface is typically translated into

a GUI skeleton, which defines what and how the components of a GUI builder should

1098

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

be composed in the GUI implementation for reproducing the GUI elements and their

spatial layout in the GUI design image. This GUI skeleton then enables the subsequent

GUI implementation depending on the specific platform and/or programming

environment during front-end development.

Websites are composed structurally with HTML element tags and styled with

Cascading Style Sheets (CSS). The structure of a website consists of the types of

elements e.g. division, table, paragraph, button, and how they are positioned, while the

style defines the colors, fonts, and borders. HTML is constructed as a tree of objects

(Document Object Model (DOM)), with branches of this tree representing containers,

such as <div>, <footer>, <header>, and leaves of the tree are elements which contain

content, e.g., , <p>, <button>.

The way mobile GUIs are defined varies depending on the technology used, which

can be layered on top of the basic Domain-Specific Language (DSL) definition

infrastructure. However, in general, regardless of the overlapping technologies, all

elements of the user interface in an Android application, for instance, will ultimately

be implemented in the form of tree-like structures, with each node representing View

objects, which draws something on the screen and allows user interaction, and

ViewGroup, which groups those elements. GUI elements are defined in a markup-like

format (XML) using several View subclasses, or "widgets", which can be used for input

control (such as buttons: <Button> and text fields: <TextView>) or even ViewGroup,

or "layouts", such as a linear layout <LinearLayout>, for example. Other aspects such

as color, font size, and background can be defined as styles and themes, also in a

markup-like (XML) format. Styles can then be applied to specific attributes of View

objects, such as TextView, using attributes like "style".

2.2 Machine Learning Approaches for Object Detection

Object detection a fundamental and challenging problem in computer vision has

received great attention in recent years is due to its wide range of real-world

applications, including the detection of elements in graphical user interfaces [Zou et al.

2019]. Especially Machine Learning approaches have achieved remarkable advances

using pattern recognition techniques as well as deep learning [Jiao et al. 2019].

Figure 2: Example of GUI element detection in sketches

 1099

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

Object detection deals with detecting instances of semantic objects of a certain

class (such as humans, buildings, or cars) in digital images and videos. In the context,

of GUI design, it aims at the detection of GUI elements such as buttons, text, and images

(Figure 2), referring to a multi-class detection, where each detected object in the GUI

is classified into one of the non-overlapping GUI element classes.

2.2.1 Object detection process

Following [Hechun and Xiaohong 2019], a basic process for object detection can

roughly be divided into the following phases: region proposal, feature representation,

and region classification. The first possible object locations in the image are suggested,

indicating also some possible candidate area of the containing object. Then features are

extracted by selecting the appropriate features as characteristics vector, and classifying

this feature vector, and, thus, determining its type. After executing post-processing

operations, such as the maxima inhibition, border position return, the final object frame

is returned. Some more recent deep learning approaches condense some of these steps.

Figure 3: Overview of Machine Learning approaches applied for GUI element

detection

2.2.2 Machine Learning approaches for object detection

Different types of learning can be applied [Russell and Norvig 2010] including

supervised and unsupervised approaches. Supervised learning focuses on inferring a

function that maps an input to an output based on labeled training data. Unsupervised

learning, on the other hand, aims at finding previously undetected patterns in a data set

with no pre-existing labels and with a minimum of human supervision.

Adopted Machine Learning approaches include k-Nearest Neighbors (kNN)

[Zhang 2016], a is a non-parametric method used for classification and regression in

pattern recognition. Using supervised learning methods, the kNN algorithm stores all

available cases and classifies new cases based on a similarity measure (e.g., distance

functions). The Learning Vector Quantization algorithm (LVQ) [Kohonen 1988] for

pattern classification combines competitive learning with supervision enabling to

choose how many training instances to hang onto and learns exactly what those

instances should look like. Random Forests [Ho 1995] is a supervised learning method

for classification, regression, and other tasks that builds an ensemble of decision trees.

1100

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

Other examples include Density-Based Clustering, which refers to unsupervised

learning methods that identify distinctive groups in the data, assuming that a cluster is

a contiguous region of high point density, separated from other groups by contiguous

regions of low point density.

2.2.3 Deep Learning approaches for object detection

Recently, Deep Learning approaches have also been used (Figure 3). Deep Learning

originated from the study of Artificial Neural Networks (ANNs), which are

computation models inspired by biological neural networks representing a group of

multiple perceptrons/neurons at each layer processing inputs. A Deep Learning Neural

Network (DNN) is an ANN with two additional features: a very deep structure with

many layers between the input and output layer and convolutional layers. In a

convolutional layer, input connections of each artificial neuron can be spatially

organized, e.g., reflecting a field of pixels in an image, and the input signal is always

subject to a convolution operation, i.e., a matrix operation that is applied to the input,

instead of the weighted sum of inputs of a traditional ANN. Convolution operations can

be understood as filters on the input signal. Examples of classic convolution operations

are Gaussian filters, Perona-Malik diffusion filters, and gradient operators. A DNN that

employs convolutional layers is also called a Convolutional Neural Network (CNN).

CNNs do not employ ready-made filters, but rather learn customized, new filters during

the training process. CNNs were first proposed by [LeCun et al. 1998], but have been

applied more widely only after [Krizhevsky et al. 2012] demonstrated their power and

the possibilities offered by training them on general-purpose graphic processing units

(GP-GPU).

CNN are used heavily for object detection [Zhao et al. 2019]. Currently, CNN-

based object detection approaches can be primarily divided into two types: structured,

two-stage detectors, such as Region-based CNN (R-CNN) and its variants (such as

Faster R-CNN) and one-stage, purely neural detectors, such as SSD, RetinaNet and

YOLO and their variants [Wu et al. 2020]. Two-stage detectors first generate regions

of interest, sometimes employing classical methods, and then extract features from each

proposal, followed by region classifiers that predict the specific category of the

proposed region. These models reach the highest accuracy rates but are much slower.

One-stage detectors, on the other hand, directly make a categorical prediction of objects

on each location of the feature maps without the region classification step. They treat

object detection as a simple regression problem by taking an input image and learning

the class probabilities together with the bounding box coordinates. Such models reach

lower accuracy rates, but are much faster and can be used in real-time applications

[Huang et al. 2017].

Classic Recurrent Neural Networks (RNN) are a variant of ANNs that redirect part

of the output of some layers back into the input of earlier layers, providing a means of

learning contextual information, such as temporal and sequential data and also features

in their spatial contexts [Williams and Zipser 1989]. They perform the same task for

every element of a sequence, with the output being dependent on the previous

computations. Modern, Deep Learning-based RNNs [Sherstinsky 2020] are a variant

of CNNs used mainly in signal analysis and Natural Language Processing (NLP).

RNNs have shown to be hugely successful in NLP, especially with a variant called

long-short-term memory (LSTM), which is able to look back longer than RNNs. LSTM

 1101

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

is a special kind of structured RNN, with different recurrent modules capable of

learning long-term dependencies. Another alternative are Bi-directional RNNs,

stacking two LSTM RNNs, which allows the output layer to integrate information from

both, past and future states.

Nowadays, there exist a large number of Deep Learning frameworks, which offer

basic and advanced Deep Learning features and can be easily extended and used as

building blocks for the development of new CNN models and applications. The most

widely used are TensorFlow, PyTorch, Keras, and Fastai, which employ the Python

programming language, and Darknet and OpenCV-DNN, which employ the C++

programming language.

A backbone network is a CNN model employed in a wider CNN-based

architecture, where it acts as the basic feature extractor for object detection, semantic

segmentation, or automated image captioning tasks. The backbone network is generally

an image classification CNN without its last classification layers, which takes images

as input and outputs feature vectors of that image [Jiao et al. 2019]. Recent research on

CNNs has focused on wider, structured modular architectures for more complex tasks

and employed well-known and proved CNNs as their backbone networks. Depending

on requirements on accuracy vs. efficiency, either deeper backbone networks, like

ResNet or lightweight backbone networks like MobileNet or Xception can be chosen.

2.2.4 Datasets

For object detection there exist several well-known datasets and benchmarks, including

the datasets of PASCAL VOC Challenges, ImageNet Large Scale Visual Recognition

Challenge, or the MS-COCO Detection Challenge [Zou et al. 2019]. In addition to

general image datasets, specific datasets have been created for applications in certain

areas, including GUI image datasets such as RICO [Deka et al. 2017] that contains GUI

design data from more than 9.3k Android apps spanning 27 categories. For each app,

Rico exposes Google Play Store metadata, a set of user interaction traces, and a list of

more than 66k unique GUI screens discovered. Each GUI comprises a screenshot, an

augmented Android view hierarchy exposing for all GUI elements visual, textual,

structural, and interactive design properties, as well as a set of explored user

interactions, a set of animations capturing transition effects in response to user

interaction, and a learned vector representation of the GUI’s layout. Another example

is Syn [Pandian et al. 2020a], a dataset containing 125,000 synthetically generate GUI

sketches, which has been generated using the UISketch dataset containing 5,917

sketches including 19 GUI elements drawn by 350 participants.

The evaluation of object detection models is not trivial, as it requires to measure

two distinct factors: (i) determining whether an object exists in the image

(classification) and (ii) determining the location of the object (localization).

Furthermore, in the context of multi-class object detection, there are many classes,

which may not be uniformly distributed. Consequently, an accuracy-based metric may

introduce biases.

2.2.5 Performance evaluation in object detection

The performance of object detection models is typically based on the Intersection Over

Union (IOU), a measure based on the Jaccard Index that evaluates the overlap between

1102

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

two bounding boxes, the ground truth bounding box and the predicted bounding box

[Zou et al. 2019]. Generally, a 0.5 IOU ratio for each prediction at the training stage is

aimed for, which means that if the model predicts an object with a bounding box that

overlaps with the ground truth box by at least 50%, it is considered as a true prediction.

By applying the IOU, results can be classified into:

• True Positive (TP): correct detection with IOU ≥ threshold

• False Positive (FP): erroneous detection with IOU < threshold

• False Negative (FN): ground truth not detected

Depending on the kind of model, popular metrics for the evaluation of object detection

models are summarized in Table 2 [Sokolova and Lapalme 2009][Lie et al. 2020].

However, in recent years, the most frequently used metric for object detection is

Average Precision (AP) [Liu et al. 2020]. AP is defined as the average detection

precision under different recalls and is usually evaluated in an object class-specific

manner. To compare performance overall object classes, the mean AP (mAP) averaged

over all object classes is commonly used as the final metric of performance.

Category Metric Definition

Classification

metrics

Accuracy Number of correct predictions divided by the total number

of predictions, multiplied by 100

Precision Precision= TP/ (TP+ FP)

Recall Recall= TP/ (TP+ FN)

F1 score F1 score= 2*Precision*Recall/(Precision+Recall)

Regression

metrics

Mean squared error

(MSE)

Average squared error between the predicted and actual values

Mean absolute error

(MAE)

Average absolute distance between the predicted and target

values

Table 2: Examples of metrics for the evaluation of object detection models

Among metrics to measure the similarity of images, the simplest and most widely

used is the mean squared error (MSE), averaging the squared intensity differences of

distorted and reference image pixels, along with the related quantity of peak signal-to-

noise ratio (PSNR). Yet, it may not be very well matched to perceived visual quality

[Wang et al. 2004]. Another metric is the Structural Similarity Index (SSIM) that

measures the perceptual difference between two similar images. It attempts to separate

the task of similarity measurement into luminance, contrast, and structure [Wang et al.

2004]. Also, metrics originating from the evaluation of machine

translation/summarization are used. These are typically also used for the evaluation of

image captioning models that mainly measure the word overlap between generated and

reference captions, including Bilingual Evaluation Understudy (BLEU), Recall

Oriented Understudy for Gisting Evaluation (ROUGE), Metric for Evaluation of

Translation with Explicit Ordering (METEOR), among others [Aafaq et al. 2019][Ciu

et al. 2018]. BLEU is a precision-based metric based on the precise matching of n-

grams in the generated and ground truth artifacts. METEOR creates an alignment

between the two artifacts by comparing elements. ROUGE, uses different n-grams

based versions to BLEU and computes recall. Another similarity measure used is the

Levenshtein distance measure [Yujian and Bo 2007], computing the number of

operations needed to transform one string into another string, usually limiting the

possible operations to insertion, deletion, and substitution.

 1103

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

3 Research Method

In order to provide an overview of the state of the art on the automatic generation of

code from sketches or graphical user interface (GUI) images, we performed a

systematic mapping of the literature following the procedure defined by [Petersen et al.

2015].

3.1 Definition of the Review Protocol

The objective of this systematic mapping is to answer the research question: What

approaches exist for the automatic generation of code from GUI images using Machine

Learning (ML)?

This research is refined in the following analysis questions in order to answer the

research question and to characterize and compare the existing approaches:

AQ1. What approaches for generating code from GUI images exist?

AQ2. For which kind of platform and input/output data are the approaches?

AQ3. Which data sets are used and what are their characteristics?

AQ4. What are the characteristics of the ML models?

AQ5. How was the quality of the result evaluated and which results were obtained?

Inclusion and exclusion criteria. We consider only English-language publications that

present a model for generating code or GUI design representations based on sketches

or images of GUIs created during the GUI design process. We only consider approaches

adopting Machine Learning, not including models based on other techniques. We only

consider studies related to images of user interfaces of software systems (web and

mobile) that have been published since 2010. We consider only articles that present

substantial information allowing the extraction of relevant information regarding the

analysis questions. Therefore, abstract-only or one-page articles are excluded.

Sources. We searched the main digital databases and libraries in the field of computing,

including ACM Digital Library, IEEE Xplore Digital Library, arXiv.org e-print

archive, and Scopus with access via the Capes Portal1. Based on the research question,

several informal searches were performed to calibrate the search string, identifying

relevant search terms and their synonyms (Table 3). Synonyms were used to minimize

the risk of omitting relevant works.

Keyword Synonym(s)

sketch sketch, mockup, screenshot

wireframe wireframe

user interface user interface, ui, gui

software system app, mobile, android, ios, website

machine learning deep learning, neural network, cnn, computer vision

Table 3: Search terms and respective synonyms

1 A web portal for access to scientific knowledge worldwide, managed by the Brazilian Ministry on Education

for authorized institutions, including universities, government agencies and private companies

(www.periodicos.capes.gov.br).

1104

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

As a result of the calibration, a specific search string was defined in accordance with

the specific syntax of each of the data sources (Table 4).

Repository Search string

ACM Digital Library (sketch* OR wireframe* OR screenshot* OR mockup*) AND (ui OR "user

interface*" OR GUI) AND (app* OR website* OR ios OR mobile OR

android) AND ("machine learning" OR "deep learning" OR "neural

network*" OR cnn OR "computer vision")

IEEE Xplore Digital

Library

(sketch* OR wireframe* OR screenshot* OR mockup*) AND (ui OR "user

interface" OR "user interfaces" OR GUI) AND (app* OR website OR

websites OR ios OR mobile OR android) AND ("machine learning" OR "deep

learning" OR "neural network" OR "neural networks" OR cnn OR "computer

vision")

Scopus TITLE-ABS-KEY ((sketch* OR wireframe* OR screenshot* OR mockup*)

AND [ui OR "user interface*" OR GUI) AND (app* OR website* OR ios OR

mobile OR android) AND ("machine learning" OR "deep learning" OR

"neural network*" OR cnn OR "computer vision")) AND PUBYEAR > 2010

arXiv.org e-print

archive

order: -announced_date_first; size: 50; date_range: from 2010-01-01 ;

include_cross_list: True; terms: AND all=sketch* OR wireframe* OR

screenshot* OR mockup*; AND all=ui OR "user interface*" OR GUI; AND

all=app* OR website* OR ios OR mobile OR android; AND all="machine

learning" OR "deep learning" OR "neural network*" OR cnn OR "computer

vision"

Table 4: Search strings used in the different repositories

3.2 Execution of the Search

The search was executed in April 2020 by the authors. The initial search resulted in a

total of 2,576 search results (Table 5).

Repository Quantity of search

results
Quantity of

potentially relevant

articles

(based on title and

abstract)

Quantity of relevant

articles

(based on full-text

analysis)

ACM Digital Library 2,516 34 8
IEEE Xplore Digital

Library
18 17 3

Scopus 39 35 8
arXiv.org e-print

archive
3 3 3

Total 2,576 89 16 (without duplicates)

Table 5: Overview of the search results and selection process

During the first stage, the search results were quickly analyzed based on their

title and abstract. Irrelevant and duplicate papers returned my multiple searches were

removed. This stage left us with 89 potentially relevant articles. During the second stage

of selection, we analyzed the full text of the articles applying the inclusion and

exclusion criteria to identify relevant articles.

Research using different inputs than sketches or images of GUIs, such as

natural language requirements [Kolthoff 2019][Sethi et al. 2019] were not considered.

We also included only articles dealing with sketches of user interfaces, excluding any

 1105

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

sketch of another kind of object [Huang and Canny 2019]. Articles presenting only data

sets have been excluded [Pandian et al. 2020a][Deka et al. 2017]. We also excluded

articles that focus exclusively on the detection of specific GUI elements, such as icons

[Xiao et al. 2019]. We excluded research directed rather on the retrieval of GUIs [Chen

et al. 2019b] [Huang et al. 2019], generation of GUI design patterns [Nguyen et al.

2018], or semantic annotations [Liu et al. 2018a] rather than code. On the other hand,

we have included the article [Ge 2019] focusing primarily on the search for visually

similar apps based on sketches, as it, as part of the retrieval process, also generates

intermediate GUI prototypes representing visual elements and layout. In accordance

with our focus, we excluded articles that do not use any kind of Machine Learning

technique [Nguyen and Csallner 2015]. And, although there exist already commercial

tools such as Airbnb’s sketching interfaces tool (https://airbnb.design/sketching-

interfaces), Microsoft AI.Lab’s Sketch2Code (https://www.microsoft.com/en-us/ai/ai-

lab-sketch2code), TeleportHQ (https://teleporthq.io) and Zecoda (https://zecoda.com),

which support the conversion of sketches into code using Machine Learning, we did

not include them as no detailed information on these tool has been encountered.

Based on the primary studies, we also identified and added relevant secondary

literature, including [Beltramelli 2019][Halbe and Joshi 2015][Pandian and Suleri

2020] [Kumar 2018][Wallner 2018]. As a result, a total of 21 relevant articles has been

identified representing 20 approaches (Table 6).

According to the analysis questions relevant data has been extracted from the

articles. Data extraction was done independently by two of the authors and then revised

by all authors until consensus was obtained. Varying terminology referring to the same

concept has been unified and aggregated.

4 Results

The results of the data analysis are presented for each of the analysis questions.

4.1 What Approaches for Generating Code from GUI Images Exist?

Reference Description

[Aşıroğlu et

al. 2019]
B.Aşıroğlu et al. Automatic HTML Code Generation

from Mock-up Images Using Machine Learning

Techniques. Proc. of the Scientific Meeting on

Electrical-Electronics and Biomedical Engineering and

Computer Science, Istanbul, Turkey, 2019.

Approach for the automation of the code generation

process from hand-drawn mock-ups using CV

techniques and deep learning methods.

[Bajammal et

al. 2018]
M. Bajammal et al. Generating reusable web

components from mockups. Proc. of the 33rd

ACM/IEEE Int.Conference on Automated Software

Engineering, Montpellier, France, 2018.

A tool to automate the generation of reusable web

components from a mock-up employing visual

analysis and unsupervised learning of visual cues to

create reusable web components.
[Beltramelli

2019]
T. Beltramelli. Hack your design sprint: wireframes to

prototype in under 5 minutes. Medium, 2019.

https://uizard.io/

Uses CV and ML to automatically transform

wireframe images to high-fidelity mock-ups that can

be exported to front-end code such as HTML/CSS.

[Beltramelli

2018]

T. Beltramelli. pix2code: Generating Code from a

Graphical User Interface Screenshot. Proc. of the ACM

SIGCHI Symposium on Engineering Interactive

Computing Systems, Paris, France, 2018.

An approach based on CNN and RNN allowing the

generation of computer tokens from a single GUI

screenshot as input.

[Chen et al.

2018]
C. Chen et al. From UI Design Image to GUI Skeleton:

A Neural Machine Translator to Bootstrap Mobile GUI

Implementation. Proc. of the Int. Conference on

Software Engineering, Gothenburg, Sweden, 2018.

A deep learning architecture combining CNN and

RNN models that distills the crowd-scale

knowledge of GUI designs and implementations

from existing apps to develop a generative tool to

automatically generate a GUI skeleton given a GUI

1106

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

image.

[Chen et al.

2019a]
S. Chen et al. Automated cross-platform GUI code

generation for mobile apps. In Proc. of the 1st Int.

Workshop on Artificial Intelligence for Mobile,

Hangzhou, China, 2019.

An automated cross-platform GUI code generation

framework using image processing and deep learning

classification techniques to transfer the GUI code

implementation between two mobile platforms.
[Ge 2019] X. Ge. Android GUI search using hand-drawn sketches.

Proc. of the 41st Int. Conference on Software

Engineering, Piscataway, USA, 2019.

An approach that searches for visually similar apps

using sketches using Deep Learning to translate

sketches into GUI structures. Then, similar GUIs are

identified by computing a similarity score between

structural GUI data with the ones in the app

repositories.

[Halbe and

Joshi 2015]

A. Halbe and. R.Joshi. Novel Approach to HTML Page

Creation Using Neural Network. Procedia Computer

Science, 45, 2015.

An approach to create an HTML page automatically

from a hand-drawn paper sketch. The system

segments the various HTML controls, which are

then identified using ML. Identified HTML controls

are stored in an XML database that contains the

name and position of the component on the GUI

design. Then, this XML file is parsed to generate an

HTML page.

[Han et

al. 2018]

Y. Han et al. CSSSketch2Code: An Automatic Method

to Generate Web Pages with CSS Style. Proc. of the 2nd

Int. Conference on Advances in Artificial Intelligence,

Barcelona, Spain, 2018

A method based on object detection and attention

mechanism to automatically generate a web page

with CSS style information.

[Huang et al.

2018]

R. Huang et al. Automatically Generating Web Page

from A Mockup. Proc. of the 28th Int. Conference on

Software Engineering and Knowledge Engineering,

Redwood City, CA, USA, 2016.

A method to automate the transformation of a

mockup into a web page by extracting the elements

based on the color features of the edges. A bottom-

up tag generating method based on Random Forest

is proposed to select the tags for elements. The web

page is generated by the definition of HTML/CSS

code.

[Jain et al.

2019]

V. Jain et al. Sketch2Code: Transformation of Sketches

to UI in Real-time Using Deep Neural Network.

arXiv:1910.08930 [cs.CV], 2019.

An approach that employs a DNN to detect GUI

elements in sketches. The output is a platform-

independent UI representation object used by a GUI

parser which creates code for different platforms.

[Kim et al.

2018]

B. Kim et al. Deep-Learning based Web UI Automatic

Programming. Proc. of Int. Conference on Research in

Adaptive and Convergent Systems, Honolulu, USA,

2018.

Recognizing web layout based on hand-drawn

sketches using computer vision algorithms and web

widgets using Faster R-NN, the approach generates

HTML code automatically.

[Kumar 2018] A. Kumar. Automated front-end development using

deep learning. Medium “Insight”, 2018.

An approach based [Beltramelli 2018] and [Wallner

2018] to generate HTML code based on hand-drawn

website sketches.

[Liu et al.

2018b]

Y. Liu et al. Improving pix2code based Bi-directional

LSTM. Proc. of the IEEE Int. Conference on

Automation, Electronics and Electrical Engineering,

Shenyang, China, 2018.

A framework based on deep learning using CNN

and LSTM to transform a GUI screenshot into code.

The model is optimized by a Bidirectional LSTM.

[Moran et al.

2018]

K. Moran et al. Machine Learning-Based Prototyping

of Graphical User Interfaces for Mobile Apps. IEEE

Transactions on Software Engineering, 46[2], 2018.

An approach that first detects logical components of

a GUI from a mock-up artifact using CV or mock-

up metadata. Then, by software repository mining,

automated dynamic analysis, CNNs are used to

classify GUI-components into domain-specific

types. A data-driven, K-nearest-neighbors algorithm

generates a suitable hierarchical GUI structure from

which a prototype application can be automatically

assembled.

[Pandian et al.

2020b]

V. P. S. Pandian et al. Blu: What GUIs are made of.

Proc. of the 25th Int. Conference on Intelligent User

Interfaces, 2020.

https://blu.blackbox-toolkit.com/

An approach that uses deep learning and gestalt

laws-based algorithms to convert GUI screens to

editable blueprints by identifying the constituent

GUI element categories, their location, dimension,

text content, and layout hierarchy.

[Robinson

2019]

A. Robinson. Sketch2code: Generating a website from

a paper mockup, Dissertation, University of Bristol,

UK, 2019.

Using an ANN to translate a wireframe into a

normalized image.

[Suleri et al.

2019]

[Pandian and

S. Suleri et al. Eve: A Sketch-based Software

Prototyping Workbench. Proc. of the Conference on

Human Factors in Computing Systems Extended

Abstracts, Glasgow, UK, 2019.

A prototyping workbench that automatically

generates code based on sketches. It generates MeFi

and HiFi prototypes using GUI element detection

(MetaMorph) created with a DNN model that

 1107

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

Suleri 2020] V. P. S. Pandian and S. Suleri. BlackBox Toolkit:

Intelligent Assistance to UI Design. Proc. of the

Workshop on Artificial Intelligence for HCI: A Modern

Approach, Honolulu, USA, 2020.

https://metamorph.designwitheve.com/

detects constituent GUI element categories and their

position and code generation. With this information,

the respective GUI elements are created as a

medium-fidelity prototype. Lastly, the Code

Generator transforms the MeFi to HiFi by

generating executable code.

[Wallner

2018]

E. Wallner. Turning Design Mockups into Code with

Deep Learning, Floydhub, 2018.

Approach using ML to code a basic HTML and

CSS website based on a picture of a design mockup.

[Yun et al.

2018]

Y. Yun. Detection of GUI elements on sketch images

using object detector based on deep neural networks.

Proc. of the 6th Int. Conference on Green and Human

Information Technology, Chiang Mai, Thailand, 2018.

Approach adopting object detection based on

DNN that finds GUI elements by the integration of

localization and classification.

Table 6: Relevant research

Most of the relevant articles have been published during the last 3 years

(Figure 4), indicating the recent increased interest in this topic.

Figure 4: Quantity of articles per year

4.2 For Which Kind of Platform and Input/ Output Data are the Approaches?

The approaches target web and mobile platforms (Figure 5). Most approaches aim at

the design of web GUIs, followed by Android GUIs. A smaller number of approaches

targets iOS applications. Several researches present a multi-platform approach, with

two approaches covering both prominent mobile application platforms and four

approaches including web and mobile platforms.

Most approaches are based on hand-drawn sketches of GUI as input rather than

high-fidelity GUI design images or screenshots (Figure 6).

Figure 5: Distribution of approaches per platform

1108

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

Figure 6: Distribution of approaches per input and output type

For many approaches, no detailed information on which types of GUI elements are

detected has been encountered. Yet, to simplify the detection some approaches limit the

elements to be detected to only a small set. For example, [Aşıroğlu et al. 2019] only

considers four different types of elements such as TextBox, Dropdown, Button, and

CheckBox. Similarly, [Robinson 2019] also considers only four types of GUI elements

and [Ge, 2019] only seven. [Jain et al. 2019] concentrates on the ten most frequent

GUI elements, whereas [Moran et al. 2018] extends this to the 15 most used GUI

elements. [Suleri et al. 2019] consider 19 of Material Design’s GUI elements. The

largest number (25) of considered GUI elements is reported by [Pandian et al. 2020b].

Figure 7: Frequencies of consideration of GUI element types for detection

The analysis of the frequencies per GUI element also indicates this focus typically

on the most used GUI elements, such as Textbox, Button, etc., and less on elements

used with less frequency such as Spinner or NumberPicker. We also observed that most

 1109

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

approaches consider texts in general, without a more detailed detection per type of text.

An exception is the model presented by [Jain et al.2019] that separately detects

Paragraph, Label, and Heading as well as [Robinson 2019] separating Title and

Paragraph.

And, although, four models aim at detecting images, no further details on imagery

in general and icons specifically are presented, although this seems to be an important

issue concerning GUI design also approached by other research, such as [Liu et al.

2018b] [Xiao et al. 2019].

Reference Platform Type of input Type of output Detected GUI elements

[Aşıroğlu et al.

2019]

Web Sketch HTML Four different types of

components such as textBox,

dropdown, button, and checkBox

[Bajammal et al.

2018]

Web GUI design

image (hi-fi)

HTML NI

[Beltramelli 2019]

Android, iOS

and Web

Sketch HTML/CSS

High-fidelity prototype

(HTML/CSS)

NI

[Beltramelli 2018] Android, iOS,

and Web

GUI screenshot Markup-like DSL

Code in markup-like DSL

NI

[Chen et al. 2018] Android GUI design

image (hi-fi)

Markup-like DSL GUI

framework language whose

vocabulary consists of the

component names, such as

Android’s RelativeLayout,

TextView, etc.

NI

[Chen et al. 2019a] Android, iOS GUI screenshot Markup-like DSL

Android or iOS code

NI

[Ge 2019] Android Sketch GUI hierarchical skeleton: tree-

like structure with each node

representing a widget or a

layout (JSON/APK)

TextView, EditText, ImageView,

Button, RadioButton, Switch, and

CheckBox

[Halbe and Joshi

2015]

Web Sketch HTML NI

[Han et al. 2018] Web Sketch HTML NI

[Huang et al. 2018] Web GUI screenshot HTML/CSS DIV, P, LI, UL, H, FORM, IMG,

INPUT

[Jain et al. 2019] Android, iOS,

and Web

Sketch HTML 10 most used classes of GUI

elements: Link, Image, Paragraph,

CheckBox, TextBox, SelectBox,

Label, Heading, RadioButton,

Button

[Kim et al. 2018] Web Sketch HTML/CSS Button, RadioButton, CheckBox,

Textbox, Text, etc.

[Kumar 2018] Web Sketch HTML/CSS 16 GUI elements, such as buttons,

text boxes, and divs

[Liu et al. 2018b] Android, iOS,

and Web

GUI screenshot Markup-like DSL NI

[Moran et al. 2018] Mobile Mock-up artifact

hi-fi (with or

without meta-

data)

GUI hierarchical skeleton 15 most popular elements:

TextView, ImageView, Button,

ImageButton, EditText,

CheckedTextView, CheckBox,

RadioButton, ProgressBar,

SeekBar, NumberPicker, Switch,

ToggleButton, RatingBar e

Spinner

[Pandian et al.

2020b]

Android GUI screenshot GUI hierarchical skeleton 25 categories of GUI elements

[Robinson 2019] Web Sketch GUI hierarchical skeleton

JSON tree-like structure used to

represent the structure of a

Title, Image, Button, Input e

Paragraph

1110

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

wireframe that can directly be

translated into HTML

[Suleri et al.

2019][Pandian and

Suleri 2020]

Android Sketch Markup-like DSL

XML code

19 Google’s Material Design

based GUI elements, such as

buttons, text fields, menus, etc.

[Wallner 2018] Web GUI screenshot HTML/CSS 17 simplified tokens that are

translated into HTML and CSS

[Yun et al. 2018] NI Sketch Markup-like DSL

XML code

NI

Table 7: Characteristics of platform and input/output

Most of the approaches focus solely on detecting the type of GUI element and

position, not aiming at the understanding of handwritten text in order to automatically

set the text values of these GUI elements in the generated code. Approaches that extract

handwritten content from text GUI elements, such as labels and buttons, typically use

Optical Character Recognition (OCR). For example [Moran et al. 2018] and [Pandian

et al. 2020b] use the open-source Tesseract OCR library. [Halbe and Joshi 2015] take

a different approach, using a separate Learning Vector Queue Neural Network

dedicated to the recognition of handwritten uppercase letters. [Han et al. 2018]

recognize textual values, using textual data in order to define CSS styles for the output

code, such as font and color, yet without providing further details on how the text

understanding is performed. [Robinson 2019] performs text detection using Stroke

Width Transform, but only to detect the position and size of text, and not its content,

using default values instead when generating the GUI code. All other approaches use

default/random values for generating the text in labels and buttons, requiring still a

manual substitution during the GUI design process.

4.3 Which Datasets Have Been Used for Building the Machine Learning Model?

Only two researches used a pre-existing dataset RICO [Ge 2019] [Pandian et al. 2020b].

On the other hand, several researches systematically created and made their datasets

available as part of the research:

• Pix2Code (https://github.com/tonybeltramelli/pix2code/tree/master/datasets)

• Android UI (http://tagreorder.appspot.com/ui2code.html)

• REDRAW (https://zenodo.org/record/2530277)

• UISketch (https://www.kaggle.com/vinothpandian/uisketch)

• Syn-dataset (https://www.kaggle.com/vinothpandian/syn-dataset)

Most of the research works crawled online stores or sites to collect web sites or

mobile applications and then used dynamic testing tools to automatically capture the

screenshots. In some cases, GUI images have been synthetically generated, for example

by the automated exploration of the GUI hierarchies of app screens [Moran et al. 2018]

or by generating an editable blueprint vector graphic and a GUI layout tree based on

GUI screens and annotations from the RICO dataset [Pandian et al. 2020b]. Others

automatically generate sketches based on GUI screenshots, e.g., by using web

script/CSS-generated synthetic data [Han et al. 2018] [Kumar, 2018], screenshots

[Robinson 2019] or synthetic data generated from hand-drawn sketches [Suleri et al.

2019] [Pandian and Suleri 2020]. In these cases, sketches may vary with respect to their

authenticity, representing in some cases rather artificial examples of GUIs and/or GUI

elements that may not be representative for real-world interfaces. Yet, this issue and its

 1111

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

potential impact on performance and validity are not further discussed in most cases.

An exception is Robinson (2019), who reports a reduction of the performance of the

deep learning approach when applied to real sketches, emphasizing, thus, the

importance of a great variety in sketches to allow the deep learning approach to better

generalize to unseen sketching styles.

Other datasets use either sketches that have hand-drawn specifically for this

purpose. Some research also used data-augmentation techniques to balance the

frequencies of GUI element types in the dataset [Moran et al. 2018]. For supervised

learning approaches, the images are commonly annotated manually.

The datasets vary considerably in size (Figure 8). Yet, only two studies use very

small datasets, including only 50 [Yun et al. 2018] or 149 sketches [Jain et al. 2019].

The majority uses datasets ranging from 1,500 GUIs [Han et al. 2018] to about 5,250

GUIs [Beltramelli 2018]. Several studies also use large datasets, including the one used

by [Chen et al. 2018] representing 1,842,580 unique Android screenshots.

Figure 8: Distribution per category of dataset size

Reference Name Description Size Link

[Aşıroğlu et

al. 2019]

NI Used some of the images

provided from Microsoft AI

Lab for their Sketch2Code

application.

NI NI

[Bajammal

et al. 2018]

NI NI NI NI

[Beltramelli

2019]

NI NI NI NI

[Beltramelli

2018]

Pix2code

dataset

Synthesized set of GUI

screenshots and GUI code.

5,250 instances (1,750

Android, 1,750 iOS, 1,750

Web)

https://github.com/tonybeltramelli/

pix2code/tree/master/datasets

[Chen et al.

2018]

Android UI

dataset

Images from more than 5000

Android Apps crawled from

Google Play taking the

screenshots as the GUI design

image and also collecting the

corresponding code

automatically using the testing

tool Stoat.

185,277 pairs of GUI

images and GUI skeletons

with 291 unique Android

GUI components

http://tagreorder.appspot.com/

ui2code.html

[Chen et al.

2019a]

Crawled Android and iOS apps

from online stores and used

dynamic testing tools for

1,842,580 unique Android

screenshots

NI

1112

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

taking screenshots during

runtime.

[Ge 2019] Rico [Deka

et al. 2017]

The dataset was created by

crowdsourcing and automation

to mine design and interaction

data from Android apps at

runtime providing information

on visual, textual, structural,

and interactive properties.

Data from more than 9,3k

Android apps

NI

[Halbe and

Joshi 2015]

NI NI NI NI

[Han et

al. 2018]

NI The dataset involves the

original web script, the CSS

pixel matrix, and its

corresponding DSL label

sequences. Photoshop and

graphics tablets are used to

draw the web scripts and

labelImg is used for

annotation.

Data on 1,500 web scripts NI

[Huang et

al. 2018]

NI NI NI NI

[Jain et al.

2019]

NI Sketches of GUI elements

drawn by individuals.

149 sketches, containing

2,001 samples of GUI

elements

NI

[Kim et al.

2018]

NI NI NI NI

[Kumar

2018]

Pix2code

dataset

(web only)

Synthesized set of GUI

screenshots changing the CSS

stylesheets to make them look

like hand-drawn sketches and

GUI code.

1,750 website screenshots https://github.com/tonybeltramelli/

pix2code/tree/master/datasets

[Liu et al.

2018b]

pix2code

(web only)

Used part of the pix2code

dataset.

1,750 web GUI https://github.com/tonybeltramelli/

pix2code/tree/master/datasets

[Moran et

al. 2018]

REDRAW Dataset of mobile application

GUI data containing

screenshots and GUI related

metadata.

14,382 GUI screenshots

and 191,300 labeled GUI

elements

https://zenodo.org/record/2530277

[Pandian et

al. 2020b]

Rico [Deka

et al. 2017]

Annotated Android GUI

screens.

57,775 annotated Android

GUI screens containing 25

categories of GUI

elements

NI

[Robinson

2019]

NI The dataset contains sketches

and their associated normalized

version of the website.

Sketches were created based

on the normalized and reduced

screenshots by extracting

elements and automatically

replacing them with hand-

drawn elements.

Screenshots from 1,750

URLs

NI

[Suleri et

al. 2019]

[Pandian

and Suleri

2020]

UISketch

dataset

GUI element sketches were

collected from 350 participants

using paper and digital

questionnaires.

5,906 GUI element

sketches of 19 Google

material design GUI

elements

https://www.kaggle.com/

vinothpandian/uisketch

Syn-dataset

[Pandian et

al. 2020a]

125,000 synthetically

generated sketches by

randomly choosing GUI

elements from the labeled

UISketch dataset and stitching

them in random locations with

random scaling.

125,000 lo-fi sketches https://www.kaggle.com/

vinothpandian/syn-dataset

https://zenodo.org/record/2530277

 1113

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

[Wallner

2018]

Pix2code

dataset

(web only)

Synthesized set of GUI

screenshots and GUI code.

1,750 website screenshots https://github.com/tonybeltramelli/

pix2code/tree/master/datasets

[Yun et al.

2018]

NI Sketches that have been

annotated manually with

LabelImg.

50 mimicked sketch

images including ~ 600

GUI elements from the

screenshot images

gathered on the Internet

NI

Table 8: Characteristics of datasets

4.4 Which Kind of ML Technique/Neural Network is Used?

The approaches are quite different in terms of detail and reproducibility based on the

presented description of the approaches. Some present a very superficial description,

which makes it difficult to identify the applied techniques and parameters employed

[Aşıroğlu et al. 2019][Bajammal et al. 2018][Beltramelli 2019][Ge 2019][Halbe and

Joshi 2015][Yun et al. 2018]. Although we considered the degree of detail of the

description on the ML techniques insufficient for their work to be reproducible, we

decided to maintain them for the sake of completeness concerning the mapping.

The task to generate code from a GUI image is divided into several sub-problems

in most works, mainly image preprocessing, the detection and classification of GUI

elements, and the generation of code representing the GUI. The majority indicates the

usage of supervised learning algorithms using as input an image of a GUI as well as

typically a representation of the GUI elements, their locations, and dimensions

represented as a set of tokens. [Beltramelli 2018] on the other hand uses an

unsupervised learning approach presenting the GUI image and context information.

For the detection of GUI elements, most approaches use CNNs, including two-

stage detectors, such as Region-based CNN (R-CNN) and its variants (such as Faster

R-CNN [Kim et al 2018]) as well as one-stage detectors, such as SSD, RetinaNet [Jain

et al. 2019][Pandian and Suleri 2020], YOLO [Yun et al. 2018] and their variants.

Several of the approaches that divide the processing into several stages use CNN for

mapping the raw input image to a learned representation and then RNN for performing

language modeling on the textual description associated with the input picture. A few

approaches also unify diverse models into one framework. For example, [Chen et al.

2018] integrate CNN for visual understanding and RNN to encode spatial layout

information of CNN features as well as an RNN decoder to generate the target tokens

of the GUI framework language.

As a result of the object detection, typically an output representation is given on what

is recognized. The GUI representation structure is an object containing the types of the

identified components of GUI and their properties.

1
1

1
4

B
a
u
le D

., G
resse vo

n
 W

a
n
g
en

h
eim

 C
., vo

n
 W

a
n
d
en

h
eim

 A
., H

a
u
ck J.C

.R
. ...

1
1
1
5

B
a
u
le D

., G
resse vo

n
 W

a
n
g
en

h
eim

 C
., vo

n
 W

a
n
d
en

h
eim

 A
., H

a
u
ck J.C

.R
. ...

1116

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

Figure 9: Distribution of ML techniques adopted

Concerning the code generation, most of these methods rely on Domain-Specific

Languages (DSLs) that are markup, programming or modeling languages, which are

designed for a specialized Domain focusing, e.g., only on relevant information such as

the GUI elements and their position, yet, ignoring textual values of labels or visual

design details such as color. This representation is then used by a GUI parser to create

the code which can be executed on the target platform. With respect to the tools

employed, we can observe a clear tendency on the usage of free software tools, with

only one approach [Moran et al. 2018] employing the proprietary MATLAB

environment. The most used framework was Keras [Chollet 2015], followed by

Google’s TensorFlow and its extensions. Both frameworks are based upon the Python

open-source programming language [van Rossum 1995], making it the preferred tool.

Two approaches employ C++ based tools: one uses Nvidia’s GPU-based CUDnn API

[Chetlur et. al. 2014] and one other work claims to use one of Darknet’ YOLO object

detection versions. One approach [Chen et al. 2018] employs the LUA script language-

based Torch version.

4.5 How Have the Approaches Been Evaluated?

Concerning the evaluation, the researches vary largely in terms of scientific rigor.

While some stand out due to their systematic and wide evaluation (including, e.g.,

[Robinson 2019][Moran et al. 2018] [Chen et al. 2018]), other either present a very

superficial evaluation just citing some results without presenting the research design

(i.e., [Jain et al. 2019][Kim et al. 2018] [Liu et al. 2018b] [Halbe and Joshi 2015] [Ge

2019]) or do not present any information on the evaluation of the presented approach.

The reported evaluations also vary largely in relation to the analyzed questions

and metrics (Figure 10). The majority adopts metrics focusing on the performance of

object detection, including mainly accuracy, followed by precision, recall, and F1

value. This stands in contrast to the general indication of mAP as the most adequate

performance metric for multi-class object detection [Lie et al. 2020], which is used only

in one study [Suleri et al. 2019]. The majority of the studies report accuracy. However,

in the context of not uniformly distributed objects (as in the case of GUIs in which, e.g.,

buttons are much more common than other elements such as toggles), this may

introduce biases.

 1117

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

Figure 10: Distribution of usage of metrics

In general, acceptable to good results are presented with, e.g., accuracy varying

from 60 to 96%. However, in some cases analyzing, for example, precision per type of

GUI element significant differences can be observed ranging, e.g., from 0.562 for

paragraphs to 0.896 for images [Robinson 2019].

Several approaches also evaluate the similarity of the generated GUI with respect

to the original one, including the visual similarity on pixel level and/or structural

similarity by comparing the hierarchical tree similarity ([Chen et al. 2019a][Chen et al.

2018] [Robinson 2019][Han et al. 2018][Moran et al. 2018]). In a few cases similarity

has also been evaluated manually either by the researchers [Chen et al. 2018] or GUI

designers/developers [Robinson 2019][Chen et al. 2018][Bajammal et al. 2018].

Some studies also compared the Machine Learning approach to classical Computer

Vision approaches (such as [Chen et al. 2019a][Moran et al. 2018][Robinson 2019]).

As a result, they observed that the Deep Learning approach mostly outperforms other

approaches concerning performance. Only in terms of the ability to generalize to

previously unseen examples, users rated the classical Computer Vision approach higher

[Robinson 2019].

A few studies also analyzed the speed increase caused by the automation varying

from 2.5 times [Chen et al. 2018] to 24 times [Beltramelli 2019]. Studies aiming at the

analysis of the suitability of the approaches also demonstrated, in general, a good

acceptance rate by the participants [Chen et al. 2018][Moran et al. 2018] as well as its

usability [Suleri et al. 2019].

Reference Testing/evaluation question/measures Sample size Findings

[Aşıroğlu et

al. 2019]
• Method accuracy and validation

accuracy

NI The model achieves 96% method accuracy and 73%

validation accuracy.

[Bajammal

et al. 2018]
• Correctness of the refactorings of the

component generation (precision,

recall)

5 expert web

developers

VizMod achieves on average 94% precision and

75% recall in terms of agreement with the

developers’ assessment.

1118

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

• Effectiveness in identifying GUI

components compared to manual

examination by web developers

• Amount of code reusability to be

achieved through refactoring.

The refactorings yielded 22% code reusability on

average.

[Beltramelli

2019]

Speed increase in comparison to the

manual design process

20 UI/UX

designers and

front-end

developers

24 times speed increase on average in interface

design taking the tool only 170 sec to create high-

fidelity prototype and front-end code.

[Beltramelli

2018]

Accuracy 250 GUI

images

Pix2code can automatically generate code from a

single input image with over 77% accuracy for three

different platforms. Minimum classification error is

ranging from 11.01% (web) to 22.34% (Android)

and 22.73% (iOS).

[Chen et al.

2018]
• Accuracy [percentage of testing pairs

whose GUI skeleton exactly match

generated GUI skeleton

• BLEU: similarity of machine-

generated translations and human-

created reference translations

• Manual study the differences between

the generated GUI skeletons and their

ground truth

• Generalization evaluation

• Usefulness evaluation through a user

study (time, similarity, and

satisfaction)

10,804 GUI

images

8 Ph.D.

students/

research staff

Accuracy: 60.28% of the generated GUI skeletons

exactly match the ground truth GUI skeletons.

Accuracy degrades when the GUI skeletons are too

simple (≤ 10 GUI components, ≤ 3 containers,

and/or ≤ 3 depth).

The average BLEU score is 79.09, when the beam

width is 1 (i.e., greedy search).

The approach can reliably distinguish different

types of visual elements and generate the right GUI

components. Accuracy and BLEU score are only

slightly different when applying on GUI images not

included in the dataset demonstrating the generality

of the approach.

The experiment group implements the skeleton

GUIs faster than the control group implementing the

design from scratch (with an average of 6.14 min vs.

15.19 min). On average, satisfactory ratings for the

experiment and control group are 4.9 versus 3.8, and

the similarity ratings for the experiment and control

group are 4.2 versus 3.65 are obtained.

[Chen et al.

2019a]
• Accuracy (in comparison with other

ML techniques)

• Similarity of the generated web pages

by mean absolute error (MAE) and

mean squared error (MSE). (in

comparison with other techniques)

NI The CNN classification outperforms all baselines

(Logistic Regression, SVM, K-nearest Neighbors),

achieving more than 85% accuracy, while the

baselines achieve 20%-70% accuracy.

The GUI similarity of the generated pages with

existing techniques, such as PIX2CODE and

UI2CODE is between 60%-70%.

[Ge 2019] The potential of the approach to find

visually similar apps

6 sketches The DL framework is able to generate GUI

skeletons for sketches not included in the dataset.

Further evaluation is presented only concerning the

retrieval of similar apps.

[Halbe and

Joshi 2015]
• Accuracy

30 sketches Preliminary empirical evaluation of the accuracy of

results obtained of at least 70%.

[Han et

al. 2018]

Comparing different versions of the

approach wrt.:

• BLEU to compute the co-occurrence

frequency of N-grams in candidates

and references

• ROUGE-L uses the method of LCS

(Longest Common Subsequence)

• METEOR considers the metric of

recall and uses the weighted harmonic

mean based on single-precision

SUM is the average of BLEU,

ROUGE-L, and METEOR

450 sketches The most complete version of the approach

achieves: BLEU 0.679, METEOR 0.513, ROUGE-

L 0.783, and SUM 0.658 achieving the same values

as reduced versions and/or outperforming them.

[Huang et

al. 2018]
• Precision, recall, F1 (per tag e total

average)

• Accuracy (per tag e total average)

50 web pages Precision varies from 0.419 (FORM) to 0.911

(SPAN leaves), Recall varies from 0.499 (P) to

0.952 (SPAN leaves), F1 value varies from 0.128

(SPAN inner nodes]) to 0.931 [SPAN leaves].

Accuracy varies from 0.651 (DIV) to 0.964 (SPAN

inner nodes).

 1119

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

[Jain et al.

2019]
• Inference time for element detection

50 sketches The inference time ranges from 0.2 sec to 1.7 sec

increasing with the number of elements on a page.

Also, images taken at low-light conditions where

pixels are darker, increase the inference time.

[Kim et al.

2018]
• Accuracy

• Recall

NI The accuracy is 91% and recall rate 86% of GUI

object detection, and it was possible to convert them

into HTML code.

[Kumar

2018]
• Similarity of the machine-generated to

human-generated GUI using BLEU

NI BLEU score of 0.76 on the evaluation set

[Liu et al.

2018b]

Accuracy NI 85% of accuracy about test set.

[Moran et

al. 2018]
• Accuracy [Precision] also in

comparison to a CV approach

• Similarity of the generated GUI

hierarchy to original ground truth

hierarchies using the Levenshtein edit

distance

• Visual similarity of generated apps

compared to mock-ups calculating the

mean squared error (MSE) and mean

average error (MAE) across all pixels

in screenshots from generated apps for

different approaches compared to the

original screenshots

• Suitability in industrial context based

on expert opinion

14,382 GUI

images

83 GUI

images

3 GUI experts

Precision for the CNN approach is 91.1%

outperforming alternative approaches.

ReDraw-MockUp produces hierarchies that are

closer to the target hierarchies than other

approaches (REMAUI and pix2code).

REDRAW-CV outperformed both REMAUI and

pix2code in MAE, whereas all approaches exhibited

very low MSE, with REMAUI very slightly

outperforming both ReDraw variants. The results

indicate that the apps generated by ReDraw exhibit

high visual similarity compared to target

screenshots.

REDRAW has shown potential for industrial design

and development workflows, yet requires to be

adjusted to specific processes.

[Pandian et

al. 2020b]

NI NI NI

[Robinson

2019]
• Precision, Recall, F1 (in comparison

with CV) per GUI element

• Similarity of the generated website

concerning the original website:

o Visual similarity: structural

similarity (SSIM) and mean squared

error (MSE) as metrics to evaluate

the pixel level visual similarity

o Structural similarity: Levenshtein

edit distance measure comparing the

hierarchical tree similarity

o User evaluation by choosing the best

website for a given sketch out of 3

alternatives

Generalization of unseen examples

through a qualitative user study

250 sketches

22 website

experts

The DL approach outperforms the CV approach in

element classification by a significantly higher F1

score on the classification of all elements except

paragraphs. Precision varies from 0.562 [paragraph]

to 0.896 (image), Recall varies from 0.461

(paragraph) to 0.741 (image), F1 score varies from

0.548 (paragraph) to 0.811 (image). Button and

input cause confusion for small elements.

The DL approach presents a lower MSE and a

higher SSIM indicating better performance than the

CV approach. The DL approach also demonstrated

a lower median concerning edit operation indicating

a better performance for structural similarity.

Users top rated the DL approach with 22/22 votes

regarding similarity, but provided better ratings for

the CV approach (15/22) concerning generalization.

[Suleri et

al. 2019]

[Pandian

and Suleri

2020]

• Mean Average Precision

• Average Recall

• Usability of tool (SUS)

592 sketches

15 UI/UX

designers

MetaMorph detects GUI elements from lo-fi

sketches with 84.9% mAP with 72.7% AR [Pandian

et al. 2020b].

87% of the participants said that they would like to

use Eve frequently to create prototypes. 80% of the

users found Eve easy to use. None thought that they

would require any technical support to use the

system or that the system is unnecessarily complex.

The tool scored an average of 78.5 points out of 100,

which implies overall good usability.

[Wallner

2018]

Similarity of the machine-generated GUI

to human-generated GUI using BLEU

NI BLEU score of 0.97

[Yun et al.

2018]

NI NI NI

Table 10: Characteristics of evaluations

1120

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

5 Discussion

Considering the importance of the aesthetics and usability of graphical user interfaces

and, thus, the importance of the interface design as well as the potential effort reduction

by the automatic generation of GUI code, we encountered only a small number of

research efforts. While on the other hand, the relevance of the topic itself is also pointed

out by the availability of commercial solutions, such as Microsoft AI.Lab’s

Sketch2Code, among others. With the exception of only one, all articles have been

published in the last three years, demonstrating also the recent trend to the adoption of

Machine Learning approaches for this task.

We encountered solutions for web GUIs as well as mobile applications, focusing

more on Android than iOS. Most approaches are based on sketches as input,

recognizing the importance of the creative process of sketching as a first step in

prototyping the GUI in contrast to approaches that may aim at complete automation of

the GUI design process.

However, we observed large differences between the approaches concerning the

types of GUI elements to be detected. Several approaches focus on a rather explorative

way only on a very small number of GUI elements. For example, [Aşıroğlu et al. 2019]

and [Robinson 2019] only consider four different types of elements, and [Ge 2019] only

seven. This limits the applicability of the proposed models in practice, as to be effective,

the approaches need to detect all kinds of GUI elements of the respective type of

interface. Other researches, such as [Moran et al. 2018], [Suleri et al. 2019], and

[Pandian et al. 2020b] already extend the number of GUI elements to 15, 19, and,

respectively 25 types of GUI elements. Yet, although several studies justify their

selection based on the frequency of usage of GUI elements, some elements such as

dropdown, which are still reasonably frequently used, are rarely covered ([Aşıroğlu et

al. 2019] [Jain et al. 2019]). We also observed that only [Jain et al. 2019] and [Robinson

2019] differentiated between types of text (including, for example, Heading, Label, and

Paragraph).

Research in this area concerning images of GUIs is further complicated due to the

unavailability of large datasets such as e.g., ImageNet for images in general. Thus, a

considerable effort needs to be spent on the creation of specific datasets as only two

researches use pre-existing dataset RICO [Ge 2019] [Pandian et al. 2020b]. And,

although, being one of the largest datasets in this field with information on over 9.3k

Android apps RICO focuses on the representation of visual, textual, structural, and

interactive properties based on screenshots as well as metadata, not providing, for

example, sketches. However, as several studies in this field developed their datasets

and made them available, especially the pix2code dataset has also been used (partially)

by other researches [Kumar 2018][Liu et al. 2018b][Wallner 2018].

Adopting diverse approaches, other studies captured GUI screenshots by typically

crawling websites and/or online app stores. In some cases, GUI images or sketches have

been synthetically generated. Comparing these to real GUI images and/or sketches, it

becomes obvious that there are significant differences concerning the image quality as

well as authenticity. However, this issue and its potential impact on performance and

validity is not further discussed in most cases. An exception is [Robinson 2019], who

reports a reduction of the performance of the deep learning approach when applied to

 1121

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

real sketches, emphasizing, thus, the importance of a great variety in sketches to allow

the deep learning approach to better generalize to unseen sketching styles.

Most researches were conducted with relatively small datasets ranging from 1,500

GUIs [Han et al. 2018] to about 5,250 GUIs [Beltramelli 2018] with acceptable results,

which indicates that ML models for this specific task can be developed with reasonably

small datasets, keeping the data preparation effort reasonable.

In terms of ML techniques, we encountered a large variety ranging from classic

ML approaches to recent CNNs and diverse combinations. Yet, the majority of the

researches adopted CNN.

In order to be able to detect context-related information, such as nested GUI

widgets, some approaches employed recurrent convolutional neural network-based

techniques from the field of signal and natural language processing, including Gated

Recurrent Units, LSTM and Bi-LSTM [Aşıroğlu et al. 2019][Beltramelli 2018][Chen

et al. 2018][Han et al. 2018][Wallner 2018].

In terms of evaluation, the large variety of measures indicates a lack of a clear

standard for the evaluation of this kind of research. Furthermore, as the large majority

focused (in some cases exclusively) on the analysis of accuracy, the evaluation is not

necessarily aligned with commonly proposed measures for object detection (such as

mAP that has been used only in one research [Suleri et al. 2019]). This lack of a standard

for evaluation also hinders the comparison of the approaches as well as future work.

Considering the data presented, in general, acceptable to good results are presented,

however, in some cases analyzing, for example, precision per type of GUI element

significant differences can be observed. Therefore, the detailed performance results

need to be considered carefully, as consequently diverse GUI elements may not be

detected with an acceptable degree. As a result of the evaluations some weaknesses

have been identified as part of the presented approaches [Robinson 2019] [Moran et al.

2018][Chen et al. 2018][Chen et al. 2019a]:

• Incorrect merging of elements that are close together or when several neighborhood

texts in one line use similar fonts and styles

• Incorrect classification of small elements (e.g., misclassifying small button elements

as input elements).

• Incorrect implementation of alternative GUI elements, such as e.g., a ToggleButton

vs. a Switch for the control.

• Misclassification of ProgressBars and ToggleButtons due to multiple existing styles

of the components.

• Degrading accuracy with very simple GUI skeletons (≤ 10 GUI components, ≤ 3

containers, and/or ≤ 3 depth).

• GUI elements that are only partially visible (e.g., covered by a suspension menu), may

not be recognized.

On the other hand, a strength observed by [Chen et al. 2018] is the reliable detection

of text elements in GUI images even when the texts are written in different languages,

making the approach language independent.

In addition, some researches also evaluate the similarity of the code generated

adopting typically measures from text analysis, further indicating a lack of specific

measures for this kind of research with respect to GUI images. Very few also analyze

the applicability of the proposed approaches through user studies [Beltrami 2019][Chen

et al. 2018][Robinson 2019][Suleri et al. 2019]. Yet, so far no empirical study on the

application of these approaches in practice has been encountered.

1122

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

Regarding the comparison of the effectiveness of the different approaches, even if

Robinson [2019] compared a CNN approach to Computer Vision techniques and

demonstrated that the deep learning approach outperforms the CV approach in element

classification, but not in container classification, it is impossible to compare the

performances reported by the approaches we identified. Regardless of the ML

technique used, the approaches are very heterogeneous both regarding the kind of data

they employ and also with respect to the techniques they apply for validation studies.

Therefore, an objective comparison is not possible as this would require that all

approaches employed a common or similar dataset and adopted related evaluation

models.

5.1 Threats to validity

As in any systematic mapping, there exist threats to validity of the results presented.

Therefore, we identified potential threats and applied mitigation strategies in order to

minimize their impact on our research.

Publication bias. Systematic reviews suffer from the common bias that positive

outcomes are more likely to be published than negative ones. Nevertheless, we do not

consider this an essential threat to our research as rather than focusing on articles that

present findings on the impact of these approaches, we aim at eliciting the

characteristics of the approaches themselves independent of the evaluation results.

Identification of studies. Another risk is the omission of relevant studies. In order to

mitigate this risk, we carefully constructed the search string to be as inclusive as

possible considering not only core concepts but also synonyms. The risk of excluding

relevant studies is further mitigated by the use of multiple databases, which cover the

majority of scientific publications in the field.

Study selection and data extraction. Threats to study selection and data extraction

have been mitigated with a detailed definition of the inclusion/exclusion criteria. We

defined a rigid protocol for the study selection and all authors conducted the selection

together always discussing the selection until consensus was achieved.

6 Conclusion

The approaches we encountered in this mapping study show how Machine Learning

can help to facilitate and speed up the design of user interfaces while at the same time

maintain initial steps such as sketching as a creative process performed by humans. Yet

the small number of researches and the gap to emerging commercial tools indicate the

need for further research in this area. Furthermore, the large variety of ML techniques

that seems to be employed in a rather explorative fashion as well as the lack of a clear

standard for the evaluation of these models, point out important issues to be studied to

create conditions for more systematic and comparable research in this field. And,

although a few present first user studies with respect to the applicability of the

approaches, no scientific evidence on the employment of these approaches in practice

has been encountered. Moreover, no indications on how the proposed solutions can be

integrated into a more comprehensive prototyping or case tool in order to support the

entire process have been found. Thus, as the results show the increased relevance of

 1123

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

such support, they also point out the need for further research including the creation of

datasets, ML model development as well as their evaluation.

Acknowledgements

This work was supported by CNPq (Conselho Nacional de Desenvolvimento Científico

e Tecnológico – www.cnpq.br), an entity of the Brazilian government focused on

scientific and technological development.

References

[Aafaq et al. 2019] Aafaq, N., Mian, A., Liu, W., Gilani, S. Z., Shah, M.: “Video Description: A

Survey of Methods, Datasets and Evaluation Metrics”; ACM Computing Surveys, 52(6) (2019)

[Aşıroğlu et al. 2019] Aşıroğlu, B., Mete, B. R., Yıldız, E., Nalçakan, Y., Sezen, A., Dağtekin,
M., Ensari, T.: “Automatic HTML Code Generation from Mock-up Images Using Machine

Learning Techniques”; Proc. of the Scientific Meeting on Electrical-Electronics and Biomedical

Engineering and Computer Science, Istanbul, Turkey (2019), 1-4.

[Bajammal et al. 2018] Bajammal, M., Mazinanian, D., Mesbah, A.: “Generating reusable web
components from mockups”; Proc. of the 33rd ACM/IEEE International Conference on

Automated Software Engineering, Montpellier, France (2018), 601–611

[Beltramelli 2019] Beltramelli, T.: “Hack your design sprint: wireframes to prototype in under 5

minutes”; Medium, (2019) https://uxdesign.cc/hack-you-design-sprints-wireframes-to-

prototype-in-under-5-minutes-b7b95c8b2aa2

[Beltramelli 2018] Beltramelli, T.: “pix2code: Generating Code from a Graphical User Interface

Screenshot”; Proc. of the ACM SIGCHI Symposium on Engineering Interactive Computing

Systems, Paris, France (2018)

[Chen et al. 2018] Chen, C., Su, T., Meng, G., Xing, Z., and Liu, Y.: “From UI Design Image to

GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation”; Proc.

of the International Conference on Software Engineering, Gothenburg, Sweden (2018)

[Chen et al. 2019a] Chen, S., Fan, L., Su, T., Ma, L., Liu, Y., Xu, L.: “Automated cross-platform
GUI code generation for mobile apps”; Proc. of the 1st Int. Workshop on Artificial Intelligence

for Mobile, Hangzhou, China (2019)

[Chen et al. 2019b] Chen, C., Feng, S., Xing, Z., Liu, L., Zhao, S., Wang, J.: “Gallery D.C.:

Design Search and Knowledge Discovery through Auto-created GUI Component Gallery”; Proc.

of the ACM on Human Computer Interaction, Article 180 (2019)

[Chetlur et al. 2014] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro,

B., Shelhamer, E.: “cuDNN: Efficient Primitives for Deep Learning” CoRR abs/1410.0759

(2014)

[Cui et al. 2018] Cui, Y., Yang, G., Veit, A., Huang, X., Belongie, S.: “Learning to Evaluate

Image Captioning”; arXiv:1806.06422 [cs.CV], 2018.

[Deka et al. 2017] Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan, D., Li, Y., Nichols,

J., Kumar, R.: “Rico: A Mobile App Dataset for Building Data-Driven Design Applications”;

Proc. of the ACM Symposium on User Interface Software and Technology (2017) 845–854

https://dl.acm.org/journal/csur

1124

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

[Garrett, 2010] Garrett, J. J.: “The Elements of User Experience: User-Centered Design for the

Web and Beyond”; Pearson Education (2010)

[Ge, 2019] Ge, X.: “Android GUI search using hand-drawn sketches”; Proc. of the 41st Int.

Conference on Software Engineering, Piscataway, USA (2019)

[Han et al. 2018] Han, Y., He, J., Dong, Q.: “CSSSketch2Code: An Automatic Method to

Generate Web Pages with CSS Style”; Proc. of the 2nd Int. Conference on Advances in Artificial

Intelligence, Barcelona, Spain (2018) 29–35

[Halbe and Joshi 2015] Halbe, A., Joshi, A. R.: “Novel Approach to HTML Page Creation Using

Neural Network”; Procedia Computer Science, 45 (2015) 197-204

[Hartson and Pyla 2019] Hartson, R., Pyla, P.: “The UX Book: Process and Guidelines for

Ensuring a Quality User Experience”; 2nd Ed., Morgan Kaufmann (2019)

[Ho 1995] Ho, T. K.: “Random Decision Forests”; Proc. of the 3rd Int. Conference on Document

Analysis and Recognition, Montreal, Canada (1995) 278–282

[Huan et al. 2016] Huan, R., Long, Y., Chen, X.: “Automatically Generating Web Page from A

Mockup”; Proc. of the 28th Int. Conference on Software Engineering and Knowledge

Engineering, Redwood City, USA (2016) 589-594

[Huang et al. 2019] Huang, F., Canny, J. F., Nichols, J.: “Swire: Sketch-based User Interface

Retrieval”; Proc. of the CHI Conference on Human Factors in Computing Systems, ACM, New

York, USA (2019) 1–10

[Huang et al. 2017] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer,

I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K. "Speed/Accuracy Trade-Offs for Modern

Convolutional Object Detectors"; Prod. of the IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, HI, USA (2017) 3296-3297

[Hechun and. Xiaohong 2019] Hechun, W., Xiaohong, Z.: “Survey of Deep Learning Based

Object Detection”; Procs. of the 2nd Int. Conference on Big Data Technologies, ACM, New

York, USA (2019) 149–153

[Huang and Canny 2019] Huang, F., Canny, J. F.: “Sketchforme: Composing Sketched Scenes
from Text Descriptions for Interactive Applications”; Proc. of the 32nd Annual ACM

Symposium on User Interface Software and Technology (2019) 209–220

[Jain et al. 2019] Jain, V., Agrawal, P., Banga, S., Kapoor, R., Gulyani, S.: “Sketch2Code:

Transformation of Sketches to UI in Real-time Using Deep Neural Network”; arXiv:1910.08930

[cs.CV] (2019)

[Jiao et al. 2019] Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., Qu, R.: “A Survey of

Deep Learning-based Object Detection”; arXiv:1907.09408 [cs.CV] (2019)

[Kilickaya et al. 2017] Kilickaya, M., Erdem, A., Ikizler-Cinbis, N., Erdem, E.: “Re-evaluating
Automatic Metrics for Image Captioning”; Proc. of the 15th Conference of the European Chapter

of the Association for Computational Linguistics, Valencia, Spain (2017)

[Kim et al. 2018] Kim, B., Park, S., Won, T., Heo, J., Kim, B.: “Deep-Learning Based Web UI

Automatic Programming”; Proc. of Int. Conference on Research in Adaptive and Convergent

Systems, Honolulu, USA (2018)

[Kolthoff 2019] Kolthoff, K.: “Automatic generation of graphical user interface prototypes from

unrestricted natural language requirements”; Proc. of the 34th IEEE/ACM International

Conference on Automated Software Engineering (2019) 1234–1237

https://www.aclweb.org/anthology/people/m/mert-kilickaya/
https://www.aclweb.org/anthology/people/m/mert-kilickaya/
https://www.aclweb.org/anthology/people/a/aykut-erdem/
https://www.aclweb.org/anthology/people/n/nazli-ikizler-cinbis/
https://www.aclweb.org/anthology/people/e/erkut-erdem/
https://www.aclweb.org/anthology/E17-1019.pdf
https://www.aclweb.org/anthology/E17-1019.pdf
https://www.aclweb.org/anthology/volumes/E17-1/
https://www.aclweb.org/anthology/volumes/E17-1/

 1125

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

[Kohonen 1988] Kohonen, T.: "Learning Vector Quantization", Neural Networks (1988)

[Krizhevsky et al. 2012] Krizhevsky, A., Sutskever, I., Hinton, G. E.: “ImageNet classification

with deep convolutional neural networks”; Proc. of the 25th Int. Conference on Neural

Information Processing Systems (2012) 1097-1105

[Kumar 2018] Kumar, A.: “Automated front-end development using deep learning”; Medium

Insight (2018) https://blog.insightdatascience.com/automated-front-end-development-using-

deep-learning-3169dd086e82?gi=bcd0cff78213.

[LeCun et al. 1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning

applied to document recognition”; Proc. of the IEEE, 86(11) (1998), 2278-2324

[Lepore 2010] Lepore, T.: “Sketches and Wireframes and Prototypes! Oh My! Creating Your

Own Magical Wizard Experience”; UX Matters (2010)
https://www.uxmatters.com/mt/archives/2010/05/sketches-and-wireframes-and-prototypes-oh-

my-creating-your-own-magical-wizard-experience.php]

[Liu et al. 2018a] Liu, T. F., Craft, M., Situ, J., Yumer, E., Mech, R., Kumar, R.: “Learning

Design Semantics for Mobile Apps”; In Proc. of the 31st Annual ACM Symposium on User

Interface Software and Technology, Berlin, Germany (2018) 569-579

[Liu et al. 2018b] Liu, Y.; Hu, Q.; Shu, K.: “Improving pix2code based Bi-directional LSTM”;

Proc. of the IEEE Int. Conference on Automation, Electronics and Electrical Engineering,

Shenyang, China (2018)

[Liu et al. 2020] Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.:

“Deep Learning for Generic Object Detection: A Survey”; International Journal of Computer

Vision, 128 (2020) 261–318

[Memmel and Reiterer 2008] Memmel, T., Reiterer, H.: “Model-Based and Prototyping-Driven
User Interface Specification to Support Collaboration and Creativity”; Journal of Universal

Computer Science, 14(19) (2008) 3217-3235

[Moran et al. 2018] Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R., Poshyvanyk, D.:

“Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile Apps”; IEEE

Transactions on Software Engineering, 46(2) (2018)

[Nguyen et al. 2018] Nguyen, T. T., Vu, P. M., Pham, H. V., Nguyen, T. T.: “Deep Learning UI

Design Patterns of Mobile Apps”; Proc. of the ACM/IEEE 40th International Conference on

Software Engineering: New Ideas and Emerging Results (2018)

[Nguyen and Csallner 2015] Nguyen, T. A., Csallner, C.: “Reverse engineering mobile

application user interfaces with REMAUI”; Proc. of the 30th IEEE/ACM Int. Conference on

Automated Software Engineering, Lincoln, USA (2015) 248-259

[Ozkaya 2019] Ozkaya, I.: “Are DevOps and Automation Our Next Silver Bullet?”; IEEE

Software, 36(4) (2019) 3-95

[Pandian and Suleri 2020] Pandian, V. P. S., Suleri, S.: “BlackBox Toolkit: Intelligent Assistance

to UI Design”; Proc. of the Workshop on Artificial Intelligence for HCI: A Modern Approach,

Honolulu, USA (2020) 25–30

[Pandian et al. 2020a] Pandian, V. P. S., Suleri, S., Jarke, M.: “Syn: Synthetic Dataset for

Training UI Element Detector from Lo-Fi Sketches”; Proc. of the 25th International Conference

on Intelligent User Interfaces Companion (2020) 79–80

[Pandian et al. 2020b] Pandian, V. P. S., Suleri, S., Jarke, M.: “Blu: What GUIs are made of”;

Proc. of the 25th Int. Conference on Intelligent User Interfaces (2020) 81–82

1126

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

[Petersen et al. 2015] Petersen, K.; Vakkalanka, S.; Kuzniarz, L.: “Guidelines for conducting

systematic mapping studies in software engineering: an update”; Information and Software

Technology, 64 (2015) 1–18

[Robinson 2019] Robinson, A.: “Sketch2code: Generating a website from a paper mockup”;

Dissertation, University of Bristol, UK (2019)

[Schlatter and Levinson 2013] Schlatter, T., Levinson, D.: “Visual usability: Principles and

practices for designing digital applications”; Morgan Kaufmann (2013)

[Sethi et al. 2019] Sethi, N., Kumar, A., Swami, R.: “Automated web development: theme

detection and code generation using Mix-NLP”; Proc. of the 3rd Int. Conference on Advanced

Informatics for Computing Research, Shimla, India (2019) 1–6

[Sherstinsky 2020] Sherstinsky, A.: “Fundamentals of Recurrent Neural Network (RNN) and

Long Short-Term Memory (LSTM) Network”; Physica D: Nonlinear Phenomena, 404 (2020)

[Silva da Silva et al. 2011] Silva da Silva, T., Martin, A., Maurer, F., Silveira, M.: “User-Centered

Design and Agile Methods: A Systematic Review"; Proc. of the Agile Conference. (2011) 77-86.

[Sokolova and Lapalme 2009] Sokolova, M., Lapalme, G.: “A systematic analysis of

performance measures for classification tasks”; Information Processing and Management, 45

(2009) 427–437

[Russell and Norvig 2010] Russell, S.J., Norvig, P.: “Artificial Intelligence: A Modern

Approach”; 3rd Edition, Prentice Hall (2010)

[Suleri et al. 2019] Suleri, S., Pandian, V. P. S., Shishkovets, S., Jarke, M.: Eve: A Sketch-based

Software Prototyping Workbench”; Proc. of the Conference on Human Factors in Computing

Systems Extended Abstracts, Glasgow, UK (2019)

[Xiao et al. 2019] Xiao, X., Wang, X., Cao, Z., Wang, H., Gao, P.: "IconIntent: Automatic
Identification of Sensitive UI Widgets Based on Icon Classification for Android Apps"; Proc. of

IEEE/ACM 41st Int. Conference on Software Engineering, Montreal, Canada (2019) 257-268

[Yun et al. 2018] Yun, Y; Jung, J.; Eun, S.; So, S.; Heo, J.: “Detection of GUI elements on sketch

images using object detector based on deep neural networks”; Proc. of the 6th Int. Conference

on Green and Human Information Technology, Chiang Mai, Thailand (2018)

[Zou et al. 2019] Zou, Z., Shi, Z., Guo, Y., Ye, J.: “Object Detection in 20 Years: A Survey” ;

arXiv:1905.05055v2 [cs.CV] (2019)

[Wu et al. 2020] Wu, X., Sahoo, D., Hoi, S. C. H.: “Recent Advances in Deep Learning for

Object Detection”; Neurocomputing, (2020)

[Wallner 2018] Wallner, E.: “Turning Design Mockups into Code with Deep Learning”; Floydhub

(2018) Article available at: https://blog.floydhub.com/turning-design-mockups-into-code-with-

deep-learning

[Wang et al. 2004] Wang, Z., Bovik, A., Sheik, H.R., Simoncelli, E.P.: “Image quality

assessment: From error visibility to structural similarity”; IEEE Trans. Image Process 4, 13(4)

(2004) 1–14

[Williams and Zipser 1989] Williams, R. J., Zipser, D. A “Learning Algorithm for Continually

Running Fully Recurrent Neural Networks”; Neural Computation, 1:2 (1989) 270-280

[Yujian and Bo 2007] Yujian, L., Bo, L.: “A normalized Levenshtein distance metric”; IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(6) (2007) 1091–1095

https://arxiv.org/abs/1905.05055v2

 1127

Baule D., Gresse von Wangenheim C., von Wandenheim A., Hauck J.C.R. ...

[Zhang 2016] Zhang Z.: “Introduction to machine learning: k-nearest neighbors”; Annals of

translational medicine, 4(11), (2016)

[Zhao et al. 2019] Zhao, Z.-Q., Zheng, P., Xu, S.-t., Wu, X.: “Object Detection with Deep

Learning: A Review”; IEEE Transactions on Neural Networks and Learning Systems, 30(11)

(2019)

