
Journal of Universal Computer Science, vol. 27, no. 7 (2021), 734-754
submitted: 15/5/2020, accepted: 26/5/2021, appeared: 28/7/2021 CC BY-ND 4.0

Assembling the Web of Things and Microservices for the
Management of Cyber-Physical Systems

Manel Mena
(University of Almería, Almería, Spain

https://orcid.org/0000-0003-1084-8489, manel.mena@ual.es)

Javier Criado
(University of Almería, Almería, Spain

https://orcid.org/0000-0002-8035-5260, javi.criado@ual.es)

Luis Iribarne
(University of Almería, Almería, Spain

https://orcid.org/0000-0003-1815-4721, luis.iribarne@ual.es)

Antonio Corral
(University of Almería, Almería, Spain

https://orcid.org/0000-0002-0069-4642, acorral@ual.es)

Abstract: Cyber-Physical Systems (CPS) and Internet of Things (IoT) devices are handled by

numerous different protocols. The management and connection to those devices tend to create

usability and integrability issues. This brings about the need for a solution capable of facilitating

the communication between different platforms and devices. The Web of Things (WoT) describes

interfaces and interaction patterns among things, thereby abstracting itself from the underlying

protocols used to manage those things and their implementation strategies. This paper describes

the concept of Digital Dice, an abstraction of IoT devices and CPS capable of leveraging the

advantages of microservices architectures and inspired by the concept of Digital Twins. A Digital

Dice is a servient system of the WoT domain that represents a device by the features of the device,

hence different WoT description models result in different microservices related to the particular

thing. The paper explores the definition of Digital Dices and the conversion between WoT Thing

Description Models and Digital Dices and the architecture that sustains the system.

Keywords: Cyber-Physical Systems, IoT, Microservices, WoT, Digital Twins, Digital Dice
Categories: C.3, D.2.11, D.2.12, D.2.13, I.6.5, J.7

DOI: 10.3897/jucs.70325

1 Introduction

In the world of IoT devices, there are a number of issues that developers must face.
First, the ecosystems of these devices use multiple protocols for interaction. This means
that developers must understand all of these protocols. This issue is partially solved
with the framework presented by the W3C, the Web of Things (WoT) [WoT 2021]. This
framework offers the possibility of declaring things from the properties, actions or events
that they handle. This is done through the use of the Thing Description (TD), which
enables us to understand the capabilities of a device. However, the Thing Description

https://orcid.org/0000-0003-1084-8489
https://orcid.org/0000-0003-1084-8489
https://orcid.org/0000-0002-8035-5260
https://orcid.org/0000-0002-8035-5260
https://orcid.org/0000-0003-1815-4721
https://orcid.org/0000-0003-1815-4721
https://orcid.org/0000-0002-0069-4642
https://orcid.org/0000-0002-0069-4642

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 735

just allows us to declare devices that work using IP protocols whereas there are a lot of
things that are managed by other kinds of network protocols, even so, the Web of Things
is a very robust framework that allows us to establish any kind of interaction (property,
action or event).

When using IoT devices or cyber-physical systems, the second problem is that they
tend to be devices specially designed for efficiency with limited computing capabilities.
This can cause failed requests when many are sent at the same time, making the device
unable respond properly.

In addition, there is also the need to virtualize these types of devices for carrying
out tests without influencing our business processes [Shetty 2021]. To solve this last
problem, researchers introduced the concept of virtual component or Digital Twin (DT)
[Tuegel et al. 2011, Koulamas et al. 2018]. Digital Twins are virtual representations
of physical elements, systems, or devices, which can be used for different purposes.
However, the concept of DT focuses on a monolithic approximation for the management
and representation of devices in the real world. It lacks an approximation in multiple
levels that specifically addresses each facet of a device.

We developed the concept of Digital Dice (DD) to face the accounted issues [Mena
et al. 2019]. Digital Dice is a servient software of the Web of Things based on microser-
vices capable of handling the interaction and virtualization of IoT devices leveraging
the advantages of microservices. The WoT defines a servient as “software stack that
implements the WoT building blocks. A servient can host and expose Things and/or host
Consumers that consume Things. Servients can support multiple Protocol Bindings to
enable interaction with different IoT platforms” [WoT 2021]. Besides introducing the
concept of Digital Dices, we explain how they are closely related to the Web of Things
framework using the standard to leverage its advantages. Furthermore, we study the
conversion between Things Description models and the different facets or microservices
that our Digital Dice use.

The lack of specific ways to develop WoT servients from their Thing Descriptions
counterparts was the primary motivator when we came up with this last idea. The purpose
of this paper is introducing a mechanism to automatically create “thing components” or
servients for theWeb of Things, more specifically Digital Dices. This purpose introduced
a series of challenges to overcome, as the different pieces of a Digital Dice add a
complexity layer to the model-to-text (M2T) [Rose et al. 2012] transformation required
to generate the necessary code to make Digital Dice work. One of those challenges is
that Digital Dices are formed by different pieces (or microservices) depending on the
thing they represent.

As a summary, the main contributions of this paper are the following:

(a) The definition of Digital Dice, a WoT servient based on microservices.

(b) The creation of a semi-automated way to transform Thing Description into Web of
Things servients.

(c) The definition of a pipeline transformation process that give us a certain level of
assurance in the creation of Digital Dices.

(d) The introduction of an in-deep real scenario to demonstrate the way that our semi-
automated transformation works.

(e) The provision of a transformation tool so that the community can help test it and
improve it.

736 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

This paper is structured as follows. Section 2 introduces some concepts of the Web of
Things. Section 3 describes a running example of a particular scenario. Section 4 shows
Digital Dice concept as a solution to solve the problems described above. In Section 5
we study the Thing Description and how to convert thing description models to Digital
Dices. Section 6 presents an example scenario of conversion between some models of
the Thing Description and the microservices of the Digital Dices. Section 7 reviews the
related work found in the literature. Finally, Section 8 describes the advantages of Digital
Dice and some future work.

2 Background and fundamentals

In the IoT domain, the Web of Things standard is focused on the integration of IoT
devices into heterogeneous systems. Digital Dice is an implementation of the framework
proposed by the Web of Things. There are two main concepts that we must understand
before learning about digital dices. The first one is the Web of Things, as it is one of
the main pillars of our proposal. The second one has to do with Service Oriented Archi-
tectures (SOA) and microservices, more specifically, the advantages that microservices
architectures offer to the system.

2.1 Web of Things

The Web of Things [WoT 2021] is a framework established in 2007 to explore the future
of the physical Web. The main aim of this framework was to build the ecosystem of the
Internet of Things in a flexible, scalable, and open way using web technologies as its
application layer. Thanks to the W3C, the evolution of the work spearheaded by Guinard
et al. [Guinard et al. 2010] has become a standard to define IoT devices that use the Web
as the underlying technology. It is important to notice that this standard is able to work just
with devices that can be defined using web technologies as the physical communication
layer with those devices, so things like Bluetooth devices or other standards like the ones
based on the IEEE 802.15.4 specification [Kabalci 2019], or the one used by Zigbee
devices [Gislason 2008] are not fully supported. In some cases, workarounds can be
found for KNX or Zigbee devices, where through the use of IP gateways we have access
to those devices using an IP address and the particular info that the gateway needs to
interact with those devices.

The building blocks of the Web of Things can be depicted with four different pillars:
(i) Thing Description provides a schema in a readable data format capable of describing
network-facing interfaces and metadata of Things. (ii) Binding Templates provide a series
of guidelines to define network interfaces for particular protocols and IoT ecosystems,
i.e., the protocol bindings. (iii) Scripting API enables the implementation of application
logic using a JavaScript API simplifying the development and enabling portability across
multiple devices. Finally, (iv) Security and Privacy Guidelines provide a document to
establish a series of guidelines for the secure implementation and configuration of things.

This stack of the different building blocks of the Web of Things is what forms the
architecture of the WoT. The concept of Digital Dice was born as a servient system of
the Web of Things: “A servient system of the WoT is a software stack that implements
its building blocks. A servient can host and expose Things and/or host Consumers that
consume Things. Servients can support multiple Protocol Bindings to enable interaction
with different IoT platforms” [WoT 2021]. Digital Dices always have the capability of
exposing things. However, there is not always the need to consume a thing as the Web of

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 737

Things defines it, given that Digital Dices can sometimes overcome the need for a thing
of the Web of Things to work with IP technologies or even creating completely virtual
devices without requiring a physical device associated with it.

As the bulk of Digital Dices is centered around the Thing Description, let us take a
look at the parameters that the Thing Description requires. Figure 1 shows all the possible
parameters required to define a thing. The parameters in bold are required, even though,
in some cases, those parameters can be implicit. From here, we are going to focus our
attention on the important aspects of the Thing Description.

Figure 1 shows the structure of a thing, which includes the set of properties, actions
and events managed by the said thing (the three features are subclasses of Interaction
Affordance). The interaction at the same time is formed by one or more Forms or ways
to access the data. These Forms help us to define the methods that compose the DD
generated by the TD. Figure 1 shows three fields in the Form class that are mandatory.
Those three fields are used to create our DD. Table 1 contains the description of those
fields and their possible types.

Sometimes, those fields are omitted in some instances of Thing Descriptions, that
means that default values are assumed. The default values are as follows: a) op (operation)
field has an array of string with the elements readproperty andwriteproperty, if the feature
is a PropertyAffordance. Futhermore, it will be an invokeaction, if it is an instance
of ActionAffordance. Subscribeevent will be used as a default if it is an instance of
EventAffordance. b) contentType field has as default value application/json.

The last important TD feature is @type. This parameter can be found in the thing or
in different interactions affordances, and basically represents an object with semantic
tags (or types). Thanks of being a semantic value, that particular parameter can be used
for different purposes. In our case, it allows us to declare different features of a thing
tailor-made for our Digital Dice, e.g., if an interaction has a user interface or if a particular
device uses a protocol not fully supported by the WoT. Further information about this
topic is treated in Section 5.

Figure 1: Thing Description schema

738 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

Field Description Type

op

Indicates the semantic intention of performing the operation(s) described

by the form.

For example, the Property interaction allows get and set operations. The

protocol binding may contain a form for the get operation and a different

form for the set operation.

The op attribute indicates the form operation type and allows the client

to select the correct form for the operation required. Op can be assigned

one or more interaction verb(s) each representing a semantic intention of

an operation.

string or Array of string

(one of readproperty,
writeproperty,
observeproperty,
unobserveproperty,
invokeaction,
subscribeevent,
unsubscribeevent,
readallproperties,
writeallproperties,
readmultipleproperties or

writemultipleproperties)
href Target IRI of a link or submission target of a form. anyURI

contentType
Assign a content type based on a media type [IANA-MEDIA-TYPES]

(e.g., `text/plain') and potential parameters (e.g., `charset=utf-8') String

Table 1: Mandatory fields of the Thing Description

2.2 Service Oriented Architectures and microservices

As we defined in the previous section, the Web of Things is a framework that allows the
definition of Cyber-Physical Systems or IoT devices. However, it is up to the developers to
decide how they want to implement them. Digital Dice proposes to implement a software
capable of hosting and consuming things using architectures based on microservices.
This type of architectures follows the principles established by the Service-Oriented
Architecture (SOA) paradigm, such as the fact that they are developed around business
logic, propose standardized service contracts, must contain stateless services, or that they
must ensure the discovery of services, among other principles. However, microservices
bring a series of advantages by providing our proposal with better resilience and elasticity.

Microservices are services that meet a single functionality in our system, whichmainly
entails two advantages. The first one, their easy maintainability and testing, as they are
less interdependent and more manageable units. The second one, the microservices
improve the scalability of the solution, since the management and speed in the creation
and destruction of replicas is easier.

3 Running example

A running example of a smart building is used to support the explanation of our approach.
In this smart building, there is a few elements that need to be taken into account. Let us
suppose the building contains a public parking system where each parking spot has a
sensor. Furthermore, each house of the building has a series of connected devices, like
the lights, temperature sensors, andAir Conditioner (AC) units, all of them smart devices
using a different kind of protocols and datatypes.

Let us define the parameters and protocols of those devices. The parking subsystem
is an HTTP enable system capable of controlling 100 spots in a parking lot, where we
can get the status of all the parking spots individually or all together. All the lights
are connected using KNX enable lights, which are managed by one KNX gateway. A
temperature sensor controlled by a Zigbee gateway. Finally, an AC unit managed by an
ESP8266 device controlled via a Web Socket server.

As developers, we need to understand how to work with the different devices individ-
ually, having to learn all of those protocols. In the example, all devices can be represented
with a thing description.

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 739

4 Digital Dices

In this section, we will define the concept of Digital Dice as well as talk about the
different parts that form it and the challenges and strengths that the use of these artifacts
provides to our IoT ecosystem.

4.1 Definition

Digital Dices are virtual representations of things.Adigital dice is quite similar to a digital
twin, but there exist some differences. For instance, a digital twin is usually created for
the virtualization of a device, whereas the main task of the Digital Dice is its management.
Moreover, a digital dice is based on microservices, each one representing a different
feature of a thing. Also, a digital dice aims to be agnostic to the protocols used by each
IoT device. Digital Dices are compatible with the framework of the WoT, specifically
the Thing Description model. Thanks to this, our digital dices can be compatible with
different systems that make use of the standard, like Mozilla Web Thing framework
[Mozilla 2021]. The concept of dice (multiple facets) is given by how the microservices
that represent our devices are characterized:

(a) Controller (C). The controller handles the communication with the user, and it
manages the orchestration with the rest of the facets or directly to the device. It acts
as a gateway for the different facets that compose a DD.

(b) Reflection (R). This microservice acts as a replicator of the different properties of the
underlying thing. This microservice tries to limit the number of requests performed
directly to the device, replicating the different properties and events in a device and
maintaining an open communication channel with the device, sending the values to
the system database. This way, users of digital dices can request a particular property
of a sensor or an actuator without accessing the represented device.

(c) Data Handler (DH). This facet handles the communication with the underlying
database with two main purposes. On the one hand, it can log different requests
performed by the user to trace possible problems originated in our Digital Dices. On
the other hand, DH can act as a buffer for the IoT device to handle the requests. First,
the requested data is recovered from the database before trying to get them from the
physical device. If the data requested is newer than the time threshold configured
by our Dice (by default 1 second), then this data will be sent as a response. In
conjunction with the reflection, this microservice makes our Digital Dice improve
the performance and the reliability of the management of a particular device because
there are fewer communication channels directly open with the physical device. This
makes our DH less prone to overload that communication channel.

(d) Event Handler (EH). This aspect processes the events generated in the IoT device.
At the same time, it is intended to manage the connection with a future possible
Complex Event Processing (CEP) subsystem [Angsuchotmetee and Chbeir 2016] to
establish automatic interoperability between the devices.

(e) User Interface (UI). The user interface establishes a frontend for each interaction
controlled by our Digital Dice. The interactions can offer a UI that will be declared
in the Thing Description model that supersedes our DD. Besides those individual
interfaces for each interaction, we have a mechanism in our UI microservice to
generate single UI mashup made up by all the individual UIs of each interaction.
This mechanism offers the user a simple reusable interface to interact with the device.

740 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

(f) Virtualizer (V). This facet tries to replicate the behavior of the underlying device. If
declared in the thing description, a user of DDs can request virtualized data instead
of real data to try out their solutions.

Once described its structure, a Digital Dice can be described as a set of microservices
{C, R, DH, EH, UI, V} where Controller (C), Data Handler (DH) and Reflection (R)
are mandatory features in any DD instance, and the rest can appear depending on the
Thing Description defined. These facets of the Digital Dice must be capable of managing
the different aspects of the device represented. It is important to highlight that not all
facets will be part of the digital dice, as one of the main advantages of our proposal is the
modularity, as not all of the devices need to be represented by all the facets. Besides this
fact, we enable the possibility of adding new facets like as, for example, a facet capable
of offering a voice-activated interface or an open data manager capable of proactively
publish data in Open Data platforms.

The connection of facets with IoT devices is one of the objectives that this proposal
overcomes. In order to do that, a library capable of managing multiple protocols is
required. Besides creating such libraries, we need to establish what microservices have a
direct connection with the IoT device. To that end, we classified the microservices in two
categories; (a) hard related facets for microservices that have a direct connection with
the device (i.e., Controller, Reflection and Event Handler); and (b) soft related facets
for microservices that do not establish a direct connection with the device (i.e., UI, Data
Handler and Virtualizer).

The hard related facets use WoTnectivity1, a library designed to manage different
protocols but following a common use pattern to reduce its learning curve. Currently,
this library is ready to work with three different IP protocols (KNX, WS, HTTP), but the
idea is to add more protocols in the future.

4.2 Challenges and Strengths

One of the challenges is to establish a system architecture for Digital Dices. This archi-
tecture has to sustain multiple copies of the same microservices, allowing load balancing
between them and detecting when a microservice is overloaded, starting a new replica
of it to operate adequately. Figure 2 illustrates an example for the management of three
Digital Dices with the different facets required to represent the devices proposed in
the running example. The DD #1 has the four facets described, and it is responsible
for handling an actuator to turn a switch on and off. The DD #2 only has two facets
active because the interaction with the climatological information service is done through
the Data Handler and Controller facets. The DD #3 has a duplicate Data Handler facet
because the threshold number of accesses has been exceeded. The use of microservices
and the modularity of our approach are some of the advantages of our proposal.

One of the advantages provided by the modularity of our solution is that we can
replicate the different facets that compose our Digital Dice. This provides the ability to
increase the maximum limit of requests received by our Digital Dices. In addition, we
are able to scale only the facets that are most affected by said requests.

Another pillar of this proposal is the management of contextual information derived
from IoT devices. For example, the geolocation of the device can affect the availability
of the DD that represents it, as we can establish that only the users from a specific area
can request information on our DD. All of this business logic can be implemented in the
controller of the particular Digital Dice.

1 WoTnectivity - https://github.com/acgtic211/wotnectivity

https://github.com/acgtic211/wotnectivity

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 741

Figure 2: Digital Dice Architecture

Digital Dices establish communication with the users following the standards, mech-
anisms and technologies by the W3C, particularly in two ways, through a RESTAPI and
with Server Sent Events (SSEs). A Digital Dice offers to the user a simple RESTAPI
to interact with it. The addresses deployed follow the pattern https://{ipaddress}:
{port}/{thing.name}/{property|action|event}/{InteractionAffordance
.title} as it can be seen in the Figure 3 in the property temp (temperature). These
addresses will be declared in the TD of the particular DD as https://{ipaddress}:
{port}/{thing.name}/. Figure 3 shows the Thing Description of the Air Conditioner
in the running example where it has two interactions, a property called temp that sets
and reads the temperature set in the AC and an event called overload that warn the user
of a problem with the internal compressor.

In some cases, properties and events can be exposed through SSEs. This is particularly
useful when working with realtime data. As shown in Figure 3 the temperature property
has the parameter subprotocol declared as SSE, this property declares that the temperature
is exposed not as a simple resource but as an open channel to the user, i.e., a keep-alive
connection with the address. Thanks to the fact that Digital Dices follow the same
communication patterns, no matter the underlying device, makes the adoption of them
very easy for the developer because once the digital dice is deployed he/she can forget
about the particular protocols used by the physical device.

5 Digital Dice Transformer

Digital Dices use the Thing Description of the WoT in two different ways, as shown in
the Figure 4. The first one, being capable of exposing itself as a thing of the WoT, so
other systems compatible with the framework can make use of it. This method requires a
manual intervention from the developer, as he/she has to create the Digital Dice following
the parameters established by the definition of the DD, as well as decide if each of the

742 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

Figure 3: Thing Description of a Digital Dice instance

generated microservices requires some kind of business logic or needs to be taken into
consideration not available in the Thing Description. The second use is that Digital Dices
can consume things and expose them through the use of the thing description adding a
series of advantages, like a common way to access to them via a well-formed API, or
improving the performance through the use of microservices and limiting the number of
connection that affects the represented thing.

In this last use case, the creation of the Digital Dice can be partially automatized
applying model-to-text (M2T) transformation techniques [Rose et al. 2012]. As shown
in Figure 4, the thing needs to have a TD associated with it. As part of the Digital Dice
ecosystem, we developed the tool TD2DD Transformer2. This software converts a TD
to the different microservices exposed by the Digital Dice that can represent it, as well
as offering the necessary software infrastructure to the system so it can work.

2 TD2DD Transformer - https://github.com/acgtic211/td2dd-transformer

Figure 4: Thing Description use cases in Digital Dices

https://github.com/acgtic211/td2dd-transformer

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 743

Figure 5: TD2DD transformation workflow

For that purpose, the transformer converts a Thing Description into a Digital Dice
following a series of steps designed to improve its reliability. Furthermore, the process
needs to avoid the user intervention, only requiring his/her participation when choosing
the TD that he/she wants to convert and downloading the parts generated. Figure 5 shows
the workflow that the transformation process follows to generate the Digital Dice and
its infrastructure. The workflow executes five different steps: validation, verification,
definition, generation and packaging.

The Table 2 shows the mapping of each step in the source code. In it, we can see
how each step has a series of methods that define its functionality. The validation is
managed by the (validator.service.ts), meanwhile, the other steps are managed by the
(dd-builder.service.ts). The following subsections describe each step of this workflow.

5.1 Validation and Verification

The first step is executed while we are introducing the Thing Description in the trans-
former. The software has a textarea where we introduce the thing description that we
want to transform in a Digital Dice. Once the user introduces the TD in the textarea,

Step File Methods

Validation validator.service.ts validate(data):boolean

Verification dd-builder.service.ts verify(td):string[]
librariesNeed()

Definition dd-builder.service.ts servicesNeeded(td)

Generation dd-builder.service.ts

private buildController()
private buildDataHandler()
private buildEventHandler()
private buildUi()
private buildReflection()

Packaging dd-builder.service.ts

zipController()
zipDataHandler()
zipEventHandler()
zipUi()
zipReflection()
zipInfrastructure()

Table 2: Source code mapping for the transformation steps

744 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

1 validate(data):boolean {
2 try{
3 var jsonData = JSON.parse(data);
4 }catch(e){
5 return false;
6 }
7 var ajv = Ajv({ allErrors: true });
8 apply(ajv);
9 var valid = ajv.validate(this.schema, jsonData);
10 if (!valid) console.log(ajv.errors);
11 return valid;
12 }

Listing 1: Validation code

the system checks if the user is complying with the marked directives found in the
JSON schema of the Thing Description3. If not, an attention mark will be shown in the
top of the box and the transformation button will not be available to the user, to avoid
starting the conversion process. Listing 1 shows the source code that complies with the
aforementioned validation process. Between lines 2–6, the method checks if the input
TD is well-formed. Once it is known that the JSON is correct, the code between lines
7–12 is the one that checks the TD schema. One of the advantages of validating the code
with the official TD schema is that the code generated from the transformation cannot
be incorrect if the source model is correct and assumes that the transformation rules are
correct.

Once the thing description complies with the parameters established by the schema,
the verification step begins. This step starts the processing of the TD taking a look into the
semantic values of the TD, more specifically the @type parameters. This process checks
if the values are compliant with those managed by the Digital Dice. These parameters
alter the DD generated in the definition and generation steps. It is important to notice
that the @type values can be declared in two different levels inside the TD, at the thing
level and at the interaction level. The values of the @type that can alter the behavior in
the construction of the Digital Dice are explained as follows.

First, the property value ui. When this property is found at a thing level, a global
user interface is needed with all of the different interactions that have the parameter
@type with the value ui. If this parameter is found at interaction level, the system needs
to expose a user interface for that particular interaction. ADigital Dice can have multiple
InteractionAffordances with ui exposed, but it is not mandatory to expose a global
user interface.

Another value that can alter the behavior of a DD is @type with the value virtual. At
the thing level, this value indicates that all the InteractionAffordances have to be
virtualized inside the digital dice. In this case, when a user interacts with the digital dice,
he/she will interact with a completely virtual device and not with the physical one. If we
find this property value at the interaction level, it indicates that the particular interaction
has to be virtualized. Unlike the ui value, if the virtual value is found at thing level, it
has an impact over the whole device, indicating that the device managed by the DD is
completely virtual.

Digital Dices include in some cases other contextual parameter for @type to clarify
technologies not totally compatible with the WoT (e.g., KNX). KNX devices cannot be
represented by a Thing Description, as they do not use web technologies by themselves.
So in order to declare a thing description of a KNX device, we need a proper middleware
software [Ngu et al. 2016] and a device known as KNX IP gateway. The actual Thing

3 TD JSON Schema for validation - https://cutt.ly/7kzePnP

https://cutt.ly/7kzePnP

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 745

Description of the lights of the running example is a mock Thing Description compatible
with our Digital Dice ecosystem. Furthermore, this TD uses special data schemas to work
with the particular Schneider KNX IP Gateway that needs to use especial parameters to
establish communication with the lights. To define this kind of devices we use the value
knx for @type of the device, this value warns the DDs of the different considerations
that they have to implement in order to manage these devices.

5.2 Definition

The definition stage is the cornerstone of the whole transformation process as it defines
the different microservices where the model-to-text transformation takes place. To do so,
first, the provided transformer tool, after checking sure that the Thing Description is well-
formed through the first two stages (Verification and Validation), automatically discovers
what microservices will be needed to represent a particular thing. Figure 6 shows the
microservices generated by the conversion of the TD to DD and how certain values of
the Thing Description generate different configurations for the Digital Dice. Different
properties, actions or events will generate different configurations of microservices. The
interactions will always generate at least the three different microservices, Controller,
Reflection and Data Handler. An Event Handler microservice will be generated when
the TD contains events.

As we stated in Section 2.1, in some cases, default values are considered if they do
not appear in the TD. Furthermore, a Virtualizer or a User Interface microservice will be
generated when the semantic parameter @type has the values virtual or ui respectively.
In the Listing 2 we can see this fact, as lines 3 and 4 are two methods that analyze the
@type of the Thing Description to see the communication libraries that the project will
need, as well as see if the ui or virtualizer microservices are going to be needed. In line
5, the DD (Controller and Reflection) base microservices are shown together with an
auxiliary service that only needs to be deployed once, no matter the number of DDs that
our systems have. This service contains all the infrastructure needed to support the DD
ecosystem. Furthermore, between lines 6–17, we define all the microservices needed in
accordance with the Figure 6.

1 servicesNeeded(td) {
2 this.parsedTd = JSON.parse(td);
3 var types = this.verify(this.parsedTd);
4 this.librariesNeed();
5 var services = { services: ["infrastructure", "controller", "

↪→ reflection"] };
6 types.forEach(element => {
7 services.services.push(element);
8 });
9 if (this.parsedTd.events) {
10 services.services.push("eventHandler");
11 }
12 if (this.parsedTd.actions || this.parsedTd.properties) {
13 services.services.push("dataHandler");
14 }
15
16 return services;
17 }

Listing 2: Definition code

746 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

Figure 6: Definition of the microservices to manage a TD

5.3 Generation

Once defined the microservices, the system will generate the different files needed to
create said microservices, as well as the infrastructure to support the Digital Dices. In
this stage is where the bulk of the model-to-text transformation takes place, defining
the classes, methods, and files necessaries to create a template of each microservice to
help the end-user develop thing servient or component faster. However, before that, the
software infrastructure that supports the Digital Dices must be generated.

The infrastructure to manage the Digital Dice ecosystem is based on three artifacts.
The first one is a MongoDB4 database. We choose this database because it is capable of
horizontal scaling with sharding. The second is the use of a Discovery Service, more
specifically, Spring Cloud Netflix Eureka5. We have developed the solution of Digital
Dices in the Java programming language, and using Eureka brings about full compatibil-
ity with Server-Sent Events, full load balancing, circuit-breaker pattern to our system
effortlessly. The system is capable of registering each facet or microservice of our Digital
Dice and its replicas. Besides the service discovery, DD uses other service dedicated to
act as a gateway for all the requests sent by the user, a Spring Cloud Gateway6. This
artifact provides a library for building an API Gateway on top of Spring MVC. Spring
Cloud Gateway aims to provide a simple way of routing APIs and takes care of a series
of concerns such as security, monitoring/metrics, and resiliency. The advantage of using
this Gateway is that it is completely compatible with Eureka and can automatically create
routes for the services registered in the Discovery Service. These three artifacts and
the rest of the microservices generated are managed by Dockers [Jaramillo et al. 2016],
and Kubernetes [Hightower et al. 2017] since they provide different ways to scale and
downscale when necessary automatically. These services have a common codebase no
matter the Digital Dice created, so we have a fragment of static code to perform the
generation step for the infrastructure.

4 Mongo Db - https://www.mongodb.com
5 Spring Cloud Netflix - https://spring.io/projects/spring-cloud-netflix
6 Spring Cloud Gateway - https://spring.io/projects/spring-cloud-gateway

https://www.mongodb.com
https://spring.io/projects/spring-cloud-netflix
https://spring.io/projects/spring-cloud-gateway

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 747

Once the infrastructure is defined, the generation process builds the different mi-
croservices of the Digital Dices. The Controller generates a route and a method for each
InteractionAffordance, two in the case that the particular interaction has an SSE be-
havior, or even more if the interaction has more than one Form to interact with the device.
The Controller has other features like exposing the TD to manage the particular DD; the
generation of user-generated events to extend the functionality of the system; or the or-
chestration of the request sent by the user to the other services acting as a gateway for the
particular Digital Dice. The communication with the rest of the microservices is managed
following reactive patterns. This helps us to improve the performance of the system using
a minimal amount of resources. The Reflection requests the PropertyAffordances
of a device per second and saves the data recovered into the database if it has changed
since the last time requested. This microservice will do long polling every second if
the physical device does not have any real-time data protocol implemented. The Event
Handler propels the events declared on the device to the Controller and saves them
into the database if needed, as well as handling the user-generated events sent by the
Controller. The Virtualizer generates one method for each InteractionAffordance
declared with the @type as virtual, the same with the UI but with the value ui.

Microservices are generated into source code that must be compiled. Each facet of the
Digital Dice is an individual project, and every project has all the necessary source code
files as well as the dependency files (pom.xml), the application.properties neces-
sary for Spring and a Controller.java file that implements the behavior described
above. If the user wants to modify the behavior or implement something different for the
particular DD, he/she needs to modify the generated source code. In some cases, the user
has to intervene to implement part of the methods as the transformer is a “partial” M2T
transformation tool [Burgueno et al. 2019].

5.4 Packaging

The last step in the transformation process is the packaging of each microservice or facet.
To do so, each project created in the generation step is scaffolded and compressed to a
zip file. After that, the user can download and modify it. The Figure 7 shows the web

Figure 7: TD2DD Web Application User Interface

748 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

user interface of the TD2DD Transformer, in which appears the thing description of
the temperature sensor of the running example, and all the packages generated with the
microservices the digital dice needs.

6 Conversion example

Let us see now what would happen if we had to develop an app capable of managing
the devices shown in the running example. First, we have to learn how every device
works and how to communicate with the devices using their respective technologies.
This process requires a lot of time, even only considering four types of devices. If the
system was governed by a Digital Dice ecosystem, the time to develop any application
related to the use of the devices would be minimal, as the developer would just need to
know how to make simple HTTP requests following a well-formed API.

Being the conversion between Thing Descriptions and Digital Dices the main contri-
bution of this paper, this section will show the conversion steps for the lights and the air
conditioner of the running example. The KNX protocol governs the lights, and the air
conditioner works withWeb Socket. First, let us see the particularities found in both Thing
Descriptions7. The lights got more than one Form to access to the PropertyAffordance
status, one of those with a sse subprotocol. That means that it is necessary to leave a
connection open with the device to get the value of the property. Both the property status
and the action toogle require independent UI, but in this case not a global one. The air
conditioner has a more simple model. The only thing that the system has to take into
account in the next steps is the fact that the subprotocol has the value ws indicating our
Digital Dice that it has to maintain a subscription via web sockets to get the data for said
device.

The system handles theValidation of the Thing Descriptions that we want to convert
into a Digital Dice. By default, the two thing descriptions are well formed as they are
compliant with the parameters established in the JSON schema of the TD. Once the thing
descriptions are validated, we progress to the Verification step. Like in the validation
step, the semantic values of the TDs are known to the Digital Dices so the system has no
problem of verifying.

In the Definition stage, we see the differences between both conversions. Figure
8 shows what microservices are generated from the Thing Description that represents
the KNX lights of the running example showing what fragments of the TD affect the
generation of the different microservices.

The figure depicts how every Thing Description generates an infrastructure and seeing
than the TD has InteractionAffordances (properties, actions or events) means that
the digital dice that represent the device will have at least a Controller and a Reflection.
The device has an action, this means that the DD will have a DataHandler. If we take a
closer look to the figure, we can see that the semantic @type has a value of ui meaning
that the digital dice will have a UI microservice to show two interfaces: one for the
property and the other one for the action. In the case of the Air Conditioner (AC) the
differences strives in the fact that the Digital Dice that represents this device will have
an EventHandler and no UI.

In the Generation step, the transformation tool builds all necessary files for the
Digital Dice. For instance, the files generated in the Controller microservice for the AC,
the system will generate the dependency file for the Spring project, the pom.xml, and
7 Thing descriptions of running example - https://cutt.ly/Kkze1qM

https://cutt.ly/Kkze1qM

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 749

Figure 8: TD2DD Example - Definition

the application.properties file with configuration parameters for the microservice.
After that, the system generates a series of auxiliary files that helps the Controller
communicate with the other microservices.

Listing 3 shows the code generated for the Controller microservice, more precisely,
the main file for that microservice. The code uses a series of properties (lines 3 and
5). First, the env variable (line 3) accomodates the configuration of the microservice,
with parameters such as: the Thing Description of the represented device and others
like ports, the Discovery Service address, some parameters related to the database
connection, among others parameters configured in the application.properties file.
Next, the dicoveryClient (line 5) provides access to the discovery client to allow the
Controller microservice the discovering of other microservice addresses when needed.
The dataHandler property (line 7) implemets a Java interface that shows all the method
available, in this case, on the DataHandler microservice. The next property WebClient
is used to establish communication with the other microservices. Furthermore, we can
see three methods generated (lines 10–12, lines 14–18 and lines 20–24) following the
specification defined in Section 5. It is important to notice that, due extension constraints,
we cannot show all the code generated, but it is available in project code repository. The
method returnTD() (lines 10–12) returns the thing description managed by the digital
dice. The method getProperty (lines 14–18), request the DataHandler the particular
property that the user wants, and once the controller gets the response it sends it back to
the user. The method getPropertySSE (lines 20–24) performs the same that the second
one, but with a sse behaviour. We can see in the original Thing Description (Figure 3)
for this example that the user has two different ways to access the temperature data.

The Controller.java contains other methods to change the temperature with a
POST request to the particular address or the used to manage the events. In addition to

750 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

1 public class Controller {
2 @Autowired
3 private Environment env;
4 @Autowired
5 private DiscoveryClient discoveryClient;
6 @Autowired
7 private IDataHandler dataHandler;
8 private WebClient wc;
9 @RequestMapping(method = RequestMethod.GET, path="/", produces="application/json")
10 public ResponseEntity returnTD() {
11 return new ResponseEntity(env.getProperty("td"), HttpStatus.OK);
12 }
13 @RequestMapping(method = RequestMethod.GET, path = "/property/{property}")
14 public Mono getProperty(@PathVariable("property") String propertyName) {
15 this.wc = WebClient.create(this.discoveryClient.getInstances("ac-h1-DATAHANDLER").get(0).getUri

↪→ ().toString());
16 Mono<PropertyData > res = webc.get().uri("property/{prop}", propertyName).retrieve().bodyToMono(

↪→ PropertyData.class);
17 return res;
18 }
19 @RequestMapping(method = RequestMethod.GET, path = "/property/{property}/sse", produces = MediaType.

↪→ TEXT_EVENT_STREAM_VALUE)
20 public Flux getPropertySSE(@PathVariable("propertyName") String property) {
21 this.wc = WebClient.create(this.discoveryClient.getInstances("ac-h1-DATAHANDLER").get(0).getUri

↪→ ().toString());
22 Flux<PropertyData > res = webClient.get().uri("/property/{prop}/sse", propertyName).retrieve().

↪→ bodyToFlux(PropertyData.class);
23 return res;
24 }
25 ...
26 }

Listing 3: Controller code (AC House1)

this microservice, we have to take into account that there are others. Apart from this
microservice, the transformation process generates more code. In this paper, we have only
focused on a piece of the code to explain some details of the transformation process of
Things Descriptions into Digital Dices.As we just advanced, the complete transformation
code is available at the code repository. Doing the transformation manually for each of
the devices can become a very tedious process, hence the need for a code generator that
offers the possibility of the rapid deployment of a Digital Dice ecosystem.

Once all the microservices have been generated, in the Packaging stage, a zip file is
generated for each project. Finally, the system returns the project generated to the user,
who can then download, set, and modify the provided files and run the Digital Dice.

7 Related work and discussion

The idea of linking the Web with IoT devices is not new. Authors like Guinard et al.
[Guinard et al. 2010, Guinard et al. 2011, Guinard et al. 2016] are working actively in
making this a fact. They propose a Web of Things architecture and best practices based
on RESTful principles. Our Digital Dice try to go a step further leveraging the latest
trends in the Web Services architecture, the use of microservices as a building block of
our solution.

As we explain through the article, the Digital Dices are closely related to the Web
of Things [WoT 2021], being this a reference framework that seeks to counter the gap
found in the IoT world. The idea of using the Web of Things comes from the need
of making our Digital Dice concept compatible with other system and software like
Mozilla WebThings [Mozilla 2021]. Mozilla offers a unifying application layer, linking
together multiple underlying IoT protocols using existing web technologies. The Mozilla
WebThings is an open-source implementation of theWoT that offers two primary software
artifacts: (a) WebThings Gateway, a web-based user interface to monitor and control
smart home devices; and (b) WebThings Framework, a reusable software component to

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 751

help developers build their own web things, which directly expose the Web Thing API.
Moreover, as our Digital Dice is a solution compatible with the Web of Things, nothing
stops a user of the WebThings Gateway from using a Digital Dice as a virtual Smart
Device in it.

An approach more closely related to our proposal is that one presented in [Khanda
et al. 2017]. In this work, the authors propose a solution based on Jolie to manage a
prototype platform supporting multiple concurrent applications for smart buildings. This
proposal uses a sensor network and a distributed microservices architecture. The solution
has the caveat of being focused on a specific domain, thus not giving a broad solution to
the management of IoT devices or Cyber-Physical Systems.

The proposals given by [Sun et al. 2017] and [Vresk and Čavrak 2016] offer a general
solution to the use of microservices in a non-domain specific approach. The solution
proposed by [Sun et al. 2017] makes use of eight different microservices to separate
aspects of an IoT centric systems, such as security, events, devices, etc. However, from our
point of view, this solution does not really take advantage of the power of microservices,
because all those microservices have a high amount of complexity, difficulting the
replication and maintainability of the system. In contrast, the Digital Dice Architecture
is a more fine-grained solution with less complex microservices helping to enhance the
capabilities of microservices. Therefore, one of our advantages is that our system is able
to replicate each aspect of a particular thing individually as soon as they are needed, as
our proposal handles each aspect of a device as a microservice.

Niflheim approach [Small et al. 2017] proposes an end-to-end middleware for a
cross-tier IoT infrastructure that provides modular microservice-based orchestration
of applications to enable efficient use of IoT infrastructure resources. This solution
provides a framework way to divide the resources of a cloud infrastructure in a 3-tiered
infrastructure pool; (a) Cloud tier, to support pools of Open-Stack hosted cloud VMs;
(b) Fog tier, for Docker containers; (c)Mist tier, for CerberOS powered IoT devices. We
see Niflheim as a complementary system since it could provide a reliable architecture
for the deployment of our Digital Dices.

The IoT-A project [Bauer et al. 2013] is an Architectural Reference Model (ARM)
that establishes a common understanding of the IoT domain and provides to IoT system
developers a common technical foundation and a set of guidelines for deriving a concrete
IoT system architecture. This ARM is taken into account in both the WoT and the Digital
Dice architectures to establish the communication between different IoT devices.

Aside from Digital Dices, in this paper, we introduced the model-to-text transfor-
mation process used to generate the code of said Digital Dices. Code generation for
IoT systems has been another topic that we have explored in the literature to complete
our proposal on Digital Dices. We found the work in [Steinmetz et al. 2017], where the
authors propose a tool that facilitates the creation of Internet of Things systems using
ontologies and, through this model, generates code. Another work in code generation for
IoT systems is presented in [Sharaf et al. 2019], in which the authors provide a model-
driven code generation framework (CAPSml) to generate ThingML models [Harrand
et al. 2016], and it offers an open-source tool capable of code generation.

Both of these approaches offer a broader and personalized way of generating code for
IoT devices using different modelling languages. Our approach offers a way to directly
use the metamodel of the Web of Things - Thing Descriptions to generate Digital Dices
as its only purpose. That is the main advantage of our approach, as the Digital Dice
Transformer has only one particular purpose does not need a modelling language to define
rules, so we do not need to change the rules of the conversion nor the stages mentioned
in Section 5, making our approach less prone to failure. However, this issue could be

752 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

just the main disadvantage of our proposal since there is no way to customize the current
code generation easily. Our solution is an ad-hoc proposal where the changes in the code
generation involve some changes in the base code of the transformer application. On the
contrary, our transformer allows us rapidly generate Digital Dices. In the WoT domain,
there are not many, if at all, code generators that leverage the well-known framework,
hence the novelty of our approach.

Once discussed the related work about WoT servients and their applications, it is
important to highlight the principal milestones reached to come up with the idea of
Digital Dices and the transformation tool. Those milestones were the following:

(a) Thinking how to improve and define interoperability and integration of IoT ecosys-
tems.

(b) Choosing the Web of Things as a robust and recognized metamodel to declare IoT
devices.

(c) ImprovingWoT servients adding an architecture helping us to leverage the advantages
of microservices (Digital Dices).

(d) The need to quickly generate at least template code for those servients for a rapid
deploy of a DD ecosystem.

(e) Have flexibility in the transformation process and assure that the artifacts generated
follow a concrete schema using the Thing Description as a base.

8 Conclusions and Future Work

This proposal aims to improve interoperability, integration, and management between
both real and virtual IoT systems and devices. To do this, the functionality of devices
is abstracted to a set of microservices making use of WoT standards. Microservice
architectures help us to establish operational mechanisms that permit better use of
resources and facilitate maintainability. This paper offers a solution to convert external
IoT devices described as a WoT Thing Description into Digital Dices. At the same
time, Digital Dices expose a Thing Description so they can be used by external systems
seamlessly.An example scenario in the smart building domain has been used to understand
transformation process.

The use of Digital Dices offers a series of advantages. Firstly, due to being a software
abstraction help us define a common communication language no matter which device
our Digital Dice is representing, which leads to the use of a typical pattern to connect
to features defined by said device. Secondly, the internal behaviour of our Digital Dice
lessens the number of requests received by the device . What provokes that in some
cases is unnecessary to connect with the device to recover a property value of the said
device. Other advantage is that given the fact that our system is based on microservices,
it allows us to replicate only the microservices of the system that receive more requests.
This gives our system flexibility, thus is always trying to minimize the use of resources.
Finally, the compatibility of our solution with the WoT definition Schema offers other
systems like the Mozilla IoT Gateway the possibility of using the schema defined by our
Digital Dice to interact with.

The disadvantages Digital Dices are mainly inherent to microservices. First, the
architectural complexity that microservices usually require. It is easier to develop a
monolithic application than software based on microservices. Furthermore, this kind of
software requires outside gateways, discovery, and other auxiliary software to orchestrate

MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ... 753

the communication inside our system. Besides this fact, in some circumstances, DD can
be slower to respond than a direct connection to IoT devices but usually more reliable.

Besides the definition of Digital Dices, in this paper, we provide a transformation
tool to generate boilerplate code for Digital Dices from Thing Descriptions rapidly. This
helps the end-users to create Web of Things components faster than doing it manually,
providing a shorter time to deploy virtual representations of things.

In this transformation tool, the source models are validated against their own schema
(Thing Description Schema). The code generated from the transformation cannot generate
incorrect code if the source model is correct, assuming that the transformation rules are
correct. However, it must be acknowledged that no empirical study has been carried out
on this statement. As a future consideration, we will try to provide this transformation
process with mathematical notation and MDE foundations such as those proposed by the
authors in [Vallecillo et al. 2012, Guerra et al. 2013].

As future work, we are working on comparing different IoT and WoT middleware
systems with our solution, performance and reliability-wise. An extension of the WoT
thing description is also in the works. This extension aims to try to establish a way
to improve machine-to-machine communication through the use of complex events.
With this, we want to establish a series of scenarios where a Digital Dice can react to
the changes produced by others. This extension has to maintain the core of the Thing
Description as it is, so our system is still totally compatible with others, but adding
the necessary features to be able to work together with other devices without human
intervention.

Acknowledgements

This work is funded by the Spanish MINECO project (ref. TIN2017-83964-R) and
CEIMAR consortium (ref. CEIJ-C01.2). Manel Mena has been funded by a grant from
the Spanish Government FPU17/02010.

References

[Angsuchotmetee and Chbeir 2016] Angsuchotmetee, C., Chbeir, R.: A survey on complex event
definition languages in multimedia sensor networks. In Proceedings of the 8th Int. Conf. on
Management of Digital EcoSystems, pp. 99–108. ACM, 2016.

[Bauer et al. 2013] Bauer, M. et al.: Internet of Things – Architecture IoT-ADeliverable D1.5 –
Final architectural reference model for the IoT v3.0, 2013.

[Burgueno et al. 2019] Burgueño, L., Cabot, J., Gérard, S.: The Future of Model Transformation
Languages: An Open Community. Journal of Object Technology, 18(3), 2019.

[Gislason 2008] Gislason, D.: Zigbee Wireless Networking. Oxford: Newnes, 2008.

[Guerra et al. 2013] Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger,
W., Schönböck, J., Schwinger, W.: Automated verification of model transformations based on
visual contracts. Autom. Softw. Eng. 20(1), pp. 5–-46, 2013.

[Guinard et al. 2010] Guinard, D., Trifa, V., Wilde, E. et al.: A resource oriented architecture for
the Web of Things. In 2010 Internet of Things (IOT), pp. 1–8, 2010.

[Guinard et al. 2011] Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the Internet of Things to
the Web of Things: Resource-oriented architecture and best practices. In Architecting the Internet
of Things, pp. 97–129. Springer, 2011.

754 MenaM., Criado J., Iribarne L., Corral A.:Assembling theWoT andMicroservices for the ...

[Guinard et al. 2016] Guinard, D., Trifa, V.: Building the Web of Things: with examples in node.js
and raspberry pi. Manning Publications Co., 2016.

[Harrand et al. 2016] Harrand, N., Fleurey, F., Morin, B., Husa, K.: ThingML: a language and
code generation framework for heterogeneous targets In ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, pp. 125–135, 2016.

[Hightower et al. 2017] Hightower, K., Burns, B., Beda, J.: Kubernetes: up and running: dive
into the future of infrastructure.O’Reilly Media, Inc. 2017

[Jaramillo et al. 2016] Jaramillo, D., Nguyen, D. V., Smart, R.: Leveraging microservices archi-
tecture by using Docker technology. In SoutheastCon, Norfolk, VA, pp. 1–5 2016.

[Kabalci 2019] Kabalci, Y.: IEEE 802.15. 4 technologies for smart grids. Smart Grids and Their
Communication Systems, pp. 531–550. Springer, Singapore, 2019.

[Khanda et al. 2017] Khanda, K., Salikhov, D., Gusmanov, K., Mazzara, M., Mavridis, N.:
Microservice-based IoT for smart buildings. In 31st International Conference on Advanced
Information Networking and Applications Workshops, pp. 302–308. IEEE, 2017.

[Koulamas et al. 2018] Koulamas, C., Kalogeras, A.: Cyber-physical Systems and Digital Twins
in the Industrial Internet of Things. Computer, 51(11), 95–98, 2018.

[Mena et al. 2019] Mena, M., Criado, J., Iribarne, L., Corral, A.: Digital Dices: Towards the
Integration of Cyber-Physical Systems merging the Web of Things and Microservices. In 9th Int.
Conf. on Model and Data Eng. (MEDI’2019), pp. 195-205, Springer, 2019.

[Mozilla 2021] Mozilla IoTWebThings. https://iot.mozilla.org/. Acc.: 2021-01-07.

[Ngu et al. 2016] Ngu, A., Gutierrez, M., Metsis, V., Nepal, S., Sheng, Q.: IoT middleware: A
survey on issues and enabling technologies. IEEE Internet Things J, 4(1), 1–20, 2016.

[Rose et al. 2012] Rose, L. M., Matragkas, N., Kolovos, D. S., Paige, R. F.: A feature model for
model-to-text transformation languages. In 4th International Workshop on Modeling in Software
Engineering. IEEE Press, pp. 57–63, 2012.

[Sharaf et al. 2019] Sharaf, M., Abusair, M. et al.: Modeling and code generation framework for
iot. In International Conference on System Analysis and Modeling, pp. 99–115, 2019.

[Shetty 2021] Shetty S.: How to Use Digital Twins in Your IoT Strategy. https://gtnr.it/2FFU4al.
Acc.: 2021-01-24.

[Small et al. 2017] Small, N., Akkermans, S., Joosen, W., Hughes, D.: Niflheim: An end-to-end
middleware for applications on a multi-tier IoT infrastructure. In IEEE 16th Int. Symposium on
Network Computing and Applications (NCA), pp. 1–8. IEEE, 2017.

[Steinmetz et al. 2017] Steinmetz, C., Schroeder, G. et al.: Ontology-driven IoT code generation
for FIWARE. In IEEE 15th Int. Conf. on Industrial Informatics (INDIN), pp. 38–43, 2017.

[Sun et al. 2017] Long S., Yan L., Memon, R. H.: An open IoT framework based on microservices
architecture. China Communications, 14(2), 154–162, 2017.

[Tuegel et al. 2011] Tuegel, E., Ingraffea, A., Eason, T., Spottswood M.: Reengineering aircraft
structural life prediction using a digital twin. International Journal of Aerospace Engineering. vol.
2011, Article ID 154798, 14 pages, 2011.

[Vallecillo et al. 2012] Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.:
Formal Specification and Testing of Model Transformations. In Int. School on Formal Methods
for the Design of Computer, Communication and Software Systems pp. 399–437. Springer, 2012.

[Vresk and Čavrak 2016] Vresk, T., Čavrak, I.: Architecture of an interoperable IoT platform
based on microservices. In 39th International Convention on Information and Communication
Technology, Electronics and Microelectronics, pp. 1196–1201, 2016.

[WoT 2021] W3C: Web of Things. https://www.w3.org/WoT/. Acc.: 2021-01-05.

https://iot.mozilla.org/
https://gtnr.it/2FFU4al
https://www.w3.org/WoT/

	Introduction
	Background and fundamentals
	Web of Things
	Service Oriented Architectures and microservices

	Running example
	Digital Dices
	Definition
	Challenges and Strengths

	Digital Dice Transformer
	Validation and Verification
	Definition
	Generation
	Packaging

	Conversion example
	Related work and discussion
	Conclusions and Future Work

